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Abstract

Background: Impairments in mismatch negativity (MMN) generation have been consistently reported in patients with
schizophrenia. However, underlying oscillatory activity of MMN deficits in schizophrenia and the relationship with
cognitive impairments have not been investigated in detail. Time-frequency power and phase analyses can provide
more detailed measures of brain dynamics of MMN deficits in schizophrenia.
Method: 21 patients with schizophrenia and 21 healthy controls were tested with a roving frequency paradigm to
generate MMN. Time-frequency domain power and phase-locking (PL) analysis was performed on all trials using
short-time Fourier transforms with Hanning window tapering. A comprehensive battery (CANTAB) was used to
assess neurocognitive functioning.
Results: Mean MMN amplitude was significantly lower in patients with schizophrenia (95% CI 0.18 - 0.77). Patients
showed significantly lower EEG power (95% CI -1.02 - -0.014) in the ~4-7 Hz frequency range (theta band) between
170 and 210 ms. Patients with schizophrenia showed cognitive impairment in multiple domains of CANTAB.
However, MMN impairments in amplitude and power were not correlated with clinical measures, medication dose,
social functioning or neurocognitive performance.
Conclusion: The findings from this study suggested that while MMN may be a useful marker to probe NMDA
receptor mediated mechanisms and associated impairments in gain control and perceptual changes, it may not be a
useful marker in association with clinical or cognitive changes. Trial-by-trial EEG power analysis can be used as a
measure of brain dynamics underlying MMN deficits which also can have implications for the use of MMN as a
biomarker for drug discovery.
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Introduction

Schizophrenia has conventionally been defined by positive
symptoms (i.e. hallucinations or delusions) and negative
symptoms (i.e. avolition, social withdrawal). However, it has

increasingly been recognised that cognitive impairments in
schizophrenia represent a third dimension which has
deleterious effects in the majority of patients [1]. Cognitive
impairments in various domains have been well documented in
patients with schizophrenia [2] and are associated with

PLOS ONE | www.plosone.org 1 December 2013 | Volume 8 | Issue 12 | e83255

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/96706831?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/4.0/


functional outcome [3]. Improving cognition in schizophrenia is
of paramount importance to help improve the patients’ quality
of life. Although currently available antipsychotic medication
can help to alleviate positive and negative symptoms, they do
not address cognitive symptoms sufficiently. Therefore, there
has been a shift in drug development research for
schizophrenia towards new strategies to tap into cognitive
impairment. CNTRICS (Cognitive Neuroscience Treatment
Research to Improve Cognition in Schizophrenia) initiative, an
international network of researchers reported that evaluation
tools to monitor cognitive impairment in schizophrenia were
crucial. According to a consensus report by CNTRICS,
mismatch negativity (MMN) was classified as one of the
measures of gain control and it was regarded as a suitable
marker to detect perceptual impairments in schizophrenia [4]
which renders it suitable for testing pro-cognitive effects of
drugs in development for cognitive impairment in schizophrenia

MMN is an event related potential (ERP) reflecting pre-
attentive detection of auditory changes in response to deviant
or novel stimuli [5]. Neural processes generating MMN are
suggested to reflect brain responsiveness to salience induced
by sensorial change relative to memory expectations [6]. After
the first report on deficits in MMN generation in schizophrenia
[7], numerous studies have consistently showed smaller MMN
amplitudes in patients with schizophrenia [8,9]. The majority of
studies have found no association between MMN amplitude
and clinical symptoms [10]. MMN deficits are not affected by
antipsychotic medication [11,12]. On the other hand, NMDA
antagonists have been shown to reduce MMN amplitude in
humans [13] and in rats [14]. There is a range of paradigms
(using frequency, duration or phoneme deviants) used to
generate MMN. A roving paradigm was used by studies in
healthy volunteers [15] and relatively fewer studies in
schizophrenia [16]. Data have shown that MMN generation with
the roving paradigm is consistent to that of the oddball
paradigm. Clinically, duration MMN has been related more with
the disease and prominent from early stages of schizophrenia
[8,17]. Duration MMN reductions are relatively stable through
disease course and are associated with poorer social
functioning over time [18,19]. MMN has high test re-test
reliability [20] and it does not require voluntary attention, thus
the confounding effects of motivational factors are minimized. A
few studies reported reduced MMN amplitudes in first degree
relatives of patients [21,22], suggesting its potential as a
neurophysiological endophenotype. But also some studies
reported no reduction in relatives [23].

