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The solubility of a crystalline substance in the solution can be estimated from its absolute solid
free energy and excess solvation free energy. Here, we present a numerical method, which enables
convenient solubility estimation of general molecular crystals at arbitrary thermodynamic conditions
where solid and solution can coexist. The methodology is based on standard alchemical free energy
methods, such as thermodynamic integration and free energy perturbation, and consists of two parts:
(1) systematic extension of the Einstein crystal method to calculate the absolute solid free energies
of molecular crystals at arbitrary temperatures and pressures and (2) a flexible cavity method that can
yield accurate estimates of the excess solvation free energies. As an illustration, via classical Molecular
Dynamic simulations, we show that our approach can predict the solubility of OPLS-AA-based
(Optimized Potentials for Liquid Simulations All Atomic) naphthalene in SPC (Simple Point Charge)
water in good agreement with experimental data at various temperatures and pressures. Because the
procedure is simple and general and only makes use of readily available open-source software, the
methodology should provide a powerful tool for universal solubility prediction.© 2017 Author(s). All
article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC
BY) license (http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4983754]

I. INTRODUCTION

Solubility is an important concept in many areas of sci-
ence. For the development of pharmaceuticals,1–3 it is crucial
to know the solubility of drugs, as this influences bioavail-
ability. In the oil industry, organic/inorganic compounds with
low aqueous solubility can form unwanted deposits (scal-
ing/fouling) to cause blockages.4–7 These are but two exam-
ples to illustrate that it is extremely important to understand
the precipitation of common materials under normal condi-
tions and predict their solubility under conditions for which
experimental information is difficult to obtain.

Numerical simulations provide a powerful tool for sol-
ubility prediction. For many users, it would be helpful to
have a generic tool to predict solubility, which uses standard,
open-source software. There is no lack of solubility calcula-
tions in the literature.8–29 However, on the whole, simulation-
based predictions of solubility are not widely used. We argue
that this is due to the fact that generic, open-source tools
are lacking. Yet, as we argue below, the prediction of sol-
ubility should be a standard test of new force fields. This
becomes particularly clear when we consider the cases where
existing force-fields have been used to compute solubility:
very often, force-fields that seem to perform well for other
properties fail the solubility-prediction test. Conceptually, the
simplest way to compute solubilities from simulation is to
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carry out “brute-force” direct coexistence simulations.8,9,15–17

This method has the advantage of simplicity, but it generally
requires long simulations (in some cases up to microsec-
onds) to achieve solubility equilibrium, even for highly soluble
compounds.

One “thermodynamic” approach determines solubility
by computing the chemical potential in the solid and liq-
uid phases.14–20 The alternative “thermodynamic” approach
determines the saturation solute composition by imposing
the chemical potential of the solid phase to the solution in
a grand canonical style. Such a route has been followed in
the osmotic ensemble method/OEMC/OEMD.10,12,13,21 The
osmotic ensemble method has typically been applied to rela-
tively small (ionic) solutes and focuses on the simulation of
the liquid phase, assuming the chemical potential of the crys-
tal is known from other sources. Also, it exhibits an advantage
for multi-electrolyte solutions. However, we find that, in par-
ticular for large solutes, there is a need for a robust generic
approach that integrates the calculation of the properties of
both the crystal and of the solution, and is easily applicable in
standard commercially available codes.

In the present work, we describe a generic protocol to
predict solubility via computing the absolute chemical poten-
tials of the solid and solution phases in solubility equilibrium.
The method can be readily incorporated in standard codes
for all-atom molecular dynamics (MD) simulations such as
LAMMPS,30 using classical all-atomic force fields available
in the literature. We note that extension to other software
packages should be straightforward. All the numerical tech-
niques used in this work are standard alchemical free energy
methods31–35 such as free energy perturbation (FEP) and
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thermodynamic integration (TI) that are commonly used in
molecular dynamics (MD) or Monte Carlo (MC) simulations
for computing solvation free energies36,37 as well as absolute
solid free energies.38–44 The modeling challenge is focused on
developing atomistic modeling tools that will make it possi-
ble to predict the solubility of simple organic crystals (we use
naphthalene as an example) for potential generalization to a
broader range of compounds.

II. METHODOLOGY
A. Theoretical background

As the basic approach to compute solubilities is well
known, we only sketch the bare essentials here and refer the
reader to Appendices A–C for more details. We start from the
standard thermodynamic expressions.45 G, µ, A, and V are the
Gibbs free energy, chemical potential, Helmholtz free energy,
and volume and number of solute or solvent molecules. p and
T are the pressure and temperature. At constant T and p, the
condition for equilibrium of a solute between the crystal phase
and the solution is the equality of chemical potential in the two
phases,

µsolute
solution (p, T ) = µsolute

solid (p, T ). (1)

Hence, we need tools to compute the chemical potential
in the crystal phase and in solution.

The chemical potential of the solute in the solution is

µsolution = kBT ln
(
ρ0

soluteΛ
3
soluteq−1

solute

)
+ kBT ln

(
ρsolute

/
ρ0

solute

)
− kBT ln

〈
exp

[
−βUρsolute

solute - solution (Rsolute)
]〉

0
. (2)

In Eq. (2), the only part that requires computation is the
last term on the right hand side of the equation (the excess
chemical potential ∆µexcess). ρsolute denotes the number den-
sity of the solute, with the common ideal gas reference state
ρ0

solute = 1 (1 molecule in 1 Å3 = 0.001 nm3). Λsolute is the
thermal de Broglie wavelength of the solute, and qsolute is the
intramolecular (vibrational and electronic) partition function
of the solute; Rsolute is the fixed position of the extra single
solute in the solution, and Usolute - solution (Rsolute) is the inter-
action energy of the extra solute with the rest of solution. As
explained in Appendix A, we can ignore the constant term
ln

(
ρ0

soluteΛ
3
soluteq−1

solute

)
for both coexisting phases.

The chemical potential of the solute in the solid is

µsolute
solid = Gsolid

/
Nsolid = (Asolid + pVsolid)

/
Nsolid. (3)

For the solid phase, we derive the chemical potential from
a simulation in which we compute the absolute free energy of
the crystal. We compute the free energy of the crystal using
an (straightforward) extension of the Einstein crystal method
(see Sec. II B).

We describe details of the calculation of the chemical
potentials Asolid and ∆µexcess in Secs. II B and II C and in
Appendices A–C. Equation (1) becomes

kBT ln(ρsolute) − kBT ln
〈
exp

[
−βUsolute - solution (Rsolute)

]〉
0

= (Asolid + pVsolid)
/
Nsolid. (4)

In the case of a sparingly soluble solute (the example stud-
ied in this paper), we may set the second term on the left side to

the hydration free energy of a single solute molecule in the sol-
vent, and then solve analytically for ρsolute. In the case of higher
solubilities, the hydration free energy becomes a function of
composition, and we would need to calculate this dependence
and determine the composition that solves the above equation.

B. Extended Einstein crystal method

Figure 1 is a pictorial description of the extended Einstein
crystal method to compute the absolute solid free energy Asolid

of a molecular crystal. The method is based upon the original
Einstein crystal method34,38,39 and its recent adaptations.40–44

In the present work, it has been adapted to be used in MD
simulations in LAMMPS without extra codes.

As the extended Einstein crystal method is similar in
spirit to the original Einstein method, we describe the prac-
tical details of the approach including the various steps and
contributions as illustrated in Fig. 1 as well as finite-size cor-
rections46,47 in Appendix B. Here we just mention the salient
features: in the original Einstein crystal method for atomic
systems, the free energy is computed by TI from the fully inter-
action crystal to an atomic Einstein crystal for which the free
energy can be computed analytically. In the extended Einstein
crystal method, we transform the molecular crystal into an
Einstein crystal of independent molecules that are tethered by
harmonic springs to reference positions. The number of springs
needed should be sufficient to fix the position and orientation
of molecule, but otherwise there is considerable freedom of
choice. A second aspect is that we perform TI in stages, as
illustrated in Fig. 1. Finally, we should consider ∆Asymmetry,
the analytic contribution to Asolid due to the symmetry of the
constituting molecule in the crystal. For this term, we need to
consider the molecular point group. Such an explicit consider-
ation of ∆Asymmetry would not be necessary if a molecule can
occupy all the symmetrically equivalent orientations during a
crystal simulation. However, in practice in MD, a molecule
in a non-rotator phase only samples one of the symmetrically
equivalent orientations, because of kinetic reasons. In contrast,
a solute in the solution can explore all orientations. Therefore
∆Asymmetry has to be explicitly added for a consistent con-
sideration of the same reference state for the two phases. In
the present work, for the compounds that we study, we have
β∆Anaphthalene

symmetry

/
Nsolid = −ln 4 per molecule for naphthalene,

because the point group is D2h.

