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Abstract 

Using global structure searches, we have explored the structural stability of CaB3N3, 

a compound analogous to CaC6, under pressure. Two metastable high-pressure phases 

with space groups R3c and Amm2 were found to be stable between 29 – 42 GPa and 

above 42 GPa, respectively. The two phases show different structural frameworks, 

analogous to graphitic CaC6. Phonon calculations confirm that both structures are also 

dynamically stable at high pressures. The electronic structure calculations show that 

the R3c phase is a semiconductor with a band gap of 2.21 eV and the Amm2 phase is a 

semimetal. These findings help advance our understanding of the Ca-B-N ternary 

system. 

  

Page 2 of 15

ACS Paragon Plus Environment

Submitted to Inorganic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



3 

 

Introduction 

Since the discovery of superconductivity in alkali-metal intercalation compounds of 

graphite, graphite intercalation compounds (GICs) have been studied extensively.1-3 

The GICs have ordered structures and are synthesized by inserting guest atoms or 

molecules between their hexagonal two-dimensional graphene sheets.1 Often, 

different intercalants lead to a series of compounds with regular stacking of n graphite 

layers between two successive intercalant planes. Of course, it is also possible to 

intercalate three or even more layers of metals between two adjacent graphitic planes. 

Graphite is a semimetal, but the graphite in GICs, which is modified by electrons 

accepted or donated by the intercalant, may exhibit metallic or even superconducting 

behaviors. Exploration of GICs has resulted in notable success, for example, the 

superconducting transition temperature has been increased by almost two orders of 

magnitude to 11.5 K in CaC6, from that initially observed in KC8 (Tc = 0.15 K).4 

 It is known that boron nitride exists in a number of crystalline forms that are 

isoelectronic to carbon lattices with similar structural topologies.5 The hexagonal 

form of boron nitride (hBN), similar to graphite, is the most stable and very 

compressible as compared to other BN polymorphs. Furthermore, the sphalerite-type 

form (cBN)6 has a structure similar to cubic diamond and the rare wurtzite-type (wBN) 

is related to hexagonal diamond.7 The similarity between BN and carbon raises an 

interesting question: what happens if the carbon in GICs is replaced by B and N atoms? 

For example, if the graphitic carbon is replaced by BN in CaC6, will the resulting 

CaB3N3 show the same structural characteristics of GICs，or contain BN2
3- anions as 

in the experimentally synthesized Ca3(BN2)2 and Ca3BN3 compounds?8, 9 Does it 

possess novel physical and chemical properties? These questions are addressed here.  

In this work, possible high-pressure phases of CaB3N3 are explored by 

first-principles computational methods using the particle swarm optimization 

algorithm for crystal structure prediction.10, 11 The particle swarm optimization 

implemented in the CALYPSO code has shown to have reliably predicted crystal 

structures for a large variety of chemical systems under ambient and high pressure 
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conditions.12-18 In this study, two new high-pressure structures of CaB3N3 with space 

group R3c and Amm2, which are stable at 29–42 GPa and above 42 GPa, respectively, 

were found. Furthermore, electronic structure calculations show that the R3c structure 

is a semiconductor while the Amm2 structure is a semimetal. The present results 

suggest CaB3N3 undergoes a structural phase transition from semiconductor to 

semimetal at approximately 42 GPa. In addition, phonon calculations show both 

structures are dynamically stable at high pressure and can be recovered under normal 

pressure.  

 

Computational details 

Structure searches for CaB3N3 were performed with the swarm 

intelligence-based CALYPSO code.10, 11 The CALYPSO code is a useful tool to 

predict the crystal structures of materials.19-22 Structural relaxations were performed 

using density functional theory (DFT) within the Perdew−Burke−Ernzerhof (PBE)23 

parameterization of the generalized gradient approximation (GGA), as implemented 

in the Vienna ab initio simulation package (VASP) code.24 The all-electron projector 

augmented wave (PAW) potentials25were used in which the 3s
23p

64s
2, 2s

22p
1 and 

2s
22p

3 are treated as valence electrons for the Ca, B and N atoms, respectively. For the 

lowest enthalpy structures, more refined calculations were performed using an energy 

cut of 700 eV and dense Monkhorst k-meshes26 to ensure the enthalpy calculations 

were well-converged (A k-mesh of 8×8×12 is used for the Amm2 structure and a 

k-mesh of 10×10×10 is used for the R3c structure).  The absence of negative 

phonon frequencies in a crystal is the definitive indication of the structural stability.  

We employed the supercell approach to compute the interplanar force constants 

required for the calculations of phonon dispersion curves, which were computed from 

finite displacements of the atoms according to the crystal symmetry. The 

Hellmann-Feynman forces and total energies were calculated. Once the force constant 

is determined, the phonon frequency at selected q points along the symmetry lines in 

the Brillouin zone can be calculated. Phonon calculations were calculated using the 
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PHONOPY code27
 using a 2×2×2 supercell. The elastic moduli were determined from 

the stress-strain relationships. The bulk modulus and shear modulus were estimated 

from the Voigt−Reuss−Hill approximation.28 The structures are plotted using 

VESTA.29  

Results and discussions 

We have performed structure prediction simulations in the pressure range of 0−100 

GPa on model systems consisted of one, two, three and four CaB3N3 formula units. 

