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Abstract—Computational methods have been extensively used
to understand underlying dynamics of molecular communication
methods employed by nature. One very effective and popular
approach is to utilize a Monte Carlo simulation. Although it is
very reliable, this method can have a very high computational
cost, which in some cases renders the simulation impractical.
Therefore, in this paper, for the special case of an excitatory
synaptic molecular communication channel, we present a novel
mathematical model for the diffusion and binding of neurotrans-
mitters that takes into account the effects of synaptic geometry in
three-dimensional space and re-absorption of neurotransmitters
by the transmitting neuron. Based on this model we develop
a fast deterministic algorithm, which calculates expected value
of the output of this channel, namely the amplitude of EPSP
(Excitatory Postsynaptic Potential), for given synaptic parame-
ters. We validate our algorithm by a Monte Carlo simulation,
which shows total agreement between the results of two methods.
Finally, we utilize our model to quantify effects of variation in
synaptic parameters such as position of release site, receptor
density, size of postsynaptic density (PSD), diffusion coefficient,
uptake probability and number of neurotransmitters in a vesicle,
on maximum number of bound receptors that directly affect peak
amplitude of EPSP.

Index Terms—Neuro-spike communication, Synaptic Channel,
Diffusion, Receptor Binding, Synaptic variability

I. INTRODUCTION

Nanonetworks [1] are envisioned to find significant ap-
plications in various disciplines such as health monitoring,
intelligent drug delivery systems, quality control of materials
and air and water pollution control. Molecular communication
[2]–[7], where molecules are used to encode, transmit and
receive information, is the most prudent choice of communi-
cation paradigm for nanonetworks since it is ubiquitous and
performing efficiently in natural processes.

Neuro-spike communication, one of the most evolved and
investigated form of molecular communication [8]–[12] , is
where electrochemical impulses and neurotransmitters are
used for information transfer. Within neuron, information is
transferred by electrochemical impulses called action potential
(AP) or spike that travel along an axon that branches out at
the end and form connections with other neurons. Most of the
neurons are physically disconnected from each other having
a small gap called synaptic cleft that makes this connection
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more flexible. This connection is commonly known as synapse.
The two ends of synapse are pre- and postsynaptic terminals
corresponding to transmitter and receiver neurons, respectively
as shown in Fig. 1. AP traveling through axon arrives at
pre-synaptic terminal and releases neurotransmitters into the
synaptic cleft. The major type of neurotransmitter in central
excitatory synapses is known as Glutamate. Once released
into the cleft, these glutamate molecules are captured by
receptors present on postsynaptic terminal generating EPSP.
For successive transmissions, neurotransmitters need to be
removed from synaptic cleft before next vesicle release. In
Central Nervous System, clearance of these neurotransmitters
is achieved through diffusion of molecules out of the cleft as
well as by re-uptake phenomenon [13], where a fraction of
neurotransmitters are re-absorbed by pre-synaptic terminal for
re-cycling. Therefore, it is necessary to include the effect of
re-absorption to get more realistic model.

There are number of models available for neuronal commu-
nication encompassing its biological functionality at various
levels of complexity. Integrate-and-fire model [14] is the
simplest spiking model that ignores biophysical mechanisms
involved in generating spikes. On the other hand, Hodgkin-
Huxley model [15] includes channel conductances, respon-
sible for triggering AP. While addressing the transmission
of electrochemical impulses within neuron, these models
do not consider biophysical mechanisms involved in inter-
neuronal communication such as vesicle release, diffusion of
neurotransmitters, receptor-ligand binding and re-uptake of
neurotransmitters. In [8] and [16], physical channel models
for neuro-spike communication are proposed that encompasses
all of these mechanisms to some extent. The information
theoretical analysis of synaptic channel model with trial-to-
trial variability in EPSP is given in [9] and [17].

All the given models are only close approximations of
synaptic channel since capturing complex dynamics of neural
signaling into a single model is quite challenging. Therefore,
addressing this problem in modular fashion is a feasible
solution. Thus, in this paper, our focus is to model diffusion
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Fig. 1: Geometry of a synaptic channel.
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of neurotransmitters in synaptic cleft and their binding with
postsynaptic receptors including the effects of their reflection
from pre- and postsynaptic terminals of synaptic channel.