C. Cavity method for excess solvation free energy

Figure 2 gives a schematic description of the cavity
method to compute the excess solvation free energies ∆µexcess

of general solutes in isothermal-isobaric NpT ensembles.
In Fig. 2, part label (1) represents a pure solvent

with the total potential energy U(1) =Usolvent-solvent, with
Usolvent-solvent =

∑Nsolvent
i usolvent-solvent and N solvent as the total

number of solvent molecules. Part label (4) represents the
final solution with a fully solvated solute, and the total
potential energy is U(4) =Usolvent-solvent + Usolute-solvent with
Usolute-solvent =

∑Nsolvent
i usolute-solvent. The free energy difference

between these two states is hence the excess chemical potential
that we wish to compute,

∆µexcess = G(4) − G(1). (5)
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FIG. 1. Pictorial representation of the extended Einstein crystal method to compute the absolute solid free energies Asolid of single-component molecular crystal.
(0) The Einstein atomic crystal for which we know the analytic Helmholtz free energy A0; (1) the Einstein orientational atomic crystal where each molecule is
freely rotatable, with A0 = A1 because the solute is also considered to be freely rotatable in the solution phase (see Appendix B); (4) the real molecular crystal
whose Asolid we wish to compute. The various ∆A represent different thermodynamically reversible paths and their accompanying free energy changes. Within
each molecule, there is one “Central Atom” represented by the blue solid particle. All the “Central Atoms” are attached to their initial positions with the strongest
Einstein springs Kmax represented by the red solid springs throughout (1)-(3). There are also “Orientational Atoms” represented by the green empty particles.
During (1) and (2), the “Orientational Atoms” are attached with varying K from Kmin = 0 to Kmax, represented by the orange dashed springs, for calculating
the orientational contribution ∆A0. During (2) and (3), both the “Central Atoms” and “Orientational Atoms” are attached with the strongest Einstein springs
Kmax, now all represented by the red solid springs, to sample the intermolecular energy contribution ∆A1. Finally, during (3) and (4), all the red solid springs on
“Central Atoms” and “Orientational Atoms” are reduced from Kmax to Kmin = 0 to recover the real crystal. Such a central-orientational arrangement is called
the “Einstein Arrangement” or “EA” in our work. The yellow background filling in (3) and (4) means that the intermolecular interaction is active, but it is absent
in (0)-(2).

In principle, we can compute ∆µexcess by switching on
the interaction between the solute and the solvent directly.
However, growing a solute in solution directly suffers from
inaccuracies (mainly due to the well-known, “end-point” sin-
gularity associated with Lennard-Jones (LJ) solute-solvent
interactions48,49). The cavity method eliminates the “end-
point” singularity by introducing a softly repulsive cavity in

FIG. 2. Schematic representation of the cavity method to compute excess
solvation free energies. The blue empty particles are solvent molecules, the
red solid particle is the solute, and the black empty dashed particle around the
solute is the cavity that we grow and shrink.

the solution, inside which the solute will be grown, and the
cavity can be removed after the solute is fully grown. This
procedure is described by (2) and (3) in Fig. 2. The cavity is
attached to the center of the cubic box.

In (1) and (2) in Fig. 2, we slowly switch on the
softly repulsive cavity to a predetermined size, and ∆Ggrow

is the Gibbs free energy change of creating the cavity. The
potential energy expressions for states (1) and (2) are U(1)

= Usolvent-solvent and U(2) (λ) = Usolvent-solvent + Ucavity (λ).
There is no fixed functional form for Ucavity (λ) but

Ucavity (λ) should not suffer the same divergence problem as
the LJ potential. For example, Postma et al.50 have studied
the thermodynamics of cavity formation in water, in the form
of Ucavity (λ) = λ(B/r)12, where λ is a linear scaling param-
eter, B a repulsive parameter, and r is the distance from the
water oxygen to the cavity center. However, we cannot use this
potential form for the cavity method because it is essentially
the repulsive part of the Lennard-Jones potential causing the
end-point singularity. In the present work, the cavity potential
form we use is Ucavity (λ) =

∑Nsolvent
i A exp

(
−rsolute-i

/
B + λ

)
,

where rsolute - i is the distance between the center of the cavity
and a fixed point of the solvent molecule. The fixed point can
be the center of mass of the solvent molecule, but it is more
convenient to choose a specific atom, such as the O atom of
water. The size of the cavity is indicated by the variable λ. In
our simulations, we kept the parameters A and B fixed at A
= 1255 kJ/mol and B = 0.1 nm for the typical case of a sin-
gle solute molecule in Nwater = 864 water molecules, and the
largest range of λ we vary is between �10 and 5. At λ =�10,
the interaction between the cavity potential and solvent is
negligible, so it is practically equivalent to having no cavity;
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at λ = 5, the volume of the cavity is roughly comparable to
that of the original cubic box of Nwater = 864.

In summary, the excess solvation free energy is calculated
via

∆µexcess = ∆Ggrow + ∆Ginsert + ∆Gshrink. (6)

The computed excess solvation free energies should also
include any tail corrections of long-range dispersion energy,
which we obtain from our NpT simulations.

III. SIMULATION DETAILS

All simulations were run using the MD software package
LAMMPS.30 The van der Waals parameters and intramolec-
ular interactions were based upon the classical all-atomic
force OPLS-AA (optimized potentials for liquid simulations
all atomic)51 and SPC (simple point charge) water.52 We used
a time step dt between 0.5 and 1.0 fs. The Lorentz-Berthelot
combining rules53–55 were used for interatomic mixings. We
have chosen the cutoff distances rcut = 1.2 nm for all solution
simulations and rcut = 1.0 nm for all solid simulations. We used
the default simulation settings in LAMMPS. In LAMMPS,
the equations of motion are based on the work of Shinoda et
al.,56 Martyna et al.,57 and Parrinello and Rahman.58 For time
integration schemes, we have consistently chosen the velocity-
Verlet integrator.59 For simulations in isobaric-isothermal NpT
ensembles, a Nosé-Hoover60,61 thermostat and a barostat were
used to equilibrate all solution and solid systems. For simu-
lations in canonical NVT ensembles, both Nosé-Hoover and
Langevin thermostats62 were used. We have used Nwater = 512
for cyclohexane solution simulations. We have used Nwater =
894 for naphthalene solution simulations between p = 0.1-
200 MPa for T = 298 K and Nwater = 2048 for naphthalene
solution at T = 320 K and T = 340 K for p = 0.1 MPa,
as well as Nnaphthalene = 240 for naphthalene crystal simula-
tions. We used real atomic masses. LAMMPS’ default PPPM
(Particle–Particle-Particle–Mesh) summation63,64 with tin-foil
boundary conditions65 was used for all long-range electrostat-
ics. Gauss-Legendre quadrature method66 and the trapezoid
rule67 were used for TI.

Because the Einstein crystal method requires strong har-
monic springs, it is important to choose the time step dt care-
fully for MD simulations of ∆A2, ∆A0, and ∆A1. We have
consistently chosen dt that is below 1/20 of the period Tp

= 2π
√

m
/
(2K) of a harmonic spring u=K(ri − r0i)2. For

example, for the biggest Kmax = 2 092 000 (kJ/mol)/nm2 and
carbon atomic mass of 12 g/mol, Tp = 2π

√
m

/
(2K) = 10.64 fs

so Tp/20 = 0.53 fs, and we used dt = 0.5 fs for all Einstein
crystal simulations. We stress that some individual aspects of
the simulations could have been carried out in a more effi-
cient way, but this would have made it difficult to use standard
software.

All the site-site interactions in this work are de-
scribed by the 12-6 Lennard-Jones (LJ) potential,68 uLJ (r)
= 4ε

[
(σ/r)12 − (σ/r)6

]
, with ε as depth of the potential and

σ is the finite intermolecular distance where uLJ (r) = 0.
In both the extended Einstein crystal method and the cav-

ity method, statistical errors were calculated from block aver-
aging,34,69 and errors of calculated values are obtained from
error propagations of the individual block averaging errors.

IV. RESULTS AND DISCUSSIONS
A. Cyclohexane: Excess solvation free energy

We first illustrate the implementation of our cavity method
by computing the excess solvation free energies of an OPLS-
AA-based cyclohexane solute in 512 SPC water at T = 298 K
and p = 0.1 MPa.

Figure 3 shows our computed excess solvation free ener-
gies of cyclohexane in water at different cavity sizes λ. We
have an average of ∆µexcess = 7.47(35) kJ/mol, compared with
the computed value of 6.86 kJ/mol in the OPLS-AA + SPC
simulation in Ref. 37 and the experimental value29,37,70 of
5.15 kJ/mol. Both simulations overestimate the excess solva-
tion free energy of cyclohexane slightly but they agree within
each other within errors.

Figure 3 shows a plot of the variation of our integrand
contributions to ∆Gvdwl

insert, namely,
〈
∂Uvdwl

solute-solvent

/
∂λvdwl

〉
λvdwl

=
〈
Uvdwl

solute-solvent

/
λvdwl

〉
λvdwl

with the solute-solvent van der

Waal’s coupling parameter λvdwl for three different cav-
ity sizes λ, during the cyclohexane insertion. It is evident
that, as the cavity size we used for cyclohexane insertion
increases (indicated by the larger λ), the weak singularity
of

〈
∂Uvdwl

solute - solvent

/
∂λvdwl

〉
λvdwl

as λvdwl → 0 becomes less

pronounced. At λ = 0, using the trapezoid rule, we estimate
∆Gvdwl

insert = �18.20(4) kJ/mol, while a single-step FEP gives
∆Gvdwl

insert = �17.88(4) kJ/mol.
Figure 4 shows the computed excess solvation free ener-

gies for cyclohexane in water, computed (i.e., the cyclohexane
solute inserted) at different cavity sizes. Figure 4 illustrates
that all values for ∆µexcess agree within error, and the cav-
ity at λ =�0.5 seems already large enough to suppress the
weak singularity at the beginning of the switching on of the
solute-solvent interaction (see Fig. 3).