Previous studies investigating the relationship between MMN
deficits and neuropsychological performance led to
contradictory results as some studies indicated correlations
between MMN deficits and particular cognitive domains (i.e.
executive function [24] or memory [16]), while others did not
[25]. CANTAB (Cambridge Automated Neuropsychological
Test Assessment Battery) has good test-retest reliability and it
has been widely used in treatment studies of schizophrenia
[26]. Neural bases of the cognitive domains identified in
CANTAB are well established [27] and the CANTAB
schizophrenia battery was developed based on translational

utility of each test and their known sensitivities to
pharmacological manipulation [28].

Despite the substantial body of evidence suggesting that
neural oscillations underlie cognitive processes [29] and that
ERPs are composed of neural oscillations [30], there has been
only a couple of studies investigating the oscillatory activity
underlying the MMN deficits in schizophrenia [31,32]. The
former indicated that patients lacked theta power in MMN
paradigm [32], and the latter reported that alterations in delta
and theta power in patients with schizophrenia were correlated
with MMN amplitude [31]. However their analyses eliminate
some trial-by-trial fluctuations in power and don't allow the
investigation of phase-locking [31]. Previous research with
healthy volunteers indicated the role of oscillatory power
modulation and phase coherence at theta frequency band as
reflecting the underlying MMN processes at the spectral level
[33,34]. Specifically, event-related spectral perturbations [35]
(ERSPs; power) can provide a more sensitive measure of
underlying cognitive processes as they can detect alterations in
the power of neural oscillations across several frequency
bands and on a trial by trial basis, which otherwise would not
be captured by the averaged time domain waveforms [36]. On
the other hand, the inter-trial phase coherence [37] (ITC;
coherence or phase locking), is a sensitive index for the phase
coherence of neural oscillations across individual trials;
information which also vanishes from the averaged time
domain waveforms [38]. For example, an increase in oscillatory
power results in an increase in the amplitude of time domain
average waveform, but so too does the increase in phase
alignment, with the power of the neural oscillation itself being
unchanged [36]. Therefore, time-frequency power and phase
analyses provide a more sensitive and detailed picture of brain
dynamics during MMN, capable of separating independent
neural processes and might provide more sensitive markers of
the altered neural circuits involved in MMN processing in
schizophrenia.

The objective of the current study was to 1) explore the
underlying oscillatory activity of MMN in patients with
schizophrenia compared to healthy controls by time-frequency
analyses and 2) investigate the relationship between MMN (i.e.
MMN amplitude, power (ERSP) and phase-locking) and
neurocognitive functioning. Investigating the spectral
components of MMN might help to develop refined and more
sensitive biomarkers for the effects of novel treatments in
schizophrenia. This study provides the first data on the
exploration of power and coherence components of MMN in
patients with schizophrenia. Secondly, the relationship between
MMN parameters and neurocognitive functioning (as well as
clinical measures) and functional outcome was investigated.

Methods

The study sample included 21 right handed patients (17
male, 4 female) aged between 18-55 and diagnosed with
schizophrenia or schizoaffective disorder (only one patient)
according to DSM-IV using Mini International Neuropsychiatric
Inventory (MINI) assessment [39]. Patients had no other axis I
disorders, and had been clinically stable for 3 months.

Oscillatory Underpinnings of MMN in Schizophrenia

PLOS ONE | www.plosone.org 2 December 2013 | Volume 8 | Issue 12 | e83255



Antipsychotic medications were not altered for at least the last
2 months and doses were not altered for at least 1 month prior
to enrolment. Exclusion criteria included alcohol/substance
abuse (except nicotine for patients), head trauma, mental
retardation and failure to comply with study procedures. All
participants had urine drug screening prior to testing.

Control subjects (14 male, 7 female) were age (years) and
education matched, healthy, non-smoker volunteers with no
history of mental disorder. Healthy subjects were screened for
axis I psychiatric disorders using the MINI. None of the control
participants had first or second degree relative with
schizophrenia. The groups were comparable with regards to
age, gender and premorbid IQ, whilst control subjects had
higher average current IQ scores than patients (Table 1). For
schizophrenia patients, parental education years were taken as
an index of educational level, which was comparable between
groups (Table 1). Clinical characteristics of patients are
presented in Table 2.

Table 1. Demographic characteristics of patients and
controls.

 
Patients
(n=21)

Controls
(n=21)

Statistics (t and
df values)

95%
Confidence
Intervals

p
value

Age
34.19
(10.91)

31.52
(9.13)

t = - 0.859 df =
40

- 8.943 - 3.610 0.39

Education
(years)*

12.96
(3.26)

14.95
(2.45)

t = 1.995 df =31 -0.044 - 4.021 0.055

Premorbid
IQ

110
(6.96)

112.19
(5.02)

t = 1.159 df = 39 -1.633 - 6.014 0.25

Current IQ
96.21
(14.85)

109
(10.25)

t = 3.195 df = 38 4.685 - 20.894 0.01

* Education (years) for patients stands for the parental education years.
doi: 10.1371/journal.pone.0083255.t001

Table 2. Clinical characteristics of patients.

