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Conventional Monte Carlo simulations are stochastic in the sense
that the acceptance of a trial move is decided by comparing a com-
puted acceptance probability with a random number, uniformly dis-
tributed between 0 and 1. Here we consider the case that the weight
determining the acceptance probability itself is fluctuating. This sit-
uation is common in many numerical studies. We show that it is
possible to construct a rigorous Monte Carlo algorithm that visits
points in state space with a probability proportional to their aver-
age weight. The same approach may have applications for certain
classes of high-throughput experiments and for the analysis of noisy
datasets.

Markov chain Monte Carlo | Configurational bias | Basin volume |
Transition state finding

Monte Carlo simulations aim to sample the states of the
system under study such that the frequency with which

a given state is visited is proportional to the weight (often
‘Boltzmann’ weight) of that state. The equilibrium distribu-
tion of a system, i.e. the distribution for which every state
occurs with a probability proportional to its (Boltzmann)
weight, is invariant under application of single Monte Carlo
step. Algorithms that satisfy this criterion are said to satisfy
‘balance’ (1). Usually, we impose a stronger condition: ‘de-
tailed balance’, which implies that the average rate at which
the system makes a transition from an arbitrary ‘old’ state
(o) to a ‘new’ state (n) is exactly balanced by the average
rate for the reverse rate. The detailed balance condition is
a very useful tool to construct valid Markov Chain Monte
Carlo (MCMC) algorithms. We can write the detailed balance
condition as follows;

P (xo)Pgen(o→ n)Pacc(o→ n) = P (xn)Pgen(n→ o)Pacc(n→ o)
[1]

where P (xi) denotes the equilibrium probability that the
system is in state i (in this case, i can stand for o or n)
characterised by a (usually high-dimensional) coordinate xi).
Pgen(i→ j) denotes the probability to generate a trial move
from state i to state j. In the simplest case, this may be the
probability to generate a random displacement that will move
the system from xi to xj , but in general the probability to
generate a trial move may be much more complex (see e.g.
Ref. (2)). Finally Pacc(i→ j) denotes the probability that a
trial move from state i to state j will be accepted.

Many simple MC algorithms satisfy in addition microscopic
reversibility, which means that Pgen(i→ j) = Pgen(j → i). In
that case, detailed balance implies that

Pacc(o→ n)
Pacc(n→ o) = P (xn)

P (xo)
[2]

There are many acceptance rules that satisfy this criterion.

The most familiar one is the so-called Metropolis rule (3):

Pacc(o→ n) = Min
{

1, P (xn)
P (xo)

}
[3]

The acceptance probability for the reverse move follows by
permuting o and n. In the specific case of Boltzmann sampling
of configuration space, where the equilibrium distribution is
proportional to the Boltzmann factor P (xi) ∼ exp(−Ui/kBT ),
where Ui is the potential energy of the system in the state
characterised by the coordinate xi, T is the absolute temper-
ature and kB is the Boltzmann constant. In that case, we
obtain the familiar result

Pacc(o→ n) = Min {1, exp[−(Un − Uo)/kBT ]} [4]

Monte Carlo simulations with ‘noisy’ acceptance rules.

There are many situations where conventional MCMC cannot
be used because the quantity that determines the weight
of a state i is, itself, the average of a fluctuating quantity.
Specifically, we consider the case of weight functions fluctuating
according to a Bernoulli process, i.e. in an intermittent manner,
although our approach is not limited to Bernoulli processes.
Examples that we consider are ‘committor’ functions, or the
outcome of a stochastic minimisation procedure.

Note that the problem that we are discussing here is dif-
ferent from the cases considered by Bhanot and Kennedy (4)
and by Ceperley and Dewing (5). As we will discuss below,
these earlier papers consider cases where the weights are non-
linear functions of a fluctuating argument (e.g. an action or
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an energy), in which case the average of the function is not
equal to the function of the average argument. In contrast,
we consider the case where the probability to sample a point
is given rigorously by the average of the stochastic estimator
of the weight function.

To give a specific example, we consider the problem of
computing the volume of the basin of attraction of a particular
energy minimum i in a high-dimensional energy landscape (6–
10). The algorithms developed in Refs. (6–9) rely on the fact
that, for every point x in a d-dimensional configuration space,
we can determine unambiguously whether this point belongs
to the basin of attraction of minimum i: if a (steepest-descent
or similar) trajectory that start at point x ends in minimum
i, the ‘oracle function’ Oi(x) = 1, and otherwise it is zero.