B. Naphthalene: Excess solvation free energy

Figures 5(a)–5(c) show the computed excess solvation
free energies of OPLS-AA-naphthalene in SPC water with
increasing cavity size at p = 0.1 MPa, 100 MPa, and 200
MPa, respectively, at T = 298K. For all pressures, the values
of ∆µexcess (λ) become independent of λ, to within statisti-
cal error for λ & 0, indicating that the cavities beyond λ = 0

FIG. 3.
〈
∂Uvdwl

solute-solvent

/
∂λvdwl

〉
λvdwl

during the cyclohexane insertion.
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FIG. 4. Computed excess solvation free energy of cyclohexane in water at T
= 298 K and p = 0.1 MPa. The red dashed line is the average value of 7.47
kJ/mol.

are sufficiently large to suppress the “end-point” singularity as
λvdwl → 0.

In Fig. 5(a), at p = 0.1 MPa, we obtain ∆µexcess

= �6.93 (42) kJ/mol, in good agreement with the value of
�6.82 kJ/mol reported in the OPLS-AA + SPC simulation in
Ref. 37. It has been mentioned that we have used slightly longer
cutoff distance rcut = 1.2 nm while the simulation reference has
used rcut = 1.0 nm, but∆µexcess should be nearly independent of
rcut for reasonable rcut values if tail corrections are included.37

Both numerical results are in fair agreement with the
experimental values29,37,70–72 of �9.58 kJ/mol or �10.00
kJ/mol, with the difference most likely due to deficiencies of
the force field.

Similarly, in Figs. 5(b) and 5(c), we plot the computed
excess solvation free energies of naphthalene in water with
increasing cavity size at p = 100 MPa and 200 MPa and T
= 298K.

Figure 5(d) shows the variation of the computed excess
solvation free energies with pressure from p = 0.1 MPa to
p = 200 MPa at T = 298 K. The pressure derivative of ∆µexcess

at fixed T at infinite dilution is the excess partial molar volume
at infinite dilution,73,74 vsolute

excess,(
∂∆µexcess

/
∂p

)
T = vsolute

excess. (7)

At T = 298 K, we estimate vsolute
excess = 123.9(3.0) cm3/mol,

comparable with the experimental75 value of 122.0 cm3/mol.
Again, as in the case of cyclohexane, we verify to what

extent the cavity method reduces the “end-point” singularity
during the naphthalene insertion. Figure 6 shows a plot of〈
∂Uvdwl

solute-solvent

/
∂λvdwl

〉
λvdwl

for four cavity sizes λ = �0.5,

�1, 0, and 5. In Fig. 6(a), λ = �1 is apparently still too
small for a complete avoidance of the “end-point” singular-
ity because

〈
∂Uvdwl

solute-solvent

/
∂λvdwl

〉
λvdwl

still shows divergent

behavior as λvdwl → 0. In Fig. 6(b), we have a larger cavity at λ
= �0.5: here, the divergence of

〈
∂Uvdwl

solute-solvent

/
∂λvdwl

〉
λvdwl

is

already less pronounced. In Fig. 6(c), the “end-point” diver-
gence at λvdwl = 0.005 is still visible but in Fig. 6(d) (λ
= 5), the divergence, although in principle still present, has
become unobservably small. We note that whilst divergences in〈
∂Uvdwl

solute-solvent

/
∂λvdwl

〉
λvdwl

may affect the results of TI, they

have no influence on FEP. In practice, single-step FEP tends to
be less accurate at small λ, but the agreement between single-
step-FEP and multi-steps FEP/TI gets better for larger λ. On
the other hand, it is not favorable to grow an “oversized” cav-
ity for small solutes, because this implies larger accumulated
statistical errors.

Finally, we have also used the cavity method to compute
the excess solvation free energies of naphthalene in water at
higher temperatures of T = 320 K and 340 K at p = 0.1 MPa.
All the results are plotted in Fig. 7 in comparison with experi-
mental data.29,37,70–72,76,77 All computed excess solvation free
energies are summarized in Table I.

From the slope of Fig. 7(d), we can estimate the partial
molar entropy of solvation of naphthalene in water via(

∂∆µexcess
/
∂T

)
p = −∆ssolute

excess. (8)

The experimental line in Fig. 7(d) has a slope of 0.12
(kJ/mol)/K, giving ∆ssolute

excess = �0.12 (kJ/mol)/K according to
Eq. (7); similarly, our computed line in Fig. 7(d) gives ∆ssolute

= �0.092(14) (kJ/mol)/K. Using

∆hsolute
excess = ∆µexcess + T∆ssolute

excess, (9)

FIG. 5. Computed excess solvation free energies of
naphthalene in water at T = 298 K for p at (a) 0.1 MPa, (b)
100 MPa, and (c) 200 MPa. The dashed lines in (a)–(c)
represent the average values for λ & 0 for the three pres-
sures. These three average values are also plotted in (d).
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FIG. 6.
〈
∂Uvdwl

solute-solvent

/
∂λvdwl

〉
λvdwl

as a function ofλ,

for the naphthalene insertion at T = 298 K and p = 0.1
MPa at cavity size (a) λ = �1; (b) λ = �0.5; (c) λ = 0; and
(d) λ = 5.

we obtain an estimate for the excess partial molar enthalpy
of the solute: ∆hsolute

excess =�34.35 kJ/mol comparing with the
experimental ∆hsolute

excess =�46.86 kJ/mol in Ref. 29.

C. Naphthalene: Absolute solid free energy
and solubility estimation

Next, we consider the implementation of the extended
Einstein crystal method to compute the free energy of the naph-
thalene crystals. A 20-point Gauss-Legendre quadrature series
was used to evaluate ∆A2 and ∆A0. Obviously, we should use
the same naphthalene force field for the solid and the liquid.
Unfortunately, not all force fields describe the solid and liquid
phases equally well. However, we found that the force field that
we have used for the naphthalene solute can also reproduce the
naphthalene monoclinic crystal lattice parameters reasonably
well, with around 3% discrepancy between measured and sim-
ulated densities (see Fig. 8). Of course, this discrepancy could
be fixed by improving the force field, but this was not our aim:

we wished to investigate how well “off-the-shelf” force fields
perform.

Polycyclic aromatic hydrocarbons often occur in several
polymorphs.78 At the ambient pressure and temperature, naph-
thalene has a monoclinic unit cell with two molecules per unit
cell. Fortunately, according to X-ray data, naphthalene remains
as a single polymorph at room temperature for pressures up to
at least 0.5 GPa.79,80 Raman studies also indicate that naph-
thalene undergoes no structural phase transition81 at least up
to 3.5 GPa and 450 K. We used the ambient naphthalene crys-
tal structure82 to initiate all crystal equilibration simulations
between p = 0.1-200 MPa at T = 298 K and T = 298-340 K at
p = 0.1 MPa.

The final configuration of our simulated naphthalene unit
cell at T = 298 K and p = 0.1 MPa has a = 0.8320 nm,
b = 0.5946 nm, c = 0.8454 nm, β = 118.07°, and α = 89.8°
and γ = 90.24° with a unit cell volume of 0.373 00 nm3, com-
pared with the experimental lattice parameters83 at T = 296 K:
a = 0.8261(7) nm, b = 0.5987(2) nm, c = 0.8682(8) nm,

FIG. 7. Computed excess solvation free energies of
naphthalene in water at p = 0.1 MPa and T of (a) 298 K;
(b) 320 K; and (c) 340 K. The black dashed lines in (a)–(c)
are the average from specific λ for the three temperatures
(λ & 0 for 298 K and 320 K, and λ & 1.0 for 340 K), and
they are also plotted (d). In (d), the empty blue squares
are experimental data.
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TABLE I. Summary of the computed excess solvation free energies of naph-
thalene and the infinitely dilute solution density. The statistical errors are in
the range of 0.4-0.8 kJ/mol for medium to large cavities, and we consistently
choose a typical 0.42 kJ/mol (≈0.1 kcal/mol) as the common error.

p/MPa T/K ∆µexcess/kJ mol�1 ρsolution/kg m�3

0.1 298 −6.93 (42) 978.0(2)
100 298 5.53 (42) 1024.7(2)
200 298 17.81 (42) 1062.4(2)
0.1 320 −4.92 (42) 960.5(2)
0.1 340 −3.08 (42) 942.9(2)

β = 122.67(8)°, and α = γ = 90° with a unit cell volume of
0.361 44 nm3.