The available models of synaptic channel deal with diffusion
of neurotransmitters unrealistically without taking into account
all geometrical and statistical determinants. In [8], authors
consider diffusion of neurotransmitters in one-dimension, how-
ever, authors of [16] consider three-dimensional diffusion
model without taking into account their reflections from pre-
and postsynaptic terminals. In [9] and [17], the effect of diffu-
sion is combined with other factors into a single parameter that
models trial-to-trial variability in EPSP. In [18]–[20], extensive
simulation algorithms are used to determine the position of
neurotransmitters within the cleft by drawing trajectories of
their motion, however, these models are expensive in terms
of time and energy. Therefore, a realistic mathematical model
for diffusion and binding of neurotransmitters is required to
analyze the effects of different statistical and geometrical
parameters on synaptic communication at molecular level.

Thus, in this paper, we consider a synapse in hippocampal
region of brain and propose novel mathematical formulation
that realistically models diffusion of neurotransmitters and
their binding with postsynaptic receptors, incorporating the
effects of synaptic geometry in three-dimensional space. Fur-
thermore, we incorporate the effects of pre-synaptic re-uptake
of neurotransmitters in our model and validate it through
extensive Monte Carlo simulation and existing experimen-
tal work. We consider a Single-Input-Single-Output (SISO)
synaptic channel as shown in Fig. 1 and, analyze the effects
of variation in different synaptic components, namely, vesicle
release site, receptor density, PSD size, number of neurotrans-
mitters per vesicle, diffusion coefficient of glutamate and re-
uptake probability, on EPSP. Consequently, major sources of
trial-to-trial variability [21] in single postsynaptic response are
discussed. Eventually, this analysis will lead us to understand
the mechanism of synaptic plasticity. Finally, we analyze our
model of synaptic communication channel by determining
error probability in received signal using optimum receiver.

The rest of the paper is organized as follows. In Section II,
we give details of physiological assumptions and Monte Carlo
simulation, and formulate a mathematical model for diffusion
of neurotransmitters and their binding with postsynaptic recep-
tors. Communication theoretical analysis of derived model is
performed in Section III. The results are discussed in Section
IV. Finally, we conclude this paper in Section V.

II. SISO SYNAPTIC COMMUNICATION CHANNEL MODEL

In this section, we propose our model for information
transfer across synaptic channel, as shown in Fig. 2. We
first describe physiological structure of our channel and make
certain realistic assumptions to simplify our analysis. Then,
we give mathematical description of molecular processes
involved, namely diffusion and ligand-receptor binding, to
establish an expected input-output relation for synaptic com-
munication channel. The derived relation forms the basis for
a deterministic code, which calculates expected behavior of
output of the channel. Later, we briefly present the algorithm
of a Monte Carlo simulation that corresponds to mathematical

description of the channel previously developed. Both of
these descriptions carry out the discussion up to receptor
binding process. Afterwards, we give a brief discussion on
the time-step, which, as an intrinsic property of the model, is
related to the reaction rate constant of ligand-receptor pair.
This discussion is an integral part of the descriptions of
both the deterministic code and the simulation, as it relates
experimentally determined parameter, namely the reaction rate
constant, to simulation parameters. Finally, we describe EPSP
generation following a given profile of ligand-receptor binding.
A. Physiological Assumptions

We model synaptic cleft as a rectangular box with height H ,
where top and bottom planes correspond to the pre-synaptic
and postsynaptic membranes, respectively, both extending to
infinity as in Fig. 1. This assumption does not affect the
results since vesicles on pre-synaptic terminal and receptors
on PSD are restricted to the limited region on both planes.
Moreover, we assume that the movements of neurotransmitters
are independent of each other. These assumptions allow us
to derive exact analytical solution of diffusion process in the
cleft under no-flux boundary conditions, i.e., when there is no
neurotransmitter flow across both pre- and postsynaptic mem-
branes. Furthermore, the diffusion model with pre-synaptic re-
uptake is derived from the former model, i.e., with no-flux
boundary conditions, via heuristic arguments.

After vesicle release, diffusion carries neurotransmitters
from pre-synaptic end of the cleft to postsynaptic end contain-
ing PSD that consists of receptors waiting to capture incoming
neurotransmitters to form a ligand-receptor complex. We as-
sume that the receptors are uniformly distributed on PSD, a
square-shaped region on the postsynaptic membrane with side
length Lp. PSD has two major kinds of receptors, i.e., AMPA
(α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and
NMDA (N-methyl-D-aspartate) receptors. We suppose that we
have only AMPA receptors on PSD since they mediate fast
synaptic transmission and contribute in the fast rise in EPSP.
NMDA receptors contribute in synaptic plasticity, which is out
of the scope of this paper.
B. Mathematical Formulation

1) Vesicle Release: Vesicles are groups of neurotransmitters
enclosed in a thin membrane, which are located right behind
the pre-synaptic membrane of the transmitting neuron. Upon
the arrival of the AP, depending on the shape of the signal, a
number of these vesicles fuse with the pre-synaptic membrane
to create a tunnel, through which the transmitters in the
vesicles diffuse into the cleft. The region on the pre-synaptic
membrane, where this fusion occurs is referred to as the Active
Zone (AZ). Since we are considering a central synapse where
synaptic boutons contain only one or a few active release zones
[17], [22], we can simplify our model by considering that only
one vesicle is released in response to an AP.