 Minimum  Maximum  Mean SD
Medication (mg)* (Chlorpromazine
equivalent dose)

75 400 247.19 108.18

Medication duration (years) 0.3 10 3.81 3.11
BPRS 2 29 12.90 8.38
PANSS-Positive 7 22 12.43 4.54
PANSS-Negative 8 30 14.81 6.57
PANSS-General Psychopathology 16 35 23.19 5.75
PANSS-Total 31 79 50.80 14.08
BDI 0 63 13.57 15.12
BAI 0 28 8.52 8.30
WSAS 1 36 16 11.17
* All patients were on monotherapy of second generation antipsychotics;
risperidone long-acting (n=5), risperidone oral (n=1), clozapine (n=8), olanzapine
(n=5), quetiapine (n=1), amisulpiride (n=1).
doi: 10.1371/journal.pone.0083255.t002

This study was a part of a larger study (United Kingdom
Clinical Research Network Portfolio ID: 7470) sponsored by
GlaxoSmithKline Pharmaceuticals. The procedure was
conducted in accordance with "good clinical practice" (GCP),
and the guiding principles of the Declaration of Helsinki. The
study was subject to Independent Ethical Committee review
and was approved by Cambridgeshire 3 Research Ethics
Committee on 24th July 2008 (REC reference 08/H0306/52).
Written informed consents were obtained for each subject
before participation in the study in line with GCP.

Clinical Measures

1 Positive and Negative Syndromes Scale [40]: A semi-
structured interview scale addressing symptom severity in
three main clusters: positive symptoms, negative symptoms,
and a general psychopathology subscale.

2 Brief Psychiatric Rating Scale [41]: BPRS is used to evaluate
the severity of psychotic symptoms. It is composed of eighteen
items scored on a 7 point range. The total BPRS score was
used.

3 Beck Depression Inventory-II [42]: BDI-II is a self-report
scale composed of 21 items each covering a 4-point range for
the severity of depressive symptoms.

4 Beck Anxiety Inventory [43]: BAI is a 21-item self-report
questionnaire used to evaluate anxiety symptoms over the last
week. Each item is scored on a range between 0-3 to assess
level of discomfort.

5 Wechsler Abbreviated Scale of Intelligence [44]: The WASI
uses the vocabulary, similarities, block design and matrix
reasoning subtests of the WAIS-III to provide an estimate of full
scale IQ. WASI has been shown to be a reliable reflection of
WAIS-III scores and has the advantage of shorter testing time.

6 National Adult Reading Test [45]: The NART is used to
assess reading ability of words with irregular spelling. Ability to
pronounce such words is preserved across a range of
neurocognitive disabilities and is thus indicative of premorbid
intelligence.

7 Work and Social Adjustment Scale [46]: The WSAS is a
validated measure of self-reported functional impairment. Used
to assess impairment in various areas of daily living such as
the ability to work, home management, social and private
leisure activities, and ability to form and maintain close
relationships. Each item is scored between 0-8 and higher
points denote more disability. In this study total WSAS score
was used.

8 Neuropsychological Measures: A selection of six tests from
the CANTAB battery addressing five key cognitive domains in
schizophrenia was used. These included Spatial Working
Memory (SWM); Intra/Extra Dimensional Set Shift (IED); One
Touch Stockings of Cambridge (OTS); Paired Associates
Learning (PAL); Rapid Visual Processing (RVP) and Emotional
Faces Recognition (ERT) tests. The details of the CANTAB
tests can be found at http://www.cantab.com/cantab-tests.asp
[47].

MMN Recording and Analysis
Subjects were seated comfortably in front of a CRT monitor

and asked to watch scenes from a wildlife documentary without
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sound. Tones were played binaurally through ear inserts at 80
dB. Duration deviants with roving frequency design were used
to generate MMN. Standard tones were 50 ms and deviant
tones were 100 ms, with the latter presented at the end of each
train of standard tones of 3-15 in length. Between each train of
standard/deviant stimuli, one (50%) or two (50%) new standard
tones were presented. These latter tones served as masks,
and were standard tones that differed in frequency to those in
both the preceding and subsequent train. Each train was
presented at a different frequency, separated from the previous
train by at least 500 Hz (tone range 100 - 5000 Hz). The task
was divided into 6 blocks, such that each block contained 1 of
each of the 11 trains with 1 intervening mask, plus 1 each of
the 11 trains with 2 intervening masks, all randomly presented,
and stimulus onset asynchronies randomly assigned (from 0.35
to 0.45 seconds). The overall possibility of deviant tones was
approximately 15%. Although the paradigm used in this study
is relatively novel, for this particular paper the memory trace
effects of the standards were not examined. Thus, the
paradigm used is basically a normal duration deviant except
that the standard memory trace is restarted for each train
[15,16].