In the extended Einstein crystal method, we tether a num-
ber of atoms (either real or virtual) in each molecule, to
restrain the molecular position and orientation. As described
in Appendix B, within each molecule, these particles can be
categorized into two groups, (1) a single “Central Atom” and
(2) a small number of “Orientational Atoms.” The “Central
Atom” is the atom attaching the molecule to its molecular site.
The “Orientational Atoms” are the particles that, when teth-
ered, fix the molecular orientation. For non-linear molecules,
the number of “Orientational Atoms” per molecule should be
at least two, but in practice, more “Orientational Atoms” are
often necessary to reduce the effect of molecular flexibility in
the extended Einstein crystal method. On the other hand, using
too many “Orientational Atoms” increases the total statistical
error because more mean-squared displacements have to be
sampled for ∆A0 and ∆A2. The specific spring arrangement in
the extended Einstein crystal method is called the “Einstein
Arrangement” or “EA.” In the example of naphthalene, we
have used two Einstein arrangements. In Fig. 9, (a) is “EA
1”, the first Einstein arrangement that we used for naphtha-
lene; (b) is “EA 2”, the second Einstein arrangement. For
both Einstein arrangements, the “Central Atom” is the virtual
central particle between the two aromatic carbon atoms. For

FIG. 9. (a) Einstein arrangement (EA) 1; (b) Einstein arrangement (EA) 2.

“EA 1,” E, F, G, and H are the “Orientational Atoms,” and for
EA 2, A, B, C, and D are the “Orientational Atoms.” Ideally,
the results of the simulations do not depend on the choice of
the EAs.

Table II shows the computed absolute solid free ener-
gies of naphthalene for p = 0.1-200 MPa and T = 298-340 K
(see Tables S1-S5 in the supplementary material for details).
pV solid corresponds to the densities and target pressures of the
corresponding reference structures.

As a test of the internal consistency of our results,
we can compare the internal energy U as obtained from
∂
((

Asolid
/
Nsolid

) /
T
) /
∂
(
1
/
T
)
= Usolid

/
Nsolid, with the value

obtained directly from the simulations. Figure 10 shows a plot
of

(
Asolid

/
Nsolid

) /
T versus 1

/
T with data from Table II, and

the least squares fit slope is �65.7(9) kJ/mol. For comparison,
we have run independent NVT simulations using the refer-
ence structures at these three temperatures, with Usolid

/
Nsolid

= �67.38(1) kJ/mol, �66.34(1) kJ/mol, and �65.78(1) kJ/mol
at T = 298 K, 320 K, and 340 K, respectively. These values
are all close to the slope of �65.7(9) kJ/mol. It should be noted
that Usolid

/
Nsolid consistently includes only the intermolecular

interactions.
Similarly, we can compare the molar volume (more

precisely, the “volume per molecule”) obtained from
∂
(
Gsolid

/
Nsolid

) /
∂p = vsolid, with the value obtained directly

from NpT simulations. Figure 11 shows the plot of Gsolid
/
Nsolid

FIG. 8. (a) Simulated and experimental unit cell volumes
of naphthalene with pressure. The empty blue squares are
the averaged simulated results in this work, the empty red
circles (“experimental unit cell volume 1” in the figure)
are from the experiments of Ref. 81, and finally the empty
orange rhombuses (“experimental unit cell volume 2” in
the figure) are from the experiments of Ref. 78; (b) vari-
ation of simulated and experimental unit cell volumes
with temperature. The empty blue squares are the aver-
aged simulated results in this work, and the empty light
green triangles (“experimental unit cell volume 3” in the
figure) are from the experiments of Ref. 83. We cite the
experimental melting point of 353.4 K from Ref. 84; (c)
and (d) represent snapshots of the simulated naphthalene
at p = 0.1 MPa and T = 298 K (hydrogen atoms are not
shown and all bonds/atoms are colored equivalently).

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-038720
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TABLE II. Summary of the absolute solid free energies of naphthalene
and densities of the reference structures and equilibrated crystals in NpT
simulations. Energies are in kJ/mol.

Asolid/ pVsolid/ Gsolid/ ρsolid/ 〈ρsolid〉/

p/MPa T/K Nsolid Nsolid Nsolid kg m�3 kg m�3

0.1 298 −45.80 0.00 −45.80(8) 1141.2 1146.9(7)
100 298 −45.83 10.99 −34.84(8) 1164.9 1167.9(7)
200 298 −45.63 21.62 −24.01(8) 1184.0 1183.8(6)
0.1 320 −44.83 0.00 −44.83(8) 1132.1 1135.7(3)
0.1 340 −42.97 0.00 −42.97(8) 1129.5 1125.2(3)

against p with data from Table II. After unit conversions,
the gradient gives us vsolid = 0.181(1) nm3/molecule, com-
pared with vsolid = 0.1865 nm3, vsolid = 0.1827 nm3, and vsolid

= 0.1798 nm3 of the reference structures at p = 0.1 MPa,
100 MPa, and 200 MPa, respectively. Also, vsolid = 0.181(1)
nm3 corresponds to a partial molar volume of vsolid = 109.0(6)
cm3/mol in the crystal phase, compared with the experimental
value75 of vsolid = 108.2(3) cm3/mol.

We are now in a position to estimate the aqueous solubility
of naphthalene at these pressures and temperatures according
to Eq. (4). In Fig. 12, we compare the computed solubilities
with the experimental data.75,85 In Fig. 12, our simulated result
at p = 0.1 MPa and T = 298 K predicts a (mole fraction)
solubility limit of x = 4.74 × 10�6 compared with the experi-
mental value of x = 4.40 × 10�6. Also, as shown in Fig. 12(a),
the negative pressure dependence of naphthalene solubility is
reproduced fairly well, and in Fig. 12(b), the positive tem-
perature dependence of naphthalene solubility is again well
captured. Considering the simplicity of the model, such an
agreement is almost certainly fortuitous.

From the slopes of the least squares fits in Fig. 12(a), we
can estimate the experimental and computed volume change
accompanying the dissolution,75

∆v = −RT
[
∂lnx

/
∂p

]
T , (10)

where∆v is defined as the difference between the partial molar
volume at infinite dilution in the solution vsolute

excess and the partial
molar volume in the crystal vsolid,

∆v = vsolute
excess − vsolid. (11)

The linear least squares fit of the experimental data in
Fig. 12(a) gives ∆v = 14.2(5) cm3/mol, while the direct
calculation of Ref. 75 gives 13.8(4) cm3/mol. Our computed

FIG. 10. (Asolid/Nsolid)/T against 1/T. Energies are in kJ/mol and T is in K.

FIG. 11. Gsolid/Nsolid against p. Energies are in kJ/mol and T is in K.

line in Fig. 12(a) gives∆v = 15.8(3.8) cm3/mol. In our analysis
of the excess solvation free energy of naphthalene, we had ob-
tained vsolute

excess = 123.9(3.0) cm3/mol. Therefore we can deduce
vsolid = 15.8 � 123.9 = 108.1(6.8) cm3/mol, and this is com-
parable with our direct calculation vsolid = 109.0(6) cm3/mol
estimated from the slope of Fig. 12(a).

We have used a “flexible” model for naphthalene, and
hence we have to check whether the effect of flexibility
is different in the solid and the liquid phase. To this end,
we tracked the intramolecular van der Waals plus electro-
static energy per naphthalene Eintra/N solid at p = 0.1 MPa and
T = 298 K (see the supplementary material). We find that
the computed intramolecular energies in solution and in the
solid agree within the statistical errors. We have also tracked
the intramolecular bond-angle-torsion energy per molecule
Emol/N solid throughout the complete route of the extended Ein-
stein crystal method at p = 0.1 MPa and T = 298 K. We find
that Emol/N solid can vary by 2 kJ/mol, depending on the spring
constants K during the computation of ∆A2 and ∆A0. Also,
using different Einstein arrangements seems to have a small
but noticeable effect on the value of Asolid. For example, the
largest difference within the range of computed Asolid is around

FIG. 12. Computed and experimental mole fraction solubility ln x of naph-
thalene in water (a) with varying pressure at T = 298 K; (b) with varying
temperature at p = 0.1 MPa. The procedure by which we estimated the error
bars in this figure is described in the supplementary material.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-038720
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-038720
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0.8 kJ/mol, approximately 10 times of the statistical error 0.08
kJ/mol. Since in the current scheme, we compute∆A2 and∆A0

via sampling atomic mean-squared-displacements from their
initial tethering atomic coordinates, it is not surprising that
molecular flexibility in the extended Einstein crystal method
has an effect. However, it is not straightforward to take these
effects into account quantitatively. Fortunately, they have lim-
ited impact on the solubility prediction of naphthalene. How-
ever, to obtain higher accuracy, we would have to include the
intramolecular parts in the Einstein crystal Hamiltonian, so as
to compute explicitly the intramolecular contributions to the
“Einstein free energy.” An alternative is to use rigid molecular
models, but for bending and torsion potentials, this would not
be realistic.

As explained in Appendix B, we have used final config-
urations from long equilibrations as reference states for the
extended Einstein crystal method. This should have no effect
on the free energy estimates. We verified this by computing
the absolute solid free energy of another naphthalene refer-
ence structure at T = 298 K and p = 0.1 MPa with Kmax

= 1 046 000 (kJ/mol)/nm2. The values are Asolid/N solid

=�46.19(8) kJ/mol and �45.69(8) kJ/mol for Einstein Arrange
ment 2 and Einstein Arrangement 1, respectively, which are
within the range of values (see the supplementary material).