The arrival of AP at pre-synaptic terminal is a random pro-
cess owing to the axonal noise. Thus, the channel input m(t)
is modeled as an impulse train where probability of receiving
an impulse is P (m = 1) = p. Impulse allows calcium influx
into the cell, which triggers vesicle release with probability
Pr. The value of Pr depends on the available vesicle pool
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Fig. 2: Block diagram of a synaptic channel.
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size and the feedback from postsynaptic terminal signifying
receptor saturation [9]. As shown in Fig. 2, vesicle release is
represented as a Z-channel, where 1−Pr is probability of no
release even if AP arrives at pre-synaptic terminal.

Once vesicle release starts, it takes very short time for all
of the transmitters to enter the cleft, as compared to the total
duration of diffusion process in the cleft. Thus, we assume
that the contents of the vesicle are released instantaneously
and the output of this channel is represented as,

x(t) = N0δ(t), (1)
where N0 is a constant and represents the number of neuro-
transmitters in one vesicle and Dirac delta represents instan-
taneous release of the vesicle.

2) Diffusion: Neurotransmitters diffuse into the cleft with
a random Brownian motion. The resulting neurotransmitter
concentration C(x, y, z, t) is random, and its expected value
can be well approximated by Fick’s equation:

∂C(x, y, z, t)

∂t
= D∇2C(x, y, z, t) (2)

where D is diffusion coefficient, t ≥ 0 and (x, y, z) ∈ R2 ×
[0, H]. (2) is supplemented with initial distribution provided
from the vesicle release module. Assuming that the release
occurs at the origin of our xy-plane, due to (1) we have

C(x, y, z, 0) = N0δ(x, y, z −H). (3)

As for boundary conditions, we first assume that there is no
flux of transmitters through pre- and postsynaptic membranes,
which corresponds to the Neuman boundary conditions, i.e.,

∂

∂z
C(x, y, 0, t) =

∂

∂z
C(x, y,H, t) = 0. (4)

Upon integrating (2) over the cleft , one finds that with
these boundary conditions, integral of concentration remains
constant throughout time, i.e., the expected number of trans-
mitters in the cleft do not change with time.

To find the solution of Fick’s equation with initial data as in
(3) under the boundary conditions given by (4), we may use
symmetry of both the equation and the domain together with
the fundamental solution of Fick’s equation [23], cδ(x, y, z, t),
in the whole domain R3 given by

cδ(x, y, z, t) =
N0

(
√

4πDt)3
e

(−x2−y2−z2)
4Dt .

If there were no boundaries, then solution of (2) with the
initial distribution given in (3) would be cδ(x, y, z−H, t). The
no-flux boundary conditions (4) intuitively imply that instead
of diffusing freely across boundary, transmitters are reflected
back into the cleft. The extra transmitters that will stay in cleft
because of this reflection can be accounted for by reflecting
the initial distribution across boundaries as in Fig. 3. Then,
the distribution of transmitters at any given time is represented
by free diffusion with initial distribution taken as sum of all
reflections plus original source. As Fick’s equation is linear,
the corresponding solution will be

C(x,y, z, t) = 2N0

∞∑
k=−∞

cδ

(
x, y, z − (2k + 1)H

)
=

N0

(
√

4πDt)3
e

(−x2−y2)
4Dt

{
2

∞∑
k=−∞

e
−(z−(2k+1)H)2

4Dt

} (5)

Observe that the coefficient 2 in (5) is due to the fact that
the source sits right at pre-synaptic boundary, which causes
the first reflection from the pre-synaptic side to coincide with
the original source. By the symmetries of the equation and the
domain, one can easily verify that this solution, restricted to
the domain at hand, in fact solves Fick’s equation and validates
both the initial conditions (3) and the boundary conditions (4).