Data were collected using a Neuroscan SymAmps2
acquisition system at 24bit resolution, 1000 samples per
second from 64 channels, with additional electrodes placed
around the eyes to capture activity from corneal-retinal
potentials in the eyes (electro-occulogram) and on the nose.
Electrode impedances were below 10 kOhms at the start of the
recording. Data were recorded online in AC mode with a 0.5 Hz
to 100 Hz bandpass filter. Offline data were re-referenced to
the nose electrode and a second-order lowpass (80 Hz)
Butterworth filter (corresponding to 12 dB/octave rolloff) has
been applied. (For the time-domain ERP analysis the data was
further filtered with a 30 Hz lowpass zero phase shift filter in
order to remove high-frequency noise from the MMN wave.
This filtering does not affect the time-frequency analyses). Data
were then epoched into 600ms segments (-100 ms to +500 ms
around event markers), baseline corrected (relative to the pre-
stimulus interval) and epochs containing activity of more than
+/- 100µV at any scalp site were discarded [48]. Further data
processing was done using Matlab (MathWorks).

Time-domain ERP analysis
Responses to standard stimuli at all train positions (with the

exception of position 1) were then averaged together to create
the standard average wave. Responses to deviant stimuli were
averaged to create the average deviant wave. The standard
was then subtracted from the deviant response to create the
difference waveform. The MMN waveforms were checked for
appropriate scalp topography (fronto-central negativity) and the
presence of the polarity reversal at the mastoid electrodes
(positive) relative to Fz (negative). Independent sample point-
by-point t-tests within the 150-250 ms poststimulus window [34]
across all electrodes were also run in order to confirm the
temporal location of the MMN group difference. The p-values of
multiple point-by-point t-tests were corrected for false discovery
rate (FDR) utilizing the method described by Benjamini and
Yekutieli [48]. The alpha was set to 5%, and results were

deemed significant if the probability of type I error (false
positives) was also lower than 5%. After confirming (with the
above described point-by-point statistics) that the MMN group
difference emerged between 170-210 ms (adjusted p<0.036 for
all points) over the fronto-central electrodes, the mean
amplitude of this significant interval and the MMN peak latency
at the Fz electrode site were extracted and subjected to a two-
sample t-test comparing the two groups. The same procedures
were applied on the MMN waveforms over the two mastoid
electrodes. Furthermore, besides the difference wave, ERPs in
response to the standard and deviant stimuli from the Fz
electrode were also examined. Mean amplitudes from the time
window of the significant MMN peak (170-210 ms) have been
submitted to a Group × Condition mixed-design ANOVA in
order to reveal whether there were significant group differences
separately in the standard and/ or deviant waveforms.

Time-frequency EEG analysis
Following up the time-domain MMN analysis, time-frequency

power and phase-locking (PL) analyses were performed on all
trials using short-time Fourier transforms with Hanning window
tapering, resulting in a time-frequency landscape with a
resolution of 8 ms in time and 0.49Hz (from 0.5 to 30Hz) in
frequency. For the time-frequency analysis scripts from the
EEGLAB toolbox [37] were used. Three thousand milliseconds
epochs were used for the decomposition. “Regions of interest”
of the whole time-frequency landscape in the time interval of
the MMN ERP component for the group comparisons were
then selected based upon exploratory 2-tailed point-by-point t-
tests between controls and patients, run across all time points
and in the theta frequency band (~4-7Hz) for the Fz electrode.
The p-values of multiple point-by-point t-tests were corrected
for false discovery rate (FDR) with utilizing the method
described by Benjamini and Yekutieli [48]. The alpha was set to
5%, and results were deemed significant if the probability of
type I error (false positives) was also lower than 5%. These
corrected point-by-point exploratory comparisons indicated
group differences in a window (~200-350 ms) in theta power
(adjusted p<0.047 for all comparisons). There were no
significant differences in PL values. Average power values from
the significant time-frequency interval were then subjected to a
two-sample t-test comparing the groups.

Statistical Methods
IBM Statistical Package for Social Sciences (SPSS) 19.0

was used to analyse data. When comparing two groups,
Student’s t test was used where data were normally distributed.
Results were deemed significant in 95% Confidence Interval
(CI). The majority of CANTAB test performance scores were
non-normally distributed due to the heteroskedasticity in these
variables. To overcome the heteroskedasticity, log
transformations were applied and comparative analyses were
run with the log transformed values (Table 3). For investigating
the associations between measures Spearman’s rank
correlations were used.
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Results

MMN results
The point-by-point analysis detected significant MMN

amplitude differences between two groups between 170-210
ms post-stimulus over several fronto-central electrode sites
(Figure 1). Mean amplitude of the MMN peak (170-210 ms) and
MMN peak latency from the Fz electrode were then compared.
MMN amplitude was significantly lower in patients with
schizophrenia (t(38)=3.22, p=0.002, η=0.46). The MMN peak
latency was not significantly different between groups (Table
3).