V. CONCLUSION

In this work, we have developed a robust computational
methodology to enable the solubility prediction of general
crystalline solutes. The method is based on the equality of
the chemical potentials of the solute in coexisting solution
and solid phases. Thus, by separately computing the chemi-
cal potentials of the solute in the two phases via the cavity
method and the extended Einstein crystal method, we obtain a
numerical estimate of its solubility limit. The methodology
is formulated by integrating existing alchemical numerical
techniques such as free energy perturbation and thermody-
namic integration with tailor-made protocols in the molecular
dynamics software package LAMMPS.30 Extensions to other
software packages or homemade Monte Carlo codes should
be straightforward. To demonstrate the methodology, we have
estimated the solubility of naphthalene in water for a range
of temperatures and pressures using simple all-atomic force
fields. These predictions are all in reasonable agreement with
experiments within a factor of 2.

Regarding the solution part of the methodology, the com-
putation of excess solvation free energies of general solutes
is already a well-established procedure in molecular simu-
lations. The cavity method is computationally cheap when
the solubilities of a range of compounds in the same sol-
vent must be computed (the cavity only needs to be created
once). For the solid part of the methodology, we have applied
simple extensions of the original Einstein crystal method so
that the method can be easily used in LAMMPS30 without
extra code. Potentially, our approach can predict the solubil-
ity of other polymorphs, not just the one that is most stable.
Our current results show that a better treatment of molecu-
lar flexibility may be needed to improve the accuracy of the
results.

The development of computing numerical solubilities has
been hampered by two factors: (1) the limited availability of
accurate force fields for molecules in crystals and in solution
and (2) the fact that computing absolute solid free energies
of molecular solids is not very popular, because the method,
although straightforward, is cumbersome. In the literature,
popular classical force fields, such as OPLS-AA51 used in the
present work, are mostly targeted at liquid phases, and in gen-
eral, there are fewer accurate parameterizations for crystalline
compounds. These problems may not always be relevant for the
compound of interest, but they have indeed heightened the bar-
rier for applying the Einstein crystal method and its adaptions
to solubility estimation. Another obvious complication is that
we have to know the experimental structure of the crystal (poly-
morph) that we study. In the present work, we have conducted
all our simulations in the MD software package LAMMPS,30

which at present does not allow for isobaric-isothermal NpT
simulations of crystals of rigid molecules with a non-cubic
simulation cell. We stress that many of the problems that we
face are in no way exclusive to the topic of solubility predic-
tion, but are generic to all numerical studies requiring high
accuracy. Our key message is that there is no fundamental
obstacle in developing a generic computational methodology
for solubility prediction. Therefore, with the ever-increasing
computational power, improving classical force fields (and
hopefully, more experimental validation data appearing in the
literature), and more solubility studies in the literature, it is
likely that accurate yet general solubility predictions will soon
be commonplace.

SUPPLEMENTARY MATERIAL

See supplementary material for details of the LAMMPS
protocol to calculate the absolute chemical potentials of the
solute in the aqueous solution and solid phases Asolid and
∆µexcess at T = 298 K and p = 0.1 MPa, and the discussion of
the effect of phase on the intramolecular energy of the solute.

ACKNOWLEDGMENTS

The authors would like to acknowledge the funding and
technical support including BP’s High Performance Comput-
ing facility, from BP through the BP International Centre for
Advanced Materials (BP-ICAM) which made this research
possible. All the simulations in the work were hence conducted
using the HPC resources from BP and computer resources at
the Department of Chemistry, Cambridge.

APPENDIX A: CHEMICAL POTENTIAL
OF THE SOLUTE

We adopt the definition of the chemical potential of a
solute on the work of Widom86,87 and the subsequent work of
Ben-Naim.73,88

In the thermodynamic limit,

µsolution = Gsolution (T , p, Nsolute

+ 1, Nsolvent) − Gsolution (T , p, Nsolute, Nsolvent).

(A1)

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-038720
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-038720
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µsolution is therefore the change in Gibbs free energy associ-
ated with introducing an extra solute into the solution system
(T , p, Nsolute, Nsolvent).

Denoting Gsolution (T , p, Nsolute + 1, Nsolvent) = G1 and
Gsolution (T , p, Nsolute, Nsolvent) = G0, the Gibbs free energies
of the two states are

G1 = −kT ln∆1 = ln




∫
exp (−βpV ) dV

q
(
Nsolute + 1

)
solute qNsolvent

solvent

Λ
3Nsolvent
solvent Λ

3 (Nsolute + 1)
solute Nsolvent! (Nsolute + 1)!

×

∫
exp

[
−βU (Nsolvent, Nsolute + 1)

]
dR (Nsolvent, Nsolute + 1)




, (A2)

G0 = −kT ln∆0 = ln




∫
exp (−βpV ) dV

qNsolute
solute qNsolvent

solvent

Λ
3Nsolute
solute Λ

Nsolvent
solvent Nsolute!Nsolvent!

×

∫
exp

[
−βU (Nsolvent, Nsolute)

]
dR (Nsolvent, Nsolute)




, (A3)

with

U1 (Nsolute + 1, Nsolvent) = U0 (Nsolvent, Nsolute)

+ Usolute-solution (Rsolute). (A4)

∆ is the isobaric-isothermal NpT partition function,
Rsolute is the fixed position of the extra single solute in the

solution, and Usolute-solution (Rsolute) is the interaction energy of
the extra solute with the rest of solution. Λsolute and Λsolvent

are the de Broglie wavelength for the solute and solvent,
and qsolute and qsolvent are the intramolecular (vibrational and
electronic) partition function of the solute in the solution
phase.

First, for the FEP procedure, we can write Eq. (4)
as

µsolution = G1 − G0 = −kBT ln
(
∆1

/
∆0

)
= −kBT ln

{
qsolute

/ [
Λ

3
solute (Nsolute + 1)

]}

− kBT ln

{
∫ exp(−βpV ) dV∫ exp

[
−βU (Nsolvent, Nsolute + 1)

]
dR (Nsolvent, Nsolute + 1)

∫ exp(−βpV ) dV ∫ exp
[
−βU (Nsolvent, Nsolute)

]
dR (Nsolvent, Nsolute)

}
= kBT ln

[
Λ

3
soluteq−1

solute (Nsolute + 1)
]
− kBT ln

〈
V exp

[
−βUsolute-solution (Rsolute)

]〉
0. (A5)

The second term in Eq. (A5) is the FEP expression to
compute the free energy difference between the solution with
the extra solute and the solution without the extra solute,
by sampling the quantity in the bracket at each equilib-
rium configuration of the solution with the extra solute, i.e.,
(T , p, Nsolute, Nsolvent), and taking the ensemble average. In Eq.
(A5), if the systems are far away from critical points, it is safe
to assume that the correlation between insertion energy and
volume is weak,89,90 so

µsolution = kBT ln
(
Λ

3
soluteq−1

solute

)
+ kBT ln(ρsolute)

− kBT ln
〈
exp

[
−βUsolute-solution (Rsolute)

]〉
0. (A6)

In Eq. (A6), we have number density concentration
ρsolute = (Nsolute + 1)

/
V ≈ Nsolute

/
V . Substituting an ideal gas

reference state of ρ0
solute = 1 molecule per unit volume into Eq.

(A6) gives Eq. (2).
The excess solvation free energy/chemical potential of the

solute is hence defined as

∆µ
ρsolute
excess = −kBT ln

〈
exp

[
−βUρsolute

solute- solution (Rsolute)
]〉

0
. (A7)

Although Eq. (A7) is general, we focus on the case of
infinite dilution,

∆µ
ρsolute→0
excess = kBT ln

(
ρ
ρsolute→0
solute

)
− kBT ln

〈
exp

[
−βUρsolute→0

solute-solution (rsolute)
]〉

0
. (A8)

So the activity coefficient γsolute is defined as

lnγsolute ≡ ∆µ
ρsolute
excess − ∆µ

ρsolute→0
excess . (A9)

This work considers only the case γsolute → 1, i.e., infi-
nite dilution when ∆µρsolute

excess = ∆µ
ρsolute→0
excess . However, we stress

that the method that we describe will also in principle work
for concentrated solutions. For materials with medium to high
solubility, we will need to compute the coupling work required
to introduce a single solute into the solution at a finite concen-
tration ρsolute. In the case of electrolytes, this procedure will
be for each ion.

In Eq. (2) or (A6), the first term µ0 = kBT ln
(
Λ3

soluteq−1
solute

)
includes all the intramolecular (i.e., molecular internal degrees
of freedom: vibrational and electronic) and molecular trans-
lational (i.e., de Broglie wavelength) contributions to the
absolute chemical potential of the solute.
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For the solid phase, with Qsolid as the canonical partition
function, we can write the absolute Helmholtz free energy
as

Asolid = −kBT lnQsolid (N , V , T ) = −kBT lnZsolid − kBT lnPsolid

= −kBT ln

{∫
drNsolid exp

[
−βUinter

(
rNsolid

)]}
− kBT ln

(
qNsolid

solid

/
Λ

3Nsolid
solid

)
. (A10)

In Eq. (A10), Zsolid is the configurational contribution and
Psolid the momenta and intramolecular (vibrational and elec-
tronic) contribution to Qsolid. Uinter

(
rNsolid

)
denotes the inter-

molecular potential energy.Λsolid is the de Broglie wavelength
for the solute in the solid phase, and qsolid is the intramolecular
(vibrational and electronic) partition function of the solute in
the solid phase.