To model expected concentration of transmitters in presence
of pre-synaptic re-uptake, we follow same arguments as in
no-flux case with sole difference that we modify reflection
coefficient of pre-synaptic boundary (z = H) according to
the uptake probability, denoted by Pu in units uptake per hit.
This means if Pu = 0, no transmitter that reaches the pre-
synaptic membrane is absorbed, while Pu = 1 means that all
particles that reach pre-synaptic terminal in the course of time,
are absorbed. After making the corresponding modification to
include Pu in (5), the new solution is obtained as

Cu(R, t) =
N0

(
√

4πDt)3
e

(−x2−y2)
4Dt

{ −1∑
k=−∞

(2− Pu)(1− Pu)−(k+1)e
−(z−(2k+1)H)2

4Dt

+

∞∑
k=0

(2− Pu)(1− Pu)ke
−(z−(2k+1)H)2

4Dt

}
.

(6)
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3) Ligand-Receptor Binding: The transmitters, that reach
postsynaptic membrane, either get reflected from membrane,
or they bind to the receptors in PSD to form a ligand-receptor
complex. This binding process is modeled by assuming that
AMPA receptors regularly sample a small effective volume
Ve around them. The receptors are assumed to have only
two configurations, i.e., bound state and unbound state. If
a receptor is in unbound state and samples at least one
transmitter in its Ve, then it binds to this transmitter.

Glutamate-receptor binding is a reversible process. Glu-
tamate molecules dissociate from receptors and may rebind
several times. The effects of rebinding can be observed from
the prolonged decaying phase of EPSP, however, in rising
phase of EPSP, the effect of unbinding is negligible. Thus,
since we are interested in determining the peak of EPSP, we
ignore the effects of unbinding process.

We calculate binding probability by first considering that
we have only one neurotransmitter in the cleft, the probability
of finding that particle inside the effective volume Ve around
a receptor at time t is given by the integral

Pe(t) =

∫∫∫
Ve

C(x, y, z, t)dxdydz, (7)

where depending on whether we model diffusion without or
with pre-synaptic uptake, the function C is given by (5) or (6)
with N0 = 1. Note that, as∫∫∫

R2×H

C(x, y, z, t)dxdydz ≤ 1, ∀t ≥ 0,

with equality holding for all times in case of no uptake, and
only at t = 0 with uptake, we always have that Pe(t) ∈ [0, 1].

Owing to the assumption that all particle motions are inde-
pendent of each other, the random variable Ne(t) representing
the number of neurotransmitters found inside Ve at time t has
a binomial distribution with the expected value

E [Ne(t)] = N(t)Pe(t), (8)

where N(t) is the expected total number of unbound neu-
rotransmitters in the cleft at time t. Now, according to our
assumption it is sufficient to have a single neurotransmitter
inside Ve for a receptor to be in bound state. It follows that
the probability that the receptor will remain unbound after
a sampling at time t is (1 − Pe(t))N(t), which simply says
that the receptor remains unbound if and only if none of the
neurotransmitters are inside Ve. Thus, the binding probability
Pb for an unoccupied receptor after a sampling at time t is

Pb(t) = 1− (1− Pe(t))N(t). (9)

Observe that, by (8) we have following approximation of Pb
valid for large N , i.e., large number of transmitters in the cleft,

Pb(t) = 1− (1− E [Ne(t)]

N(t)
)N(t) ≈ 1− e−E[Ne(t)]. (10)

This binding probability can also be thought of as expected
neurotransmitter flux through an unoccupied receptor during
the instantaneous sampling process at time t. As a conse-
quence, the expected availability of the receptor decreases,

which can be interpreted as that for the next sampling process
we will have a less number of receptors at the same spot,
a ‘fractional receptor’ so to speak. Due to this decrease in
expected availability of receptor, binding probability, at the
next time-step, also decreases by the same amount; after all
binding probability given by (9) was for a ‘whole’ receptor.
Thus, at the kth sampling process, k ≥ 1, the binding
probability is found by

Pb(k∆t) = a(k∆t)
[
1− (1− Pe(k∆t))N(k∆t)

]
, (11)

where ∆t is the duration of each sampling process or simply a
time-step and a ∈ [0, 1] is the expected availability of receptor,
which, itself, is then adjusted for the next step by

a((k + 1)∆t) = a(k∆t)− Pb(k∆t). (12)

For each receptor, the initial condition that accompanies the
iterative scheme (11)-(12) is

a(∆t) = 1,

which corresponds to the assumption that, before the first
sampling all the receptors are unoccupied. The total expected
number of bindings at each step, Nb, can be found by adding
the binding probabilities of all the receptors

Nb(k∆t) =

M0∑
j=1

Pb,j(k∆t),

where M0 is the number of receptors in the PSD. Finally, at
each time-step, we update the number of unbound neurotrans-
mitters left in the cleft by the formula

N((k + 1)∆t) =[
N0 −

k∑
i=1

Nb(i∆t))

]∫∫∫
R2×H

C(x, y, z, t)dxdydz,

where C is given by (5) or (6) with N0 = 1. The integral term
is the contribution of uptake, and the sum that is subtracted
is due to receptor binding. The fact that we subtract the
transmitters that are bound before applying the effect of uptake
is justified by the assumed mutually independent motions of
transmitters and the fact that the bound transmitters cannot be
taken up (since we ignore the dissociation), and neither can
the transmitters that are taken up bind a receptor.