The Group × Condition ANOVA comparing the mean
amplitudes of the standard and deviant peaks within and
across the two groups yielded a significant main effect of
condition indicating that ERP amplitudes in the deviant
condition (compared to the standard condition) were more
negative in both groups (F(1,39)=123.2, p<0.0001). The main
effect of group was not significant (F(1,39)=0.0069, p>0.9). The
interaction of group and condition was significant
(F(1,39)=11.28, p=0.002). Post-hoc group comparisons for the
mean amplitudes of the standard and deviant peaks are
reported in Table 3 (corrected p-values are presented). The
pairwise comparison of standards and deviants did not yield
significant differences (both p>0.7) indicating that the
processing differences between patients and controls could not
be explained by the type of the stimulus.

Comparison of the two groups yielded marginally significant
group difference in the MMN amplitude at the left mastoid
electrode site (t(39)=1.94, p=0.059) but not at the right mastoid
electrode site (t(39)=1.31, p=0.19).

Time-frequency power and phase-locking results
A well-defined time-frequency interval within the time-

frequency landscape showed significant group differences in
power, but not in phase-locking (Figure 2). Control participants
showed significantly larger trial-by-trial EEG power
(t(38)=-1.97, p=0.056, see Table 3 and Figure 2; it is to note
that the point-by-point corrected statistics were more sensitive
to the effect, p-values <0.047 for all comparisons, for power
group difference η=0.24). Correlation analysis among MMN
amplitude and power was conducted in order to test whether
theta oscillations in the time-frequency explain MMN
amplitudes in the time domain. The correlation between theta

Figure 1.  MMN waveforms and topographic
headplots.  First row: Standard and deviant waveforms from
electrode Fz for Controls and Patients. Second row: MMN
waveforms from electrode Fz for Controls and Patients.
Significant differences were found in the marked (170-210ms)
time interval. Third row: topographic headplots for two groups
and their difference from the significant time interval
(170-210ms). Electrodes with significant effects are marked by
white disks. Fourth row: Difference waves from the mastoid
electrodes.
doi: 10.1371/journal.pone.0083255.g001

Table 3. Mean MMN amplitude, latency, and power in patients and controls.

 Patients (n=19) Controls (n=19) Statistics (t or F values) p value 95% Confidence Intervals
MMN peak amplitude (microvolts) -0.9 (0.52) -1.4 (0.4) t = 3.22 df = 38 0.002 0.18 - 0.77
MMN peak latency (milliseconds) 166.8 (38) 167.2 (39) t = -0.34 df = 38 0.70 -2.54 - 1.81
Standard peak amplitude -0.37 -0.056 t = 1.16 df = 39 0.72 -0.23 - 0.85
Deviant peak amplitude -1.02 -1.29 t = -0.81 df = 39 0.81 -0.92 - 0.39
Left Mastoid MMN peak amplitude 1.38629 1.82874 t = 1.94 df = 39 0.059 -0.02 - 0.9
Right Mastoid MMN peak amplitude 1.62725 1.97666 t = 1.31 df = 39 0.19 -0.19- 0.9
Theta band power (ERSP) (170-210ms) 0.12 (0.87) 0.71 (0.7) t = -1.97 df = 38 0.06 -1.02 - -0.014

doi: 10.1371/journal.pone.0083255.t003
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power and MMN amplitude was significant (r=-0.34, p=0.032).
After excluding two outliers (exceeding two standard deviations
from the mean) the correlation was still significant (r=-0.35,
p=0.03).

Neurocognitive Performance
Patients with schizophrenia had poorer performance on the

CANTAB tests of working memory, executive function, episodic
memory and attention (Table 3). Social cognition performance
was comparable between groups with the exception of the

‘surprise’ subdomain of the ERT, where patients performed
poorer (Table 4).

Correlations between clinical, neurocognitive measures
and MMN

No significant associations were detected between mean
CANTAB performance and MMN amplitude or power in
patients with schizophrenia (Table 5). The only exception was
fear subdomain of ERT which correlated with MMN amplitude,
although this significance disappeared when corrected for
multiple comparisons. Furthermore none of the clinical

Figure 2.  Power and Phase Locking Results for Controls and Patients with Schizophrenia.  Upper panel: time-frequency
power spectrum (ERSP) from the Fz electrode for Controls and Patients. The significant time-frequency segment overlapping in
time with the MMN is marked with a black box in the figures (~3-6 Hz, around 200 ms). Lower panel: time-frequency phase-locking
factor (PLF) for groups. Inserts in each panel show the topographic distribution of power and phase-locking values across all the
electrodes.
doi: 10.1371/journal.pone.0083255.g002
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measures, including functional outcome, was associated with
any MMN measure (Table 6).