However, many minimizers are not deterministic – and
hence the oracle function is probabilistic. (In fact, historical
evidence suggests that ancient oracles were probabilistic at
best). In that case, if we start a number of minimisations at
point x, some will have Oi(x) = 1 and others have Oi(x) = 0.
We denote with P

(i)
O (x) the average value of the Bernoulli

process defined by the oracle function Oi(x). In words: P (i)
O (x)

is the probability that the oracle function associated with point
x has a value of one.

We could obtain an estimate for the average weight P (i)
O (x)

=
〈
O(i)(x)

〉
by sampling the same point very many times.

However, such an approach would be prohibitively expensive.
Below we show that one can construct a rigorous algorithm
to sample according to the weight P (i)

O (x), without having to
obtain an accurate estimate of

〈
O(i)(x)

〉
.

First, however, we generalise the concept of a basin volume
vi as the integral of the probability (the ‘probability mass’)
that a stochastic minimization will end up in basin i.

vi ≡
∫
dx P (i)

O (x) [5]

Clearly, for a deterministic process, we recover the original
definition of a basin volume. Moreover, we have

Ω∑
i=1

vi = Vtotal [6]

where Ω is the number of distinct minima. This equation
expresses the fact that every trajectory must end up somewhere.
If we wish to compute the volume vi in Eqn 5, we must be
able to sample points with a probability P (i)

O (x), even though
we do not know this function a priori.

Naive MC algorithm. We will first describe a naive (and very
inefficient), but rigorous MC algorithm to sample stochastic
weight functions. After that, we will show how the algorithm
can be made more efficient.

Our aim is to construct a MC algorithm that will visit points
x with a probability proportional to PO(x). The normalized
configuration-space density ρ(x) is then proportional to PO(x).
If we can sample configuration space with this density ρ(x),
the computation of the volume in Eqn. 5 becomes a free-energy
calculation, for which standard techniques exist (2).

Let us consider two points (x and x′) between which we can
carry out trial moves. The steady-state configuration-space
density ρ(x) is determined by our choice for the acceptance
probability Pacc:

ρ(x)Pacc(x→ x′) = ρ(x′)Pacc(x′ → x) [7]

The average acceptance probability for a very large number
of trial moves from point x to point x′ is 〈O(x′)〉 = PO(x′).
If we consider a large number of trial moves in the reverse
direction, the acceptance probability is PO(x). In steady state,
the populations should be such that detailed balance holds
and hence

ρ(x)PO(x′) = ρ(x′)PO(x) [8]

or
ρ(x)
ρ(x′) = PO(x)

PO(x′) . [9]

In other words: trial moves that are accepted with a proba-
bility equal to the instantaneous value of the oracle function
generate the correct distribution of points in configuration
space, proportional to PO(x).

Note that in this naive version of the algorithm, the accep-
tance rule is not the Metropolis rule that considers the ratio of
two weights. Here it is the probability itself. Hence, whenever
the probability becomes very low, the acceptance of moves
decreases proportionally. We address this problem in what
follows.

‘Configurational-bias’ approach. With the naive algorithm de-
scribed above, the acceptance of moves becomes small when
the system moves into a region of configuration space where
PO(x) is low, and hence the ‘diffusion coefficient’ that de-
termines the rate at which configuration space is sampled,
becomes small. As a consequence, sampling of the wings of
the distribution may become prohibitively slow. This problem
can be alleviated by basing the Monte Carlo sampling on the
average weight of a larger number of trial points. We do this
by using an approach that resembles configurational bias MC
(CBMC) (11), but is different in some respects. The key
point to note is that, if we know all random numbers that
determine the value of the oracle function – including the
random numbers that control the behaviour of the stochastic
minimiser – then in the extended space of coordinates plus
random numbers, the value of the oracle function is always
the same for a given point.

We can then generate a random walk in this extended
space, between points that are surrounded by a ‘cloud’ of k
points where we compute the oracle function (at this stage k is
arbitrary). We denote the central point (i.e. the one to which
or from which moves are attempted) by xB, where ‘B’ stands
for ‘backbone’. The reason for calling this point a ‘backbone’
point is that we will be sampling the k points connected to it,
but we will not compute the oracle function at the backbone
point. Hence, xB may even be located in a region where the
oracle function is strictly zero (see Fig. 1 ). We introduce these
backbone points because it facilitates generating a random
walk that satisfies detailed balance.