The thermodynamic phase stabilities at high pressure were determined from the 

calculated enthalpy of formation Hf of the predicted CaB3N3 compounds with respect 

to the decomposition into Ca and BN according to the following expression:  

Hf [CaB3N3]= H[CaB3N3] – H (Ca) – 3H(BN) 

where H[CaB3N3] is the enthalpy of CaB3N3, H (Ca) is the enthalpy of elemental Ca, 

and H(BN) is the enthalpy of BN. The structure of Ca was assumed to be fcc at 0 - 

19.5 GPa, bcc at 19.5 - 32 GPa and simple cubic above 32 GPa. For BN, the hexagon 

structure (0-4 GPa) and the cubic BN structure (above 4 GPa) was adopted at different 

pressures. 

The PSO searches found many high-pressure structures with two particular phases 

stable over different pressure ranges. Above ~ 29 GPa, a low energy hexagonal R3c 

phase is found to be more stable than an equivalent mixture of elemental Ca and cBN. 

Upon increasing pressure to ~ 42 GPa, an orthorhombic Amm2 structure becomes 

energetically more favorable than the R3c structure. [Figure 1]. We have also 

calculated the enthalpy of GIC-type CaB3N3 structure from 0 to 100 GPa, as shown in 

Figure 1a. The results show that the enthalpy of the GIC-type structure is higher than 

predicted Amm2 and R3c structures. We have studied the finite temperature phase 

diagram of CaB3N3 based on the quasi-harmonic approximation and the results are 

shown in Figure 1b.  
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Figure 1. (a) The calculated enthalpy of formation per formula unit as function of 
pressure relative to decomposition into Ca, BN, N with their lowest structure at 
different pressures. (b) Phase diagram of CaB3N3 based on the quasi-harmonic 
approximation. 

 

The R3c structure is constructed from rings of boron and nitrogen atoms with Ca 

atoms located in the middle of the channels [Figure 2a-c]. The structure is distinctly 

different to the graphitic CaC6. In this structure, both B and N atoms are threefold 

coordinated [Figure 2c] with B-N bond lengths of 1.536 Å and 1.504 Å and the 

shortest Ca-Ca distance is 4.071 Å. 
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Figure 2. Crystal structures of R3c structure (a)-(c) and (d)-(e) Amm2 structure. 

 

   In the Amm2 structure, the B and N atoms are three- and four-fold coordinated 

[Figure 2d-f]. The B-N bond lengths of B-N at the threefold B and N coordinated sites 

are 1.566 Å and 1.623. In comparison, the B-N lengths at the fourfold coordinated B 

and N sites are 1.586 Å and 1.635 Å, only slightly longer than those in threefold 

coordination. The most remarkable observation is that the shortest Ca-Ca distance in 

Amm2 structure at ambient pressure is 2.638 Å. This is much shorter than that in the 

R3c structure. The very short Ca…Ca contact is indicative of almost full transfer of 

valence electrons to the BN framework, since the Ca2+ ionic radius is 1.17 Å which 

results in a Ca-Ca distance comparable to 2.638 Å in the Amm2 phase. This 

phenomenon has already been reported in the earlier study of high pressure K-Ag 

alloys.30    

 

 

Page 7 of 15

ACS Paragon Plus Environment

Submitted to Inorganic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



8 

 

 
Figure. 3 The calculated phonon dispersions of (a) and (b) the R3c structure at 0 and 
30 GPa and (c) and (d) the Amm2 structure at 0 and 50 GPa. 

 

Figures 3 (a) and 3(b) show the phonon dispersion relationships of the R3c 

structure at 0 GPa and 30 GPa. Fig. 3 (c) and 3 (d) show that of Amm2 structure at 0 

GPa and 50 GPa, respectively. In both cases, no negative (imaginary) frequencies 

were observed in the Brillouin zone, indicating that the structures are dynamically 

stable at ambient pressure and across the corresponding stable pressure ranges. The 

observation suggests that both structures may be quench-recoverable at low 

temperature as long as the activation barriers to decomposition are reasonably high. 
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Figure. 4 The calculated electronic band structures of (a) the R3c structure and (b) the 
Amm2 structure, and electronic density of states of (c) the R3c structure and (d) the 
Amm2 structure. 