Discussion

In this study the oscillatory activity underlying the MMN
deficit in patients with schizophrenia was examined and we
report for the first time, that the MMN deficits in patients with
schizophrenia are associated with reduced theta power. While
patients with schizophrenia showed significant impairments in
multiple cognitive domains (with effect sizes ranging from 0.39
to 1.75, Table 4), these impairments were not associated with
MMN amplitude, power or phase locking. Moreover, no
significant association was detected between MMN measures
and clinical parameters, including functional outcome.

In the present study, duration MMN impairments in amplitude
were observed in patients with schizophrenia (Figure 1). These
impairments were of moderate effect size and were consistent
with previous findings [10]. Reduced MMN amplitude observed
in patients with schizophrenia suggests that their ability to
discriminate sensorial differences is reduced [49]. This failure
can result in impaired ability to predict and evaluate salience
[49]. Further analysis of standard and deviant responses for
each group suggested that the MMN amplitude differences
between patients and controls were not driven by stimulus
type. Instead, the significant interaction of group and stimulus
type, and the significant group difference in the MMN (Deviant-
Standard) amplitude, indicates that change detection was
impaired in patients with schizophrenia, possibly as a result of
the combination of responses to deviant and standard stimuli.
However, it should be noted that MMN amplitude is regarded
as the averaged end product of the underlying neuronal
activity. Trial-by trial analysis of MMN in the time-frequency

domain can provide a more sensitive measure of the
underlying brain dynamics of MMN deficits in schizophrenia.

Time-frequency analyses showed that patients with
schizophrenia had reduced power in the theta band compared
to controls (Figure 2, Table 3). Furthermore, the power of the
theta band oscillation showed a significant correlation with the
amplitude of the MMN. This significant correlation between

Table 5. Correlation coefficients between MMN measures
and CANTAB performance (patients with schizophrenia).

 MMN amplitude  p value  MMN power  p value
SWM-errors 4 box -0.1089 0.64 -0.014 0.96
SWM-errors 6 box -0.0531 0.82 -0.2272 0.46
SWM-errors 8 box 0.2780 0.24 -0.1466 0.53
SWM-strategy 0.2818 0.24 0.0386 0.87
IED-EDS-errors -0.1196 0.62 -0.2974 0.32
IED-total errors adjusted -0.1644 0.50 -0.2606 0.39
OTS-mean choices-correction 0.0414 0.87 -0.0969 0.75
OTS-mean latency-correction
(ms)

-0.3115 0.20 0.0299 0.90

RVP-Sensitivity to Errors -0.1465 0.60 -0.0629 0.84
RVP-mean latency (ms) 0.2323 0.42 0.1500 0.59
PAL-errors adjusted -0.0858 0.71 -0.2163 0.48
ERT-surprise (% correct) 0.2970 0.21 -0.0527 0.86
ERT-disgust (% correct) -0.1128 0.65 0.2542 0.30
ERT-fear (% correct) -0.5516 0.01 0.1188 0.62
ERT-happiness (% correct) -0.4391 0.06 0.0313 0.89
ERT-sadness (% correct) 0.0145 0.95 0.2919 0.22
ERT-anger (% correct) -0.2297 0.34 0.1687 0.48
ERT-neutral (% correct) -0.0103 0.96 -0.1673 0.49

doi: 10.1371/journal.pone.0083255.t005

Table 4. Group comparisons of mean scores for CANTAB tests (log-transformed values).