The coordinates of the k cloud points around xB are given
by:

xB,i = xB + ∆i [10]

with i = {1, 2, · · · , k}. The vectors ∆ are generated by some
stochastic protocol: e.g. the vectors may be uniformly dis-
tributed in a hypersphere with radius Rh. The precise choice
of the protocol does not matter, as long as the rules are not
changed during the simulation. For a fixed protocol, the set
xB,i is uniquely determined by a set of random numbers RB.
Finally, we note that the value of the oracle function Oi for
a given point xB,i is uniquely determined by another set of
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random numbers RO (e.g. the random numbers in a stochastic
minimisation).

We now define an extended state space

x̃B ≡ {xB,RB,RO} . [11]

In this space, the oracle functions are no longer fluctuating
quantities.

We can now construct a MCMC to visit (but not sample)
backbone points. To this end, we compute the ‘Rosenbluth
weight’ of point x̃B as

W (x̃B) =
k∑
i=1

Oiωi, [12]

where Oi ≡ O(x̃B,i) and ωi ≡ ω(x̃B,i) denotes a (Boltzmann)
biasing factor. For unbiased sampling, ωi=1, but for biased
sampling, as is used for instance in thermodynamic integra-
tion (2, 6–9), other choices for ωi can be used.

We can then construct a MCMC algorithm where the ac-
ceptance of a trial move from the ‘old’ x̃(o)

B to the ‘new’ x̃(n)
B

is given by

Pacc(o→ n) = Min
{

1,
W (x̃(n)

B )
W (x̃(o)

B )

}
[13]

As the probabilities to generate the trial directions for
forward and backward moves, and the generation of random
numbers that determine the value of the oracle function are also
uniform, the resulting MC algorithm satisfies super-detailed
balance (2, 11) and a given backbone point x̃B will be visited
with a probability proportional to W (x̃B). It is important to
note that the acceptance rules for the Markov chain determine
transition probabilities between the back-bone points, but that
these points are never sampled. Below, we show that we only
sample the values of the observable quantities for the cloud
points.

Note that during a trial move, the state of the old point is
not changed, hence it retains the same trial directions (hence
the same set {RB}) and the same set {RO}. If the trial move
is rejected, it is this ‘extended point’ that is sampled again.
This is different from standard CBMC.

The approach of Eq. 13 can be easily be incorporated in
more sophisticated sampling schemes such as Parallel Tem-
pering (PT) (12, 13), as discussed in the SI and shown in
Fig. 2.

Sampling. We have shown that backbone points will be visited
with a probability proportional to its instantaneous Rosenbluth
weight PB(x̃B) ∼W (x̃B). However, it is not our aim to sample
the backbone points but the points in the cloud around the
backbone. Let us consider two such points io and in that
belong to the cloud of the ‘old’ and ‘new’ of backbone points.
The condition for detailed balance states that the forward and
reverse fluxes between points io and in must balance:

P (x̃(o)
B )Pgen(x̃(n)

B )Psel(in)Pacc(o→ n)

= P (x̃(n)
B )Pgen(x̃(o)

B )Psel(io)Pacc(n→ o) , [14]

where Psel(in) denotes the probability to select point in from
among the cloud of points around x(n)

B (and similarly, for
Psel(io)). Note that this detailed balance condition comes on
top of the one for transitions between the backbone points,

x̃B

x̃B,i = x̃B + �i

O = 0
O = 1

Fig. 1. ‘Cloud’ sampling: illustration of the configurational-bias-like approach for a
simple oracle defined by the gray shaded region, such that O = 1 inside the gray
boundary and O = 0 outside. red and red squares denote typical accepted and
rejected backbone points x̃B, respectively. The ‘cloud’ points x̃B,i = x̃B + ∆i are
represented by orange circles. In this example we randomly sample k = 4 ‘cloud’
points from a circle of fixed radius centred on the backbone point (dotted circles).
Each ‘cloud’ is sampled with probability proportional to the Rosenbluth weight defined
in Eqn. 12. Note that backbone points (e.g. the one in the top right of the figure) may
fall outside the region whereO = 1 since the Rosenbluth weight (Eqn. 12) does not
depend on the value of the oracle at the backbone point.

which resulted in the acceptance rule 13 for the acceptance of
moves between those backbone points. In contrast, Eqn. 14
expresses the detailed balance condition for transitions be-
tween cloud points. In what follows, we will assume that the
probability Pgen(x̃) to generate cloud points around a given
backbone point does not depend on x̃. As a consequence, the
probabilities Pgen for forward and backward moves cancel, and
we shall drop Pgen from the detailed-balance equation.