 

Figure 4shows the calculated electronic band structures of the R3c (4a) and Amm2 

(4b) phase of CaB3N3 at 0 GPa. The zero energy refers to the top of valence bands. As 

shown in Figure 4(a), the R3c structure is a semiconductor with an estimated indirect 

band gap of 2.21 eV. It is found that the maximum valence band located at L point and 

the minimum conduction band located at Γ point. The calculated electronic density 

of states [Figure 4 (c) and 4(d)] show substantial overlap of the B-p and N-pbands, 

indicating strong covalent B-N bonding in both the R3c and Amm2. According to 

these calculations the higher-pressure Amm2 structure appears to be a semimetal. We 

should point out DFT methods typically underestimate the band gap, however.31, 32 To 

gain a more detailed insight into the bonding character, the electronic localization 

functions (ELF) were calculated. The 3D ELF iso-surfaces of the R3c and Amm2 

phases at ambient pressure are displayed in Figure 5a and 5b, respectively. The large 
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value of ELF between the B and N atoms show significant covalent (two-electron pair) 

character of the B-N bonds. Moreover, as can be seen in Figure 5a and 5b, there are 

large regions of high ELF (0.85) close to B atoms. This suggested the presence of 

electrides in CaB3N3 at high pressures.  The results are consistent with previous 

studies.33, 34  We also performed crystal orbital Hamiltonian population (COHP) 

analysis by projecting the plane wave orbitals to atomic basis sets.35 The negative 

COHPs (Fig. 5c and 5d) below the Fermi level show ambiguously covalent bonding 

between B and N atoms.  

 
Figure.5 Isosurface of ELF for R3c (a) and Amm2 (b) with the value of 0.85. The  
Crystal orbital Hamiltonian population (COHP) for pairs of B-N in R3c (c) and Amm2 
(d). 
 

Table 1, The calculated elastic constants Cij (GPa), bulk modulus (B0), shear modulus 
(G), Young’s modulus (Y), Poisson’s ratio v, and Vickers hardness (Hv) for R3c 
structure and Amm2 structure. 

 C11 C12 C13 C22 C23 C33 C44 C55 C66 B0 G Y ν 

R3c 381 107 153   346 191  137 215 144 354 0.2254 

Amm2 685 74 48 499 136 472 205 179 244 240 214 495 0.1561 

 

The mechanical properties (elastic constants, anisotropy, and hardness) of the 

Page 10 of 15

ACS Paragon Plus Environment

Submitted to Inorganic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



11 

 

predicted R3c and Amm2 structures are important for their potential technological and 

industrial applications. The elastic constants, bulk modulus, shear modulus, Young’s 

modulus and Poisson’s ratio of the R3c structure and Amm2 structures are summarized 

in Table I. The elastic constants for both structures were calculated by the strain-stress 

method. For the rhombohderal crystals, the mechanical stability requires the elastic 

constants satisfying the mechanical criteria: C11 >∣C12∣, 2C13
2< C33(C11+C12), C44 > 

0, C66 > 0. We can see that the elastic constants for the R3c phase satisfy the above 

conditions, implying that this phase is elastically stable at ambient pressure. For the 

orthorhombic Amm2 phase, tests on the elastic stability criterion also show that the 

elastic constants satisfy the conditions: C11 > 0, C11C22 >  C13
2, [C11C22C33 + 

2C12C13C23 - C11 C13
2 - C22 C13

2 - C33 C13
2 > 0, C44 > 0, C55 > 0, C66  > 0, and hence 

the calculations indicate that this phase is elastically stable. It is noteworthy that the 

bulk modulus calculated from the elastic constants for the Amm2 phase is 240 GPa 

(Table1), which implies it is a high compressibility material. The ratios of the shear 

(G) and bulk modulus (B), G/B, are 0.67 and 0.89 for the R3c and Amm2 phases at 0 

GPa, respectively.  These values are similar to those of other known superhard 

materials (0.9–1.2), such as diamond and C3N4. Therefore, these CaB3N3 polymoprhs 

are likely be potential hard materials. The hardness is similar to that previously 

reported for some nitrides.36   

Conclusions 

In summary, two novel high-pressure phases of CaB3N3, rhombohedral R3c and 

orthorhombic Amm2, were found to be metastable between 29–42 GPa and above 42 

GPa, respectively. Although in the natural state BN exists in forms similar to its 

carbon analogs, at high pressures CaB3N3 forms 3D networks which differ from CaC6. 

Theoretical phonon band structures confirm that both structures are dynamically 

stable at ambient and high pressures. The electronic structure of the R3c phase shows 

that it is a semiconductor with a band gap of 2.21 eV. In contrast, the higher pressure 

Amm2 structure appears to be a semimetal. This suggests that CaB3N3 will undergo 

both structural and semiconductor-semimetal phase transitions at high pressure.  
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We have explored the structural stability of CaB3N3, a compound analogous to 

CaC6, under pressure. Two metastable high-pressure phases were found to be stable. 

The two phases show different structural frameworks, analogous to graphitic CaC6. 

Phonon calculations confirm that both structures are also dynamically stable at high 

pressures. These findings help advance our understanding of the Ca-B-N ternary 

system. 
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