 Patients (n=21) Controls (n=21) Statistics (t and df values) 95% Confidence Intervals p value
SWM-errors 8 box 2.57 (1.40) 1.64 (1.82) t = 1.842 df = 40 -0.92 - 1.94 0.07
SWM-errors 6 box 1.47 (1.19) 0.61 (0.92) t = 2.611 df = 40 0.19 - 1.52 0.01
SWM-errors 4 box 0.44 (0.73) 0.05 (0.21) t = 2.370 df = 40 0.55-0.74 0.02
SWM-strategy 14.48 (5.21) 13.52 (3.50) t = 0.695 df = 40 -1.82 - 3.73 0.49
IED-EDS-errors 2.54 (1.95) 1.29 (0.84) t = 2.625 df = 38 0.27 - 2.22 0.01
IED-total errors adjusted 5.79 (3.01) 3.50 (1.41) t = 3.071 df = 38 0.75 - 3.81 0.005
OTS-mean choices-correction 1.26 (0.18) 1.10 (0.55) t = 3.558 df = 37 0.06 - 0.24 0.002
OTS-mean latency-correction (ms) 9.60 (0.48) 9.65 (0.32) t = -0.356 df = 37 -0.31 - 0.22 0.72
RVP-Sensitivity to Errors 0.87 (0.07) 0.95 (0.03) t = -3.619 df = 33 -0.11 - -0.03 0.003
RVP-mean latency (ms) 6.02 (0.24) 5.90 (0.18) t = 1.767 df = 33 -0.02 - 0.28 0.09
PAL-errors adjusted 5.58 (2.54) 2.07 (1.25) t = 5.671 df = 40 2.24 - 4.77 <0.001
ERT-disgust (% correct) 1.26 (0.46) 1.46 (0.21) t = -1.731 df = 39 -0.43 - 0.03 0.09
ERT-fear (% correct) 1.03 (0.42) 1.01 (0.37) t = -0.100 df = 39 -0.24 - 0.26 0.92
ERT-happiness (% correct) 1.46 (0.35) 1.50 (0.21) t = -0.497 df = 39 -0.23 - 0.13 0.61
ERT-sadness (% correct) 1.11 (0.43) 1.34 (0.32) t = -1.920 df = 39 -0.47 - 0.01 0.06
ERT-surprise (% correct) 1.25 (0.38) 1.48 (0.18) t = -2.429 df = 39 -0.42 - -0.03 0.02
ERT-anger (% correct) 1.14 (0.41) 1.24 (0.27) t = -0.888 df = 39 -0.32 - 0.12 0.38
ERT-neutral (% correct) 1.25 (0.38) 1.44 (0.21) t = -1.852 df = 39 -0.38 - 0.01 0.70

doi: 10.1371/journal.pone.0083255.t004
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theta power and time-domain MMN is consistent with previous
studies indicating that MMN is associated with an increase in
theta power in deviant trials [33,34]. A MEG study also
demonstrated that theta power and phase coherence were
increased in response to deviant stimulus around 150-200 ms
[50]. Increased frontal theta activity has generally been
associated with information processing and error monitoring
[51-53]. Previous studies reported that patients with
schizophrenia exhibited decreased delta and theta activity in
response to novelty [31,32,54]. Findings from this study
support the view that reduced theta power may be the
underlying oscillatory mechanism related to the decreased
MMN amplitudes in patients as reduced theta power was
correlated with decreased MMN amplitude in schizophrenia
patients (Figure 3). However, it is important to note here that
due to the correlational nature of the MMN – theta power
relationship, we cannot draw firm directional conclusions.
Furthermore, the significant effects measured in theta power
span across a wider time window (~200-350 ms) than the
window of the peak MMN (170-210ms). Also, according to the
corrected point-by-point statistics, the effects seen in the time-
domain MMN arose somewhat earlier (170ms), than the onset
of the effect seen in the time-frequency domain. Similar timing
or window length differences between averaged time-domain
MMN and trial-by-trial theta power could be observed earlier
[34,50]. Therefore, beyond the fact that the two phenomena
must, at least in part, reflect the same underlying neural
mechanism, we cannot draw directional conclusions between
theta power and time-domain MMN.

While the spectral power is associated with the firing activity
of stimulus-related neural networks, phase locking is related to
the temporal synchronisation, or with the temporal re-setting of
activity of these neuronal populations as response to the
stimuli. Therefore phase locking can provide information about
the synchrony of task related oscillatory activity which might
have contributed to the MMN. However, in the present study
phase locking was not significantly different between patients
and controls, suggesting that at least in this population of

Table 6. Correlation coefficients between MMN measures
and clinical variables (patients with schizophrenia).

 MMN amplitude  p value  MMN power  p value
Medication (mg) * 0.2638 0.54 -0.1724 0.52
Medication duration (years) 0.2297 0.39 -0.0524 0.84
BPRS 0.1996 0.45 0.3908 0.13
PANSS-General
Psychopathology

0.0270 0.92 0.4978 0.050

PANSS-Negative -0.1043 0.70 -0.1900 0.48
PANSS-Positive 0.1660 0.53 0.4938 0.052
BDI -0.1930 0.47 0.2365 0.37
BAI -0.2195 0.41 0.2933 0.27
NART -0.3087 0.24 -0.0177 0.94
WASI -0.2604 0.33 0.2489 0.35
WSAS -0.3509 0.1410 -0.1813 0.45
* Chlorpromazine equivalent dose
doi: 10.1371/journal.pone.0083255.t006

patients, there is no abnormality in task related
synchronization. However, these findings require confirmation
in a larger study.