C. Monte Carlo Simulation

In this subsection we briefly present the details of a Monte
Carlo simulation for the synaptic communication channel, the
mathematical model of which we have given above.

1) Algorithm: A full simulation of a synaptic channel re-
quires simulation of both diffusion and ligand-receptor binding
processes simultaneously. As in our model the latter depends
only on the existence of a neurotransmitter inside an effective
volume Ve, the only thing to simulate in our case is the
location of neurotransmitters in a regular grid. This is done by
taking random seeds as input in each time-step for each of the
three coordinates of neurotransmitters, using the distribution
given in (6) after normalization. The x and y-coordinates have
Gaussian distribution with mean = 0 and variance = 2Dt.
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However, z-coordinate follows the distribution derived after
considering synaptic geometry given by (6).

Similarly, we calculate the position of M0 receptors uni-
formly distributed on PSD that is kept fixed during entire
simulation for a particular value of receptor density. We
consider effective volume Ve around each receptor, where a
neurotransmitter-receptor are most likely to bind. In each time-
step, we simulate the position of N0 neurotransmitters, and all
unbound receptors having at least one neurotransmitter inside
its Ve are considered bound. In next time-step, we subtract
number of bound receptors and neurotransmitters from the
pool of unbound receptors and neurotransmitters, respectively.
D. Time-step

The 100% binding probability that we assume at each
sampling makes the output of our simulation sensitive to
the changes in the time-step ∆t. The decrease in the time-
step corresponds to the increase of the sampling rate of the
receptors, which yields a rise in the binding rate. Thus, the
output of our simulation is highly dependent on the time-step
∆t. In what follows, we derive how to choose the correct time
step for given effective volume Ve and binding rate constant
for glutamate-AMPA pair utilized in literature, see Table I.

In our model we assume only two possible states of the
receptors, either bound or unbound. They start in an unbound
state, and when they bind to a transmitter, they stay bound
forever since we are only analyzing the rising phase of the
EPSP. This implies that they are memoryless, i.e., given that
the receptor is unbound at time 0, for a fixed concentration
of transmitters and any t, t0 ≥ 0 the probability of binding
in the time interval [0, t] is the same as a binding happening
inside the interval [t0, t0 + t] provided that the receptor is
unbound at time t0. It follows that the binding probability
P̃b of the receptor is exponentially distributed in time with
some expected binding time, τb, where τb depends on the
concentration near the receptor. Consequently, the probability
that the receptor binds in the time interval (t, t+∆t) provided
that it remains unbound until time t is given by

P̃b((t, t+ ∆t)) =
1

τb

∆t∫
0

e
− τ
τb dτ ≈ 1− e−

∆t
τb , (13)

where the approximation is due to the assumption that for
small ∆t the transmitter concentration near the receptor is
constant and consequently τb is constant. From this we deduce
that, for a given concentration Ct of neurotransmitters near
an unbound receptor, on average the receptor captures a
neurotransmitter every τb = τb(Ct) seconds. This corresponds
to a binding rate constant of

κr =
1

Ctτb

in units M−1s−1. The expected concentration near the recep-
tor Ct can be approximated as

Ct ≈
E [Ne(k∆t)]

|Ve|
,

where |Ve| is the size of the effective volume. Thus, the
binding rate constant of the memoryless model reads

κr =
|Ve|

E [Ne(k∆t)] τb
(14)

Comparing (13) with (10) we see that the binding proba-
bility we have derived in Section II-B is approximately same
as that of a memoryless receptor model provided that one has
the identity

E [Ne(k∆t)] =
∆t

τb
.

Plugging this identity into (14) and rearranging we find the
desired relation

∆t ≈ |Ve|
κr

.