Finally, substituting Eqs. (A10) and (A6) into Eq. (1) gives

µsolution = kBT ln
(
Λ

3
soluteq−1

solute

)
+ kBT ln(ρsolute) − kBT ln

〈
exp

[
−βUsolute-solution (Rsolute)

]〉
0

= µsolid =
−kBT ln

{
∫ drNsolid exp

[
−βUinter

(
rNsolid

)]}
− kBT ln

(
qNsolid

solid

/
Λ

3Nsolid
solid

)
Nsolid

. (A11)

If we adopt Λsolid = Λsolute and qsolid = qsolute (the assumption that the intramolecular contributions in the solid/solution
phases cancel each other out), the expression for solubility estimation in the unit of kBT per solute molecule is

kBT ln(ρsolute) − kBT ln
〈
exp

[
−βUsolute-solution (Rsolute)

]〉
0 =
−kBT ln

{
∫ drNsolid exp

[
−βUinter

(
rNsolid

)]}
+ pVsolid

Nsolid

× kBT ln(ρsolute) + ∆µexcess = (Asolid + pVsolid)
/
Nsolid. (A12)

Going from Eq. (A11) to Eq. (A12), the part of the
intramolecular partition function associated with the molec-
ular internal rotational degree of freedom is different for the
solution and crystalline phase, because in the solution phase
the solute is equally likely to have any orientation, while this
is not the case in the crystalline phase. If we take an asym-
metric top as an example (a similar argument would work for
other types), in principle, we can define the molecular rotation
with reference to any reference point because configurational
properties do not depend on the choice of reference point. The
proper orientational partition function for a solute molecule in
the solution is qsolution

or = ∫ exp (−βuor) sin θdθdφdγ = 8π2,
where θ, ϕ, and γ are the Euler angles, and uor is the sin-
gle molecular orientation Hamiltonian,40 and we have uor = 0
for a solute molecule that can freely orient in the liquid
phase. Then, the important message is that, at one intermediate
stage of the extended Einstein crystal method (see Appendix
A), each freely rotating solute molecule has the same rota-
tional partition function to the solute in the liquid phase, so
the whole crystal has the total rotational partition function

as Qsolid
or =

[
∫ exp(−βuor) sin θdθdφdγ

]Nsolid =
(
8π2

)Nsolid

with ln qsolid
or =

[
Nsolidln

(
8π2

)] /
Nsolid = ln qsolution

or . Here the
rotational partition function is effectively cancelled out and
hence Eq. (A12) is valid.

APPENDIX B: EXTENDED EINSTEIN
CRYSTAL METHOD

Prior to the implementation of the extended Einstein crys-
tal method, we need to have a suitable crystalline reference
structure. Although it is common to take the minimum energy
crystal structure as a reference, this is not necessary, as the

computed free energy of the interacting crystal does not depend
on this choice. In order to facilitate the use of the Einstein
crystal method with standard MD software, we take a final
configuration of the crystal after a long isobaric-isothermal
NpT equilibration run as a reference.

There are several ways to constrain the position and ori-
entation of molecules in a crystal using harmonic springs. The
most elegant approach would be to tether the center of mass
of the molecule to a lattice site using a harmonic spring, and
to fix the orientation of the molecule using a “harmonic” con-
straint on the quaternion specifying the molecular orientation.
However, as many existing codes use atomic coordinates, it
is in practice more convenient (though certainly less elegant)
to restrain the orientation of the molecules by tethering three
or more atoms harmonically to the corresponding “atomic lat-
tice sites” (see Fig. 1). Again, this choice should not introduce
systematic errors in the estimate of the solid free energy.

In Fig. 1, (0) is an ideal Einstein atomic crystal with a “zero
total momentum.” When computing the partition function, we
can, as before, ignore that part due to the momenta, so that the
absolute Helmholtz free energy with no constraint on the total
momentum or the center of mass is

βA0 = 3
/
2Nsolidln

(
βKmax

/
π
)
. (B1)

The potential energy for state (0) is U(0)

=
∑Nsolid

i Kmax(ri − r0i)2. N solid is the total number of “atomic
molecules” in (0), which is the same as the total number of
molecules.

The constraint of a “zero total momentum” is similar to
the requirement of fixing the center of mass in the original Ein-
stein crystal method. We know that this constraint is important
in MC simulations in the limit of vanishing spring constants,
because the center of mass of the system could diffuse.34,38
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However, precisely in this limit, it is sufficient to carry out
MD simulations at zero total momentum to constrain the cen-
ter of mass. The reason of choosing this condition is that in MD
simulations it is straightforward to initiate the total momentum
at zero. The particles are initially at their tethering positions,
so the net force on the center of mass is zero. If the system is
then initialized with zero total momentum, the center of mass
will not move. This is strictly true if all atoms are involved
in the Einstein crystal simulations and are of equal masses.
There might be small fluctuations of the center of mass of
the system if: (1) Einstein springs of the same strength K are
attached to particles with different masses by using real atomic
masses, this is because only when Ki

/
mi is constant that we can

maintain a fixed total momentum; (2) for molecules with non-
linear molecular structures, during the thermodynamic stage of
(1) and (2), “Orientational Atoms” are attached with different
spring strength K from “Central Atoms,” so Ki

/
mi is not con-

stant even when equal atomic masses are used. For practical
applicability, we choose to remove the constraint of fixing the
center of mass and total momentum from our partition function
and simulations. In doing so, the only difference introduced to
our computed absolute solid free energies is the analytic finite
size correction associated with fixing the center of mass and
total momentum. Along with the finite-size correction from
harmonic crystal approximation,43,44 they comprise all the
finite-size corrections that are usually important to be included
in theoretical studies of, e.g., Lennard-Jones (LJ) or hard
spheres (HSs) crystals, where uncertainties can be as small
as 0.001 kBT per molecule.34,38 However, for solubility pre-
dictions of more complex molecular crystals, these finite-size
corrections are negligible compared to other sources of error.
This is because the accuracy of solubility estimation is domi-
nated by the statistical errors of the computed excess solvation
free energies and solid free energies, as well as the quality
of the force field used. For the harmonic approximation, the
dominant finite-size correction per molecule is proportional to
+lnNsolid

/
Nsolid. For typical system sizes in the present work,

this amounts to around +lnNsolid
/
Nsolid = +0.02 kBT /molecule

for Nsolid = 240. As we will show, this is comparable with typ-
ical statistical errors in our computed solid free energies. For
this reason, we simply ignore this term. The finite-size cor-
rection due to the constraint on the center of mass and total
momentum is again of the order of 1/N and small compared
with typical statistical errors. To estimate these magnitudes, we
can compare Eq. (A1) βA0 = 3

/
2N ln

(
βKmax

/
π
)
, the analytic

expression for an Einstein atomic crystal at state (0) without the
constraints on the center of mass and the total momentum, and
βA′0 = 3

/
2 (N − 1) ln

(
βKmax

/
π
)

+ ln
(
N

/
V
)
− 3

/
2ln (N), the

analytic expression for an Einstein atomic crystal with these
constraints plus the general free energy difference between
any two solids with and without these constraints.41 The
value of

(
βA0 − βA′0

) /
N is around 0.1 kBT /molecule for

Nsolid = 240 and Kmax = 1 046 000 (kJ/mol)/nm2, compara-
ble to or smaller than errors of computed excess solvation free
energies.

For steps (0) and (1), we have A1 = A0. In (0), each atom
is attached to its initial atomic lattice site through its center
of mass. We can treat these blue solid atoms as the “Cen-
tral Atoms” in (1). In (1), each molecule is attached to its

initial molecular site through its blue solid “Central Atom,”
around which the molecule is freely rotatable. Using atomic
coordinates is a less elegant way to specify the molecular ori-
entation, but we gain much practical convenience. For (1), the
proper orientational partition function for a lattice containing
N solid molecules is Qor =

[
∫ exp (−βuor) sin θdθdφdγ

]Nsolid ,
where θ, ϕ, and γ are the Euler angles, and uor is the single
molecule orientation Hamiltonian.40 For solubility estimation,
the important information is that the same orientational par-
tition function applies to a single solute in solution as well.
Therefore A1 = A0 is valid as long as this same reference of
an ideal gas is used for both phases.