To achieve the desired sampling of cloud points, we impose
that a given cloud point i ≡ xB,i is selected with a probability

Psel(i) = O(i)ω(i)∑k

j=1O(j)ω(j)
= O(i)ω(i)

W (x̃B) . [15]

If we now make use of the fact that the probability to visit
a given backbone point at x̃B is proportional to W (x̃B), it
follows that the overall probability P (i; x̃B) that point a cloud
point i will be sampled is proportional to the desired weight:

P (i; x̃B) ∼W (x̃B)O(i)ω(i)
W (x̃B) = O(i)ω(i) .

But note that O(i) has not yet been averaged. If we perform
the average over the oracle function, we obtain:

P (i) ∼ 〈O(i)〉ω(i) .

Hence, by combining our rule for visiting backbone points
with a Rosenbluth style selection of the point to be sampled,
we ensure that we sample with the correct weight.

The approach that we describe here is better than the naive
algorithm because it achieves faster ‘diffusion’ through parts
of configuration space where 〈O〉ω is small.

Frenkel et al.
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However, even though Rosenbluth-style sampling ensures
that all points in space are sampled with the correct frequency,
it is not an efficient algorithm. The reason is obvious: in
order to compute the weights W , the oracle function must be
computed for k points, and yet in naive Rosenbluth sampling,
only one point would be sampled.

Fortunately, this drawback can be overcome. Rather than
sampling one point at a time, we take steps between backbone
points sampled according to Eqn. 13 and compute the quantity
to be sampled for all k cloud points belonging to the current
backbone point, as described below. An illustration of the
method is given in Fig. 1.

For every backbone point x̃B visited, we can compute the
observable (say A) of the set of k cloud points as follows:

Asampled =
∑k

i=1OiωiAi∑k

i=1Oiωi
[16]

The average of A during a MCMC simulation of L steps is:

1
L

L∑
j=1

(∑k

i=1OiωiAi∑k

i=1Oiωi

)
j

[17]

where the index j labels the different backbone states visited.

Combine with ‘Waste-recycling’ MC. Efficiency can be further
improved by using the approach underlying ‘waste-recycling’
Monte Carlo (14), This approach allows us to sample all
points trial cloud points in the sampling, even if the actual
trial backbone move is rejected. The approach of ref. (14)
allows us to combine the information of the accepted and the
rejected states in our sampling. Specifically, we denote the
probability to accept a move from an old state o to a new state
n by Pacc(o→ n), then, normally we would sample Asampled(n)
if the move is accepted and Asampled(o) otherwise. However,
we can do better by combining the information and sample

Awr = P ′acc(o→ n)Asampled(n) + [1−P ′acc(o→ n)]Asampled(o)
[18]

where P ′acc denotes the acceptance probability for any valid
MCMC algorithm (not just Metropolis). In fact, it is conve-
nient to use the symmetric (Barker) rule (15) to compute P ′acc.
In that case, we would sample

Awr =

(∑k

i=1OiωiAi
)
old

+
(∑k

i=1OiωiAi
)
new(∑k

i=1Oiωi
)
old

+
(∑k

i=1Oiωi
)
new

[19]

Hence, all 2k points that have been considered are included
in the sampling.

Numerical Results

Basin volume calculations. To test the proposed algorithm we
compute the basin volume (probability mass) for a stochastic
oracle function as defined in Eqn. 5. We choose a few simple
oracle functions, for which the integral in Eqn. 5 can be solved
analytically. The volume calculations were performed using the
multi-state-Bennett acceptance ratio method (MBAR) (16)
as described in Ref. (9). As described in Ref. (9), a high-
dimensional volume calculation is in essence a free-energy
calculation, where minus the log of the volume plays the role
of the free energy.