The value of ∆t in Table 1 is calculated from this relation.
E. Postsynaptic Response

When a neurotransmitter is bound to a receptor, a channel
opens. This allows ionic flux into the cell, changing its mem-
brane potential called postsynaptic potential. The postsynaptic
potential of each receptor is modeled as alpha function [24]

si(t) = hiα(t), (15)

where α(t) = t
tp
exp(1− t

tp
) with hi as the peak amplitude

and tp as time to peak of the response of each receptor.
III. COMMUNICATION THEORETICAL ANALYSIS

We use optimum receiver for our model as designed in [8]
that has following two hypothesis for packet detection:

H1 : v =
∑
i

cihi + ni (16)

H0 : v =
∑
i

ni (17)

where v is the input to the detector as shown in Fig. 2, hi is
a random variable due to the randomness in opening of ionic
channel once the receptor is bound as well as in the amount
of ions that flow into the channel once it is opened. ci and ni
for each receptor i are

ci =

Tn+1∫
Tn

α2(t)dt (18)

ni =

Tn+1∫
Tn

wi(t)α(t)dt (19)

where wi(t) is a synaptic noise that is considered as additive
white Gaussian noise and [Tn, Tn+1] is the time interval for
receiving one packet of data.

The likelihood ratio for optimum detection is,

Ω =
P (v|H1)

P (v|H0)
=

1√
2πσ2

1

exp(− (v−µ1)2

2σ2
1

)

1√
2πσ2

0

exp(−v
2

2σ2
0

)
(20)

where v/H1 is also a Gaussian random variable according to
the central limit theorem since v is the sum of many indepen-
dent and identically distributed (i.i.d) random variables. The
threshold value for detection criterion is

th = lnΩ− lnσ0

σ1
+

µ2
1

2σ2
1

, (21)

where
µ1 = E[v|H1] =

∑
i

ciE[hi] (22)

σ2
1 = V ar[v|H1] =

∑
i

ciV ar[hi] + V ar[ni] (23)
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TABLE I: Simulation Parameters

Synaptic cleft height H 20nm [25]
Neurotransmitters in a Vesicle N0 3000 [26]
Diffusion coefficient D 0.33µm2/ms [27]
Side length of PSD Lp 0.4µm
Receptor Density [AMPA] 500 − 3000/µm2 [28]
Number of receptors M0 [AMPA] × L2

p
Pre-synaptic Re-uptake Pu 10%
Binding Rate of AMPA κr 78 × 106M−1s−1 [18]
Dissociation Rate for AMPA κd 750s−1 [18]
Mean of hi E[hi] 1
Variance of hi V ar[hi] 0.62

Variance of noise V ar[ni] 0.01
Effective Volume Ve 1nm× 1nm× 0.5nm
Time step ∆t 3.85ns
Simulation time Tp 100.9µs

(a) t = 0.5µs (b) t = 1µs (c) t = 2µs

(d) t = 4µs (e) t = 8µs (f) t = 16µs

(g) t = 32µs (h) t = 64µs (i) t = 100µs

Fig. 4: Time-course of glutamate-receptor binding on 21× 21
grid of receptors with vesicle release site in the center.

µ0 = E[v|H0] = 0 (24)

σ2
0 = V ar[v|H0] =

∑
i

V ar[ni] (25)

and the probability of error in the output is given as,

Pe =[P (y < th|x = 0)(1− Pr) + P (y < th|x = 1)Pr]

P (m = 1) + P (y > th|x = 0)P (m = 0)
(26)IV. RESULTS AND DISCUSSION

A. Determination of EPSP Peak

The peak of EPSP, as described in Section II-E, directly
corresponds to the maximum number of bound receptors,
Mb,max. Since we neglect the effects of dissociation of trans-
mitters from AMPA receptors, the number of bound recep-
tors, Mb(t), obtained from our simulation is a monotonically
increasing function of time. Consequently, finding peak time,
Tp and the peak value, Mb,max, seems out of reach. However,
we may define these quantities by utilizing dissociation rate
constant κd, which we have ignored so far. We choose Tp
such that at t = Tp the total binding and dissociation rates are
equal, where the total binding rate, rb(t), at a given time t is
the rate of change of Mb(t) with respect to time, and the total
dissociation rate rd(t) is found by multiplying κd and Mb(t)
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Fig. 5: Time-course of glutamate-receptor binding (a) with
Pu = 0.1 (b) with N0 = 3000.
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Fig. 6: Variation in Maximum Number of bound receptors with
(a) Number of Neurotransmitters per vesicle (b) Uptake Rate.

at time t. We choose Mb,max as the value of Mb(t) at t = Tp.
This method of choosing Tp and Mb,max exactly corresponds
to the assumption that total amount of dissociation from the
receptors up until the peak time is negligible.

B. Comparison of two methods

We perform Monte Carlo simulation described in Section
II-C with parameters given in Table I. A square PSD of side
length Lp is modeled by a 21 × 21 grid of small squares
with a single receptor in the center of each, i.e. M0 = 441.
This corresponds to a receptor density of approximately 2750
receptors/µm2 falling into the range given in Table I. The
time course of glutamate-receptor binding is depicted in Fig. 4.
To represent the simulation results, i.e., Mb(t) after each time-
step, the squares containing bound receptors are highlighted.