MMN impairments in amplitude and power were independent
from symptom severity and antipsychotic medication dose. In
the current study all patients were on atypical antipsychotics,
and given the sample size it was not possible to examine the
relationship between antipsychotic type/dose and MMN
impairments. However, the results are consistent with the
findings from a large study which indicated that MMN deficits
were comparable among the patients who were on different
atypical antipsychotics [55]. It should also be noted that there
are studies showing positive effects of atypical antipsychotic
medication on MMN [56]. Antidopaminergic antipsychotic drugs
have a rather small effect on the course of cognitive
impairment in schizophrenia [57]. On the other hand,
dysfunctional glutamatergic transmission has been suggested
to have more significant role in pathophysiology of cognitive
impairments in schizophrenia [58]. Previous research indicated
that modulation of the glutamatergic system (via NMDA
receptor modulation) (and not dopamine or serotonin) was
associated with MMN generation in auditory cortex [59,60].
Ketamine, an NMDA receptor antagonist was shown to reduce
MMN amplitude in patients and healthy controls [13]. Also,
NMDA receptor blockade was shown to reduce theta frequency
power [61] and phase locking [62] in experimental studies.
Glutamate (via NMDA receptors) might have a modulatory
effect on neural populations within the cortical MMN generators
(i.e. pyramidal cortical neurons, located in prefrontal and
superior temporal cortices) which are also within the critical
neural systems for pathophysiology of schizophrenia. In light of
these findings, it can be suggested that MMN deficits in
schizophrenia might be related to dysfunctional neural
processing at prefrontal and temporal brain circuits, possibly

Figure 3.  Correlation between MMN amplitude and theta
power.  The correlation remains significant after the removal of
outliers (see Results).
doi: 10.1371/journal.pone.0083255.g003
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linked to impaired glutamatergic neurotransmission.
Furthermore, the findings should be evaluated in the context of
possible biomarker properties of MMN. NMDA receptors and
the glutamatergic system seem to be promising targets for
novel drugs in schizophrenia [63,64]. In future studies,
oscillatory activity measures underlying MMN may be used as
the outcome measures for novel drug treatments. Preclinical
models are already available in rodents [65] and macaque [58]
and NMDA antagonist MK-801 induced MMN deficits have
been shown [14]. Thus, drug discovery research might
investigate neurotransmitter systems associated with MMN,
and MMN can be used as a candidate biomarker to test new
drugs in animal psychosis models (back-translation).

In this sample of patients, we observed no relationship
between MMN and clinical, functional or cognitive outcome
measures. Previous studies investigating the association
between neurocognitive impairments and MMN amplitude
deficits in schizophrenia have yielded inconsistent results.
Some studies reported significant correlations between MMN
and specific cognitive domains [16,24] while some failed to
detect correlations [25]. In the current study, the relationship
between oscillatory activity and cognitive function was
examined for the first time in addition to the standard MMN
amplitude, and these findings consistently failed to identify a
relationship with cognitive function. Findings from the present
study suggested that MMN might not be a sensitive marker for
cognitive impairment in schizophrenia. However, there are only
a few studies, including the current one, that have examined
the relationship between MMN and cognition and more data
from larger studies are needed to comment on the associations
between cognitive impairments at the neuropsychological level
and MMN deficits. Schizophrenia is a chronic, debilitating
condition and biomarkers that can allow predictions about the
daily functioning of patients are notably important. Previously,
the association between the MMN amplitude and work
functioning have been shown [17,66-68]. However, the
functional outcome scores of the patients were not correlated
with any of the MMN measures in this study. The disparity
might be related to the different outcome measures used (GAF
Vs. WSAS) or the sample size. Indeed studies reporting
association between functional outcome and MMN deficits had
larger samples [17,66-68], so it is possible that non-replication
in our study might be driven by the small sample size.

A few methodological considerations should be listed with
regards to this study. First, the study included only patients with
a chronic history of schizophrenia and all the patients were
taking atypical antipsychotic drugs. The findings needs to be
replicated with patient samples including first episode patients
and drug-naïve patients as well as patients taking typical

antipsychotic drugs. Secondly, we used a roving duration MMN
paradigm and while the impairments in MMN were comparable
to standard MMN paradigms, the lack of relationship observed
with cognition in this study may be specific to the roving
paradigm and need to be confirmed with other MMN
paradigms.

In summary, the present study showed for the first time that
MMN impairments in schizophrenia were linked to reduced
theta power but not phase synchrony. It also showed that
neither MMN amplitude or theta power was related to
impairments in clinical, functional or cognitive outcome
measures. These findings suggest that while MMN may be a
useful marker to probe NMDA receptor mediated mechanisms
and associated impairments in gain control and perceptual
changes, it may not be a useful marker in association with
clinical or cognitive changes. Further studies addressing the
underlying oscillatory mechanisms of MMN with different
paradigms and with possible pharmacological interventions
might have implications for the use of MMN as a biomarker in
drug discovery.
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