2 4 6 8 10 12 14 16 18 20
n

−4

−3

−2

−1

0

1

2

ln
V

exact
k = 10
k = 10, PT

5 10 15 20

n
0.4

0.6

0.8

1.0

〈|x
−

x
0
|2 〉

Fig. 2. Deterministic oracle: Volume calculation for an n-dimensional hypersphere
with radius R = 0.5 and n ∈ [2, 20]. Numerical results (symbols) were obtained by
the configurational bias approach of Eqn. 13, with k ‘cloud’ points, and MBAR. PT
refers calculations performed by Parallel Tempering, described in the SI. Inset: mean
square displacement computed by Eqn. 17 . Solid red lines are analytical results and
error bars refer to twice the standard error (as estimated by MBAR for the volume).

We compute the dimensionless free energy difference be-
tween a region of known volume f̂ref = − lnVref + c and the
equilibrium distribution of points sampled uniformly within
the basin f̂tot = − lnVtot + c, estimated by MBAR up to an
additive constant c. Since fref = − lnVref is known, we obtain
the basin volume as ftot = fref + (f̂tot − f̂ref). We use 15 repli-
cas with positive coupling constants for all examples discussed
herein, see Ref. (9) for details of the method.

We first tested the method for a deterministic oracle, namely
a simple n-dimensional hypersphere of known volume Vn-ball =
πn/2Rn/Γ(n/2 + 1) with radius R = 0.5 and n ∈ [2, 20]. As
shown in Fig. 2 we correctly recover the volume and the
mean square displacement using the acceptance rule defined in
Eqn. 13 for k = 10 ‘cloud’ points. The figure suggests that the
algorithm is sampling the correct equilibrium distributions.

Next, we tested the method for a stochastic oracle function
defined such that

PO(x) ∼
{

1 if |x| < R
exp[−(|x| −R)/λ] if |x| ≥ R [20]

with volume

V = 2(Rn/n+ λn exp(R/λ)Γ(n,R/λ))πn/2Rn/Γ(n/2),

where Γ(a, x) is the incomplete gamma function. Results for
dimensions n ∈ [2, 20], R = 0.5 and λ = 0.1 are shown in
Fig. 3. Note that, despite the volume being finite, the basin is
unbounded in the sense that the average value of the oracle only
tends to zero as as |x| → ∞. As the dimensionality of the basin
increases, all of the volume will concentrate away from the
centre of mass in regions of space where the oracle has a high
probability of returning 0. Hence, it becomes more difficult
for a random walker to diffuse efficiently as the dimensionality
of space increases. We can verify this in Fig. 3: for n < 6
results seem to be independent of the number of ‘cloud’ points.
However, growing deviations are observed for increasing n
and accuracy increases significantly for growing number of
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2 4 6 8 10 12 14 16 18 20
n

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8
ln
V

exact
k = 1

k = 10
k = 100

Fig. 3. Stochastic oracle: Volume calculation for the oracle defined in Eqn. 20 with
radius R = 0.5, λ = 0.1 and dimensions n ∈ [2, 20]. Symbols (lines are guide
to the eye) are numerical results obtained by the configurational bias approach of
Eqn. 13 with k ‘cloud’ points, and MBAR. The light blue curve denotes the analytical
results and error bars refer to twice the standard error as estimated by MBAR. At large
n accuracy increases by increasing k as the random walker diffuses more efficiently
through regions of space where 〈O〉 � 1. However, if the integral is dominated by
points where the average value of the oracle function is (much) less than the inverse
of the number of cloud points, slow convergence leads to systematic errors in the
sampling.

‘cloud’ points k. For large n, the largest contribution to the
integral comes from values of |x| where the average value of
the oracle function is very small (O(10−9) for n = 20). We
carried out our simulations with at most 100 cloud points. In
that case, inefficient sampling could be expected when the
average oracle function is significantly less than 0.01. As the
figure shows, for the case of k = 100 systematic deviations
from the analytical result show up for n ≥ 11, where the
dominant contributions come from points where the average
oracle function is O(10−5).

Transition state finding. The algorithm that we described
above has wider applicability than the specific examples that
we discussed. As an illustration of a very different application,
we show that our approach can be used to efficiently identify
the transition state along a known reaction coordinate.