It can be observed that the receptors exactly opposite to
the vesicle release site are the first to bind due to maximum
concentration of neurotransmitters at this point. We see that
with these parameters the receptor grid is almost saturated in
response to single vesicle release as in Fig. 4. Interestingly,
this result is in agreement with the other existing experimental
work [29]–[31] as well as the simulation model developed
in [18]. The significant difference between the number of
neurotransmitters in a vesicle and the receptors present on the
PSD assures saturation with single vesicle release.

The results obtained by theoretical model of Section II-B
and by simulation algorithm described in Section II-C, are
compared in Fig. 5(a) and (b) for different sets of parameters.
In Fig. 5(a), the theoretical model is validated for different
values of N0 and in Fig. 5(b), the theoretical model is validated
for different values of uptake probability Pu. It is observed that
the time-course of glutamate-receptor binding from both the
methods are similar. This observation signifies the importance
of the theoretical model for diffusion and binding of the
neurotransmitters developed in this paper, as it is much faster
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Fig. 7: Variation in time to peak with (a) Number of Neuro-
transmitters per vesicle (b) Uptake Rate.
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Fig. 8: Time-course of glutamate-receptor binding on 21× 21
grid of receptors with vesicle release site on the right edge.

than the simulation algorithm requiring position of neurotrans-
mitters as random seeds in each time step. For comparison, the
calculation of data with N0 = 3000 and Pu = 0.1 plotted in
both Fig. 5(a) and 5(b), took approximately 3 minutes on a
PC for the deterministic code, while it took 1.5 hours on the
same PC for each experiment of the simulation.

This significant improvement in speed allows us to ana-
lyze in greater detail the factors affecting peak amplitude of
EPSP, which are directly related to Mb,max. Therefore, in the
following, we observe the effects of variations in different
synaptic parameters such as the uptake probability, the number
of neurotransmitters in a vesicle, the diffusion coefficient, the
receptor density and the size of PSD, on Mb,max and Tp.

C. Factors Affecting Maximum Bound Receptors

1) Number of neurotransmitters per vesicle and pre-
synaptic re-uptake: The variations in these quantities have
direct effect on neurotransmitter concentration near PSD, and
therefore, alter receptor binding dynamics significantly. High
number of neurotransmitters N0 per vesicle, or a low uptake
probability Pu results in a higher concentration of transmitters
in the cleft, which, in turn, yields a faster binding rate and a
higher value of Mb,max as shown in Fig. 6.

We see in Fig. 6(a) that PSD almost saturates for N0 larger
than 2000 transmitters per vesicle, but for lower quantities
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Fig. 9: Effect of offset in vesicle release site on (a) Maximum
number of bound receptors (b) Time to peak.
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Fig. 10: PSD saturation with (a) receptor density (b) PSD size.

the variation in Mb,max becomes significant. Thus, a possible
explanation for trial-to-trial variability of EPSP amplitude is
that N0 varies in the range 500− 2000. The large variance of
Mb,max over this range also increases the neurons ability to
encode and decode information.

Fig. 6(b) shows that even in case of no reflections from
pre-synaptic boundary, i.e., Pu = 1, the value of Mb,max is
significantly high, at around 250, which is more than half
of the available receptors. This number is much higher for
plausible values of Pu. This observation is in correspondence
with the previous results of [20] that the pre-synaptic re-uptake
has small effect on the peak amplitude of EPSP.

Time to reach maximum bound receptors Tp, somewhat
counter-intuitively, is inversely related to Mb,max, as seen in
Fig. 7. After all, binding more receptors takes more time as
expected. However, this is an observed phenomenon [32], and
it is a recurring theme, in that, for any variation of a physiolog-
ical parameter, which increases the transmitter concentration
in the cleft, Mb,max increases, whereas Tp decreases.

2) Vesicle release site: We first observe the effect of chang-
ing location of vesicle release site on Mb,max. We add an offset
of 200nm in x-direction in the original position of release site
and obtain corresponding time-course of glutamate-receptor
binding from Monte Carlo simulation as shown in Fig. 8.
It is apparent that change in release site changes distribution
and number of bound receptors reinforcing the argument that
relocation of release site is one of the factors that change
synaptic efficacy in subsequent trials.

For larger values of offset in vesicle release position the
binding process takes significantly more time to reach its peak
as shown in Fig. 9. As expected, moving release site away from
receptor grid reduces the value of Mb,max and increases the
time to peak. This can be explained by the same reasoning
given for the changes caused by varying vesicle size and
uptake probability, and the fact that, the further away from
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the PSD the transmitter release occurs, the lower will be the
transmitter concentration near the PSD.