In steps (1) and (2), the springs on the “orientational
atoms” gradually grow from Kmin = 0 to Kmax to recover the
molecular orientation of the real crystal. In (1), the poten-

tial energy is U(1) =
∑Nsolid

j

∑Ncentral
springs

i Kmax

(
rij − r0ij

)2
, with the

summation over all the “Central Springs” and the total num-
ber of molecules in the solid; in (2), the potential energy is

U(2) =
∑Nsolid

j

∑Nall
springs

i Kmax

(
rij − r0ij

)2
, with the summation

over all the springs.
The accompanying free energy change ∆A0 can be com-

puted via TI,

∆A0 =

∫ ln(K+c1)

lnc1

〈∑Nsolid

j

∑Norientational
springs

i

(
rij − r0ij

)2
〉

K

× (K + c1) dln (K + c1) . (B2)

In Eq. (A4), the constant c1 is added to make a change
of the original variable K to allow for more accurate integra-
tion.34,38

To compute the free energy change ∆A1 in steps (2)
and (3), we implement a TI procedure, first switching on
the electrostatic interactions, going from the non-interacting
Einstein molecular crystal with the potential energy U(2)

=
∑Nsolid

j

∑Nall
springs

i Kmax

(
rij − r0ij

)2
to the electrostatically inter-

acting Einstein molecular crystal with the potential energy
U(2.5) = U(2) + Uelectrostatic

inter (α = 1), with 0 ≤ α ≤ 1 as the
atomic charge ratio in the crystal,

∆Aelectrostatic
1 =

∫ 1

0

〈
∂Uelectrostatic

inter (α)
/
∂α

〉
α,λvdwl

dα. (B3)

In the classical all-atomic MD, Columbic electrostatics
is based on pairwise-additive point (partial) charges. There-
fore, for a system of (partial) charges αqi with i indicating the
atom types, we can write the total electrostatic potential energy
for the system as Uelectrostatic

inter (α) =
∑Nsolid

i,j (αqi)
(
αqj

)
φ
(
rij

)
,

where φ
(
rij

)
is the position-dependent electrostatic poten-

tial, so
〈
∂Uelectrostatic

inter (α)
/
∂α

〉
α
=

〈
2α

∑
i,j (qi)

(
qj

)
φ
(
rij

)〉
=

〈
2Uelectrostatic

inter (α)
/
α
〉
α

.

After computing ∆Aelectrostatic
1 , we turn on the van der

Waals interactions, going from U(2.5) =, U(2) + Uelectrostatic
inter

(α = 1) to U(3) = U(2) + Uvdwl
inter (λvdwl = 1) + Uelectrostatic

inter (α = 1)
via the Kirkwood linear coupling91 with 0 ≤ λvdwl ≤ 1,

∆Avdwl
1 =

∫ 1

0

〈
Uvdwl

inter (λvdwl)
/
λvdwl

〉
λvdwl

dλvdwl, (B4)

∆A1 = ∆Aelectrostatic
1 + ∆Avdwl

1 . (B5)
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The free energy change in (3) and (4) is denoted by ∆A2.
In (3), all the Einstein springs on the “Central Atoms” and
“Orientational Atoms” are now equivalent, and thereafter dur-
ing (3) and (4), all of them are reduced from at Kmax to Kmin

= 0 together. For (4), the potential energy finally corresponds
to the real crystal, i.e., U(4) = Uvdwl

inter + Uelectrostatic
inter .

The TI expression for ∆A2 is

∆A2 = −

∫ ln(Kmax+c2)

lnc2

〈∑Nsolid

j

∑Nall
springs

i

(
rij − r0ij

)2
〉

K

× (K + c2) dln (K + c2) . (B6)

Again, the constant c2 is added to make a change of the
original variable K to allow for more accurate integration.34,38

In summary, the final expression for the absolute Helmholtz
free energy Asolid of a molecular crystal is

Asolid = A0 + ∆A0 + ∆A1 + ∆A2 + ∆Asymmetry. (B7)

APPENDIX C: CAVITY METHOD

In Fig. 1, the TI expression for ∆Ggrow is

∆Ggrow = G(2) − G(1) =

∫ 〈
∂Ucavity (λ)

/
∂λ

〉
λ
dλ

=

∫ 〈
Ucavity (λ)

〉
λ
dλ. (C1)

Having created the cavity, a solute can now be inserted
into the cavity.

First, we switch on the solute-solvent van der Waals
interactions and compute the van der Waals contribution via
TI,

∆Gvdwl
insert =

∫ 1

0

〈
∂U(2)→(2.5) (λvdwl)

/
∂λvdwl

〉
λvdwl

dλvdwl. (C2)

Of course, ∆Gvdwl
insertcan also be computed via FEP.

Then we switch on the atomic (partial) charges of the
solute and compute the electrostatic contribution via FEP,

∆Gelectrostatic
insert = −kBT ln

〈
exp

[
−β

(
U(3) − U(2.5)

)]〉
(2.5)

. (C3)

The total insertion free energy is therefore

∆Ginsert = ∆Gvdwl
insert + ∆Gelectrostatic

insert . (C4)

∆Ginsert, ∆Gvdwl
insert, and ∆Gelectrostatic

insert are all computed in the
same cavity λ created by ∆Ggrow.

For small neutral solutes, or if the size of the cavity is large
enough, ∆Ggrow can be easily obtained by a single-step FEP.
In principle, we can always create a cavity that is sufficiently
large for the single-step FEP insertion of any large solutes, by
using a larger λ. However, our purpose is to reduce the “end-
point” singularity as much as possible, and as long as this is
satisfied, there is no need to create a larger cavity, in which
case we can use two-steps/multi-steps FEP/TI.

Finally, in (3) and (4), we gradually switch off the cavity
potential to recover the final state of a fully solvated solute in
the solution,

∆Gshrink = G(4) − G(3) = −

∫ 〈
∂Ucavity (λ)

/
∂λ

〉
λ
dλ

= −

∫ 〈
Ucavity (λ)

〉
λ
dλ. (C5)

Because the removal of “end-point” singularity is a grad-
ual process, there is no strict criterion to determine when a
cavity becomes “sufficiently large,” but we use as a rule of
thumb that the solvent should never experience the repulsive
part of the solute-solvent interaction. Of course, the singularity
problem can be avoided by using a small FEP calculation to
replace the first step in the TI.
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43K. Ioannidou, M. Kanduč, L. Li, D. Frenkel, J. Dobnikar, and E. D. Gado,
“The crucial effect of early-stage gelation on the mechanical properties of
cement hydrates,” Nat. Commun. 7, 12106 (2016).

44M. S. Sellers, M. Lı́sal, and J. K. Brennan, “Free–energy calculations using
classical molecular simulation: Application to the determination of the melt-
ing point and chemical potential of a flexible RDX model,” Phys. Chem.
Chem. Phys. 18, 7841 (2016).

45D. A. McQuarrie, Statistical Mechanics (Harper and Row, New York,
1976).

46W. G. Hoover, “Entropy for small classical crystals,” J. Chem. Phys. 49,
1981 (1968).

47J. Polson, E. Trizac, S. Pronk, and D. Frenkel, “Finite-size corrections to
the free energies of crystalline solids,” J. Chem. Phys. 112, 5339 (2000).

48T. Steinbrecher, D. L. Mobley, and D. A. Case, “Nonlinear scaling schemes
for Lennard-Jones interactions in free energy calculation,” J. Chem. Phys.
127, 214108 (2007).

49T. Simonson, “Free energy of particle insertion,” Mol. Phys. 80, 441 (1993).
50J. P. M. Postma, H. J. C. Berendsen, and J. R. Haak, “Thermodynamics of

cavity formation in water. A molecular dynamics study,” Faraday Symp.
Chem. Soc. 17, 55 (1982).

51W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, “Development and
testing of the OPLS all-atom force field on conformational energetics and
properties of organic liquids,” J. Am. Chem. Soc. 118, 11225 (1996).

52H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, and J. Hermans,
in Intermolecular Forces, edited by B. Pullman (Reidel, Dordrecht, 1981),
p. 331.

53D. Berthelot, Compt. Rend. Acad. Sci. Paris 126, 1703 (1889).
54H. A. Lorentz, Ann. Phys. 248, 127 (1881).
55M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford

University Press, 1987).
56W. Shinoda, M. Shiga, and M. Mikami, “Rapid estimation of elastic con-

stants by molecular dynamics simulation under constant stress,” Phys. Rev.
B 69, 134103 (2004).

57G. J. Martyna, D. J. Tobias, and M. L. Klein, “Constant pressure molecular
dynamics algorithms,” J. Chem. Phys. 101, 4177 (1994).

58M. Parrinello and A. Rahman, “Polymorphic transitions in single crystals:
A new molecular dynamics method,” J. Appl. Phys. 52, 7182 (1981).

59L. Verlet, “Computer ‘experiments’ on classical fluids. I. Thermodynamical
properties of Lennard-Jones molecules,” Phys. Rev. 159, 98 (1967).

60W. G. Hoover, “Canonical dynamics: Equilibrium phase-space distribu-
tions,” Phys. Rev. A 31, 1695 (1985).

61W. G. Hoover, “Constant-pressure equations of motion,” Phys. Rev. A 34,
2499 (1986).

62T. Schneider and E. Stoll, “Molecular-dynamics study of a three-
dimensional one-component model for distortive phase transitions,” Phys.
Rev. B 17, 1302 (1978).

63P. P. Ewald, Ann. Phys. 369, 253 (1921).
64R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles

(McGraw-Hill, New York, 1989).
65S. W. de Leeuw, J. W. Perram, and E. R. Smith, “Simulation of electro-

static systems in periodic boundary conditions. I. Lattice sums and dielectric
constants,” Proc. R. Soc. A 373, 27 (1980).

66M. Abramowitz and A. Stegun, Handbook of Mathematical Functions
(Dover, New York, 1970).