Note that points in the transition-state ensemble (in the
one-dimensional case: just one point) are characterised by
the property that the committor has an average value of 0.5.
However, any individual trajectory will either be crossing (‘1’)
or non-crossing (‘0’). Hence, the ‘signal’ is stochastic. As an
illustration, we consider the (trivial) one-dimensional case of
a particle with kinetic energy K sampled according to the
1-dimensional Maxwell Boltzmann distribution, crossing a
Gaussian barrier with height Utr = 30kT and variance σ2 = 1
∗. We define the oracle symmetrically such as

O(x) =
{

1 if K > Utr − U(x)
0 if K ≤ Utr − U(x) [21]

and constrain the walk to reject moves for which the potential
energy is below that of the initial position, such that O = 0 if
U(x) < U(x0); we choose x0 = 2σ. By thus constraining the

∗We choose as our unit of length σ, hence in our reduced units kT = σ2

0 200 400 600 800 1000
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k = 75

Fig. 4. Transition state finding: the simple case of one dimensional barrier crossing
is defined (symmetrically) by the stochastic oracle in Eqn. 21. A series of random
walks are performed according to Eqn. 13 with different number of ‘cloud’ points k.
The walkers are constrained to reject moves for which the energy is below that of the
initial position, thus excluding reactants and products from the sampling. The figure
shows the position of the walker backbone along the reaction coordinate as a function
of the number of MCMC steps. For increasing k the random walkers diffuse more
efficiently and therefore converge faster to the transition state. Traditional single-point
sampling does not move at all from the initial condition.

sampling, we are excluding the ‘reactant’ and ‘product’ states
from our sampling. In Fig. 4 we show results for backbone
step-size 0.25σ, ‘cloud’ radius 0.25σ and varying number of
‘cloud’ points k. One can clearly see that as the number of
‘cloud’ points increases the system diffuses faster towards the
transitions state whilst for the traditional single-point sampling
the walker does not move at all from the initial position.

Relation to earlier work

The problem of Monte Carlo sampling in the presence of noise
has been discussed by Bhanot and Kennedy (4) and Ceperley
and Dewing (5).

Bhanot and Kennedy (4) considered how to construct an
unbiased estimator of an exponential function (e.g. a ratio
of Boltzmann weights) with a fluctuating argument. This
method involves constructing an estimator on the basis of a
number of independent samples. The method is subject to
certain limitations (it is not guaranteed to generate acceptance
probabilities between 0 and 1) and, crucially, it addresses the
problem that the average of an exponential function with fluc-
tuating argument is not equal to the function of the average
argument. In this respect, the work of ref. (4) is similar to that
of Ceperley and Dewing (5) who considered the problem of
performing Boltzmann MCMC sampling in cases where the en-
ergy function is noisy. As in the case of ref. (4), the Boltzmann
weight is a nonlinear function of the energy and that therefore
the Boltzmann factor corresponding to the average energy is
not the same as the average of the Boltzmann factor obtained
by sampling over energy fluctuations. Specifically, Ceperley
and Dewing (5) consider the case where the calculation of
the energy function is subject to statistical errors with zero
mean. In that case, we cannot use the conventional Metropolis
rule Pacc = Min{1, exp(−β∆u)}, where u is the instantaneous
value of the energy difference, because what is needed to com-
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pute the correct acceptance probability is exp(−β〈∆u〉), but
what is sampled is 〈exp(−β∆u)〉 6= exp(−β〈∆u〉). Ceperley
and Dewing showed that if the fluctuations in ∆u are normally
distributed, with constant variance σ, then we can still get an
algorithm that samples the correct Boltzmann distribution, if
we use as acceptance rule

Pacc = Min{1, exp[−β∆u− (βσ)2/2]} [22]

Note that the situation considered in Refs. (4) and (5)
is very different from the case that we consider here, as we
focus on the situations where the average of the (fluctuating)
oracle functions is precisely the weight function that we wish
to sample. However, the current approach allows us to re-
derive the Ceperley-Dewing result. We note that, as before,
we can consider extended states characterised by the spatial
coordinates of the system and by the random variables that
characterise the noise in the energy function. To discuss the
approach of Ceperley and Dewing in the present language, it
is easiest to consider the case that the variance in the energy
of the indivdiual states is normally distributed, with constant
variance σs. The average Boltzmann factor of extended state
i is then

〈Pi〉 = exp[−β〈u〉i] exp[+(βσs)2/2] [23]

and therefore
〈Pn〉
〈Po〉

= exp[−β〈∆u〉] [24]

Hence, the average Boltzmann factor of any state i is still
proportional to the correct Boltzmann weight. However, an
MCMC algorithm using the instantaneous Boltzmann weights
would not lead to correct sampling as super-detailed balance
yields

Pn(xn)
Po(xo)