An important feature to observe from Fig. 9(a) is how
the reducing effect of the uptake on Mb,max grows with the
offset in the transmitter release location. This follows from
the fact that, on a longer journey to the PSD the uptake
mechanism captures more transmitters. This fact supports the
notion that the synaptic channel noise due to contamination by
transmitters from surrounding AZ-PSD pairs is small, which
is in accordance with the findings of [20] that signaling at
different glutamatergic synapses are independent of each other.

3) Receptor density and the size of the PSD: We simulate
our model for different receptor densities keeping PSD area
and other variables constant as mentioned in Table I such that
number of unbound receptors in the given area increases. We
observe in the Fig. 4 that a significant difference in N0 and M0

achieved high level of saturation of PSD, i.e., approximately
96%. Therefore, we can intuitively predict that decreasing the
difference in N0 and M0, obtains lower level of saturation.
Thus, it is shown in Fig. 10(a) that the percentage of PSD
saturation decreases with the increase in receptor density,
however, the level of saturation does not fall significantly since
the largest value for concentration in our simulation gives
value of M0 that is still quite lower than N0. Therefore, we
may observe drastic fall in saturation level for much higher
values of receptor densities.

Furthermore, we just vary PSD area with fixed receptor
density at 2750 receptors/µm2, the reduction in saturation
level is quite significant as shown in Fig.10(b). The reason
for this effect is similar as for the effect caused by increasing
off-set in vesicle release site. In both cases, distance between
vesicle release site and a certain set of receptors is increased
resulting in lower concentration of neurotransmitters around
the receptors away from the release site, decreasing their
binding probability, hence, we obtain lower level of saturation.
This rate of reduction in saturation level is increased by
increasing the uptake rate that further reduces number of
neurotransmitters.

4) Diffusion coefficient: The diffusion coefficient D en-
capsulates the rate of spread of glutamate molecules inside
extracellular fluid medium of synaptic cleft, a higher value
corresponding to faster spread. In literature, different values
of D has been used by different authors, all falling in the
range 0.1−1 µm2/ms [18]–[20]. As seen in Fig. 11, Mb,max

decreases with increasing D since with a larger D the trans-
mitters spread and leave the volume above the PSD faster.

D. Error Probability

Probability of error Pe is a major performance measure
of a communication channel. We simulate our model using
parameters listed in Table I and determine Mb,max for different
values of receptor density keeping PSD size constant. The
response generated by bound receptors is detected by optimum
receiver described in Section III.

Using (18), we evaluate Pe as a function of postsynap-
tic receptor density for different values of vesicle release
probabilities, as shown in Fig. 12. We keep incoming spike
probability constant at P (m = 1) = 0.7. It can be observed
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that for a certain value of Pr, Pe always reduces with the
increase in receptor density. This result complies with the fact
that given high probability of vesicle release, higher number
of receptors on PSD would obtain higher value of Mb,max

ensuring accurate detection, thus, reducing probability of error.
The advantage of the proposed model is that it enables us

to analyze synaptic parameters on molecular level producing
faster results than the conventional simulation models, as
shown by the above discussion. Thus, we dedicated a subsec-
tion to analyze each important factor affecting the dynamics
of the synaptic communication. Moreover, this study leads
to the analysis of important parameters such as variation in
vesicle size or receptor density that are responsible for synaptic
plasticity in neurons and therefore, memory formation.

V. CONCLUSION

In this article, we investigated one of the most advanced
mechanism of molecular communication that exists in nature.
We focused on the point-to-point synaptic channel in hip-
pocampal neuron and introduced a novel mathematical for-
mulation of neurotransmitters’ diffusion in synaptic cleft that
encompasses the effects of geometrical structure of synapse
and re-uptake phenomenon. As a result of this mathematical
achievement we have developed a deterministic code, which
calculates the expected behavior of synaptic molecular com-
munication channel. The predictions of this code are success-
fully verified by a corresponding Monte Carlo simulation. This
is one of the main contributions of this paper, as the code
developed takes much less time for the same task compared
to the Monte Carlo approach.

Moreover, we observed the effects of variations in various
synaptic parameters on number of maximum bound receptors
and time to reach this maximum, which together determine
EPSP profile. The results obtained in this analysis comply with
the outcomes of existing physiological studies and simulations
in literature. We also discussed the possible causes of trial-to-
trial variability in peak amplitude of EPSP. Eventually, we
performed communication theoretical analysis of our model
by evaluating error probability in output detection.
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