67K. E. Atkinson, An Introduction to Numerical Analysis, 2nd ed. (John Wiley
& Sons, New York, 1989).

68J. E. Lennard-Jones, “On the determination of molecular fields,” Proc. R.
Soc. A 106, 463 (1924).

69H. Flyvbjerg and H. G. Petersen, “Error estimates on averages of correlated
data,” J. Chem. Phys. 91, 461 (1989).

70J. Hine and P. K. Mookerjee, “Structural effects on rates and equilibriums.
XIX. Intrinsic hydrophilic character of organic compounds. Correlations in
terms of structural contributions,” J. Org. Chem. 40, 292 (1975).

71R. D. Wauchope and R. Haque, “Aqueous solubility of polynuclear aromatic
hydrocarbons,” Can. J. Chem. 50, 133 (1972).

72W. Shiu and K. Ma, “Temperature dependence of physical–chemical prop-
erties of selected chemicals of environmental interest. I. Mononuclear and
polynuclear aromatic hydrocarbons,” J. Phys. Chem. Ref. Data 29, 41
(2000).

73A. Ben-Naim and Y. Marcus, “Solvation thermodynamics of nonionic
solutes,” J. Chem. Phys. 81, 2016 (1984).

74J. Z. Vilseck, J. Tirado-Rives, and W. L. Jorgensen, “Determination of partial
molar volumes from free energy perturbation theory,” Phys. Chem. Chem.
Phys. 17, 8407 (2015).

75S. Sawamura, M. Tsuchiya, T. Ishigami, Y. Taniguchi, and K. Suzuki, “Effect
of pressure on the solubility of naphthalene in water at 25 °C,” J. Solution
Chem. 22, 727 (1993).

76A. C. Chamberlin, C. J. Cramer, and D. G. Truhlar, “Predicting aqueous
free energies of solvation as functions of temperature,” J. Phys. Chem. B
110, 5665 (2006).

77M. Alaee, R. M. Whittal, and W. M. Strachan, “The effect of water tem-
perature and composition on Henry’s law constant for various PAH’s,”
Chemosphere 32, 1153 (1996).

78F. P. A. Fabbiani, D. R. Allan, S. Parsons, and C. R. Pulham, “Exploration
of the high-pressure behaviour of polycyclic aromatic hydrocarbons: Naph-
thalene, phenanthrene and pyrene,” Acta Crystallogr., Sect. B: Struct. Sci.
62, 826 (2006).

http://dx.doi.org/10.1021/ct300035u
http://dx.doi.org/10.1021/mp7000878
http://dx.doi.org/10.1021/ct300345m
http://dx.doi.org/10.1517/17460441.1.1.31
http://dx.doi.org/10.1517/17460441.1.1.31
http://dx.doi.org/10.1002/aic.14020
http://dx.doi.org/10.1021/ie049122g
http://dx.doi.org/10.1021/acs.iecr.5b04807
http://dx.doi.org/10.1007/bf00646936
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1063/1.1740409
http://dx.doi.org/10.1063/1.1740604
http://dx.doi.org/10.1080/002689797169600
http://dx.doi.org/10.1021/cr00023a004
http://dx.doi.org/10.1016/0301-0104(89)80004-7
http://dx.doi.org/10.1021/ct900587b
http://dx.doi.org/10.1021/ct900587b
http://dx.doi.org/10.1063/1.448024
http://dx.doi.org/10.1063/1.458193
http://dx.doi.org/10.1088/0953-8984/20/15/153101
http://dx.doi.org/10.1063/1.4758700
http://dx.doi.org/10.1063/1.4812362
http://dx.doi.org/10.1038/ncomms12106
http://dx.doi.org/10.1039/c5cp06164d
http://dx.doi.org/10.1039/c5cp06164d
http://dx.doi.org/10.1063/1.1670348
http://dx.doi.org/10.1063/1.481102
http://dx.doi.org/10.1063/1.2799191
http://dx.doi.org/10.1080/00268979300102371
http://dx.doi.org/10.1039/fs9821700055
http://dx.doi.org/10.1039/fs9821700055
http://dx.doi.org/10.1021/ja9621760
http://dx.doi.org/10.1002/andp.18812480110
http://dx.doi.org/10.1103/physrevb.69.134103
http://dx.doi.org/10.1103/physrevb.69.134103
http://dx.doi.org/10.1063/1.467468
http://dx.doi.org/10.1063/1.328693
http://dx.doi.org/10.1103/physrev.159.98
http://dx.doi.org/10.1103/physreva.31.1695
http://dx.doi.org/10.1103/physreva.34.2499
http://dx.doi.org/10.1103/physrevb.17.1302
http://dx.doi.org/10.1103/physrevb.17.1302
http://dx.doi.org/10.1002/andp.19213690304
http://dx.doi.org/10.1098/rspa.1980.0135
http://dx.doi.org/10.1098/rspa.1924.0082
http://dx.doi.org/10.1098/rspa.1924.0082
http://dx.doi.org/10.1063/1.457480
http://dx.doi.org/10.1021/jo00891a006
http://dx.doi.org/10.1063/1.556055
http://dx.doi.org/10.1063/1.447824
http://dx.doi.org/10.1039/c4cp05304d
http://dx.doi.org/10.1039/c4cp05304d
http://dx.doi.org/10.1007/bf00647412
http://dx.doi.org/10.1007/bf00647412
http://dx.doi.org/10.1021/jp057264y
http://dx.doi.org/10.1016/0045-6535(96)00031-8
http://dx.doi.org/10.1107/s0108768106026814


214110-15 Li, Totton, and Frenkel J. Chem. Phys. 146, 214110 (2017)

79H. C. Alt and J. Kalus, “X-ray powder diffraction investigation of naphtha-
lene up to 0.5 GPa,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst.
Chem. 38, 2595 (1982).

80A. Y. Likhacheva, S. V. Rashchenko, A. D. Chanyshev, T. M. Inerbaev,
K. D. Litasov, and D. S. Kilin, “Thermal equation of state of solid naphtha-
lene to 13 GPa and 773 K: In situ x-ray diffraction study and first principles
calculations,” J. Chem. Phys. 140, 164508 (2014).

81M. Nicol, M. Vernon, and J. T. Woo, “Raman spectra and defect fluores-
cence of anthracene and naphthalene crystals at high pressures and low
temperatures,” J. Chem. Phys. 63, 1992 (1975).

82S. C. Capelli, A. Mason, S. A. Willis, and B. T. M. Willis, “Molec-
ular motion in crystalline naphthalene: Analysis of multi-temperature
x-ray and neutron diffraction data,” J. Phys. Chem. A 110, 11695
(2006).

83C. P. Brock and J. D. Dunitz, “Temperature dependence of thermal motion
in crystalline naphthalene,” Acta Crystallogr., Sect. B: Struct. Crystallogr.
Cryst. Chem. 38, 2218 (1982).

84M. J. O’Neil, The Merck Index—An Encyclopedia of Chemicals, Drugs, and
Biologicals (Royal Society of Chemistry, Cambridge, UK, 2013).

85D. G. Shaw, A. Maczynski, M. Goral, B. Wisniewska-Goclowska,
A. Skrzecz, I. Owczarek, K. Blazej, M.-C. Haulait-Pirson, G. T. Hefter,
P. L. Huyskens, F. Kapuku, Z. Maczynska, and A. Szafranski, “IUPAC-NIST
solubility data series. 81. Hydrocarbons with water and seawater—Revised
and updated. Part 9. C10 hydrocarbons with water,” J. Phys. Chem. Ref.
Data 35, 93 (2006).

86B. Widom, “Some topics in the theory of fluids,” J. Chem. Phys. 39, 2808
(1963).

87B. Widom, “Potential-distribution theory and the statistical mechanics of
fluids,” J. Phys. Chem. 86, 869 (1982).

88A. Ben-Naim, “Standard thermodynamics of transfer. Uses and misuses,”
J. Phys. Chem. 82, 792 (1978).

89D. M. Heyes, “Molecular dynamics at constant pressure and temperature,”
Chem. Phys. 82, 285 (1983).

90K. S. Shing and S. T. Chung, “Computer simulation methods for the calcu-
lation of solubility in supercritical extraction systems,” J. Phys. Chem. 91,
1674 (1987).

91J. G. Kirkwood, “Statistical mechanics of fluid mixtures,” J. Chem. Phys.
3, 300 (1035).

http://dx.doi.org/10.1107/s056774088200942x
http://dx.doi.org/10.1107/s056774088200942x
http://dx.doi.org/10.1063/1.4871741
http://dx.doi.org/10.1063/1.431535
http://dx.doi.org/10.1021/jp062953a
http://dx.doi.org/10.1107/s0567740882008358
http://dx.doi.org/10.1107/s0567740882008358
http://dx.doi.org/10.1063/1.2131103
http://dx.doi.org/10.1063/1.2131103
http://dx.doi.org/10.1063/1.1734110
http://dx.doi.org/10.1021/j100395a005
http://dx.doi.org/10.1021/j100496a008
http://dx.doi.org/10.1016/0301-0104(83)85235-5
http://dx.doi.org/10.1021/j100290a077
http://dx.doi.org/10.1063/1.1749657