= exp[−β∆u] [25]

and hence 〈
Pn
Po

〉
= exp[−β〈∆u〉+ (βσ)2/2] [26]

which is not equal to

〈Pn〉
〈Po〉

= exp[−β〈∆u〉] [27]

If, however we would use the Ceperley-Dewing acceptance rule,
we would get〈

Pn
Po

〉
= exp[−β〈∆u〉+ (βσ)2/2]× exp[−(βσ)2/2]

= exp[−β〈∆u〉] = 〈Pn〉〈Po〉

[28]

Hence, with this rule the states would (on average) be visited
with the correct probability. Note that, as the noise enters non-
linearly in the acceptance rule, the Ceperley-Dewing algorithm
is very different from the one that we derived above. Note also
that the present derivation makes it clear that the Ceperley-
Dewing algorithm can be easily generalised to cases where the
noise in the energy is not normally distributed, as long as the
distribution of the noise is state-independent.
Conclusions and outlook

Thus far the algorithm described above was presented as a
method to perform Monte Carlo sampling in cases where the
weight function itself is fluctuating.

However, we suggest that the method is not limited to
numerical sampling: it could be used to steer sampling of
experimental control parameters in experiments that study
stochastic events (e.g. crystal nucleation, cell death or even
the effect of advertising). Often, the occurrence of the desired
event depends on a large number of variables (temperature,
pressure, pH, concentration of various components) and we
would like to select the optimal combination. However, as
the desired event itself is stochastic, individual measurements
provide little guidance. One might aim to optimise the condi-
tions by accumulating sufficient statistics for individual state
points. However, such an approach is expensive. The proce-
dure described in the preceding sections suggests that it may
be better to perform experiments in a ‘cloud’ of state points
around a backbone point. We could then accept or reject the
trial move to a new backbone state using the same rule as in
Eqn. 13. In this way, the experiment could be made to evolve
towards ‘interesting’ regions of parameter space.
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Supplementary Information: Monte Carlo
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Parallel Tempering

Parallel Tempering (PT) (12, 13) is a Monte Carlo scheme that
targets the slow equilibration of systems characterised by large
free energy barriers that prevent the efficient equilibration of
a MCMC random walk. In PT, m replicas of the system are
simulated simultaneously at different temperatures, different
chemical potentials (17) or different Hamiltonians (18, 19).
Configurations are then swapped among replicas, thus making
‘high temperature’ regions available to ‘low temperature’ ones
and vice versa. In the basin volume calculations of Refs.
(7, 8, 9, 10), Hamiltonian PT is essential to achieving fast
equilibration of the replicas’ MCMC random walks performed
inside the body of the basin with different applied biases.

The configurational bias approach to ‘cloud’ sampling em-
bodied by Eqn. 13 can be easily generalised to PT to find an
acceptance rule for the swap of configurations between replicas
i and j

Pacc(i → j) = Min
{

1,
W (x̃(i)

B , ω(j))W (x̃(j)
B , ω(i))

W (x̃(i)
B , ω(i))W (x̃(j)

B , ω(j))

}
[S1]

where we defined the Rosenbluth weight W (x̃(i)
B , ω(j)) =∑k

l=1 O(x̃(i)
B,l)ω

(j)(x̃(i)
B,l). It is important to note that PT is

truly an equilibrium Monte Carlo method: the microscopic
equilibrium of each ensemble is not disturbed by the swaps.

We have tested this method both for a deterministic oracle
– a simple n-dimensional hypersphere – shown in Fig. 2 of the
main text, and for the stochastic oracle defined in Eq. 20 as

shown in Fig. S1 (compare to Fig. 3 of the main text).
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Fig. S1. Stochastic oracle: Volume calculation for the oracle defined in Eqn. 20
with radius R = 0.5, λ = 0.1 and dimensions n ∈ [2, 20]. Symbols (lines are
guide to the eye) are numerical results obtained by the configurational bias approach
of Eqn. S1 with k ‘cloud’ points, and MBAR, compare to Fig. 3 of the main text.
The light blue curve denotes the analytical results and error bars refer to twice the
standard error as estimated by MBAR. At large n accuracy increases by increasing
k as the random walker diffuses more efficiently through regions of space where
〈O〉 � 1. However, if the integral is dominated by points where the average value of
the oracle function is (much) less than the inverse of the number of cloud points, slow
convergence leads to systematic errors in the sampling.
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