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Abstract 

The scholarly quest for the origins of metallurgy has focused on a broad region from the Balkans to Central 

Asia, with different scholars advocating a single origin and multiple origins, respectively. One particular find 

has been controversially discussed as the potentially earliest known example of copper smelting in western 

Eurasia, a copper ‘slag’ piece from the Late Neolithic to Chalcolithic site of Çatalhöyük in central Turkey. Here 

we present a new assessment of metal making at Çatalhöyük based on the re-analysis of minerals, mineral 

artefacts and high-temperature materials excavated in the 1960s by J. Mellaart and first analysed by Neuninger, 

Pittioni and Siegl in 1964. This paper focuses on copper-based minerals, the alleged piece of metallurgical slag, 

and copper metal beads, and their contextual relationship to each other. It is based on new microstructural, 

compositional and isotopic analyses, and a careful re-examination of the fieldwork documentation and 

analytical data related to the c. 8500 years old high-temperature debris at Çatalhöyük. We re-interpret the 

sample identified earlier as metallurgical slag as incidentally fired green pigment, which was originally 

deposited in a burial and later affected by a destructive fire that also charred the bones of the interred body. We 

also re-confirm the contemporary metal beads as made from native metal. Our results provide a new and 

conclusive explanation of the previously contentious find, and reposition Çatalhöyük in a new narrative of the 

multiple origins of metallurgy in the Old World. 
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1. Introduction 

Tracing the invention and spread of metallurgy is essential to understanding the relationship of this 

technology with the rise of social complexity, and ultimately, the economy of early civilisations during the 

transition from the Neolithic to the Metal Ages. The scholarly quest for the origins of metallurgy has focused on 

a broad region spanning the Balkans and Central Asia via Iran, known for the early use of metals. The site of 

Çatalhöyük, situated in the geographic centre of this broad region, represents a milestone in our understanding of 

past societies in Anatolia from as early as c. 7400 cal BC. The outstanding architectural and material legacy of 

this settlement has been attracting scholarly attention ever since its discovery, making it one of the best-studied 

prehistoric archaeological sites globally1, with an exceptional number of specialists involved in building 

hypotheses on the evolution of prehistoric communities in this part of the world (Mickel, 2016).  

Metallurgical activities at Çatalhöyük have long stimulated scholarly debates due to an unusually early date for a 

find that appeared to contain features of a metallurgical ‘slag’, set at c. 6500 cal BC (Neuninger et al., 1964; 

Mellaart, 1964; Cessford, 2005). This was based on analytical work conducted in the 1960s that identified this 

alleged evidence for copper smelting in an assemblage of archaeometallurgical materials dated around the mid-

7th millennium cal BC. However, these materials have never been fully assessed within their archaeological and 

technological context. The argument that the Neolithic Çatalhöyük communities were possibly smelting metal 

has, since then, been discussed controversially in the literature, from ardent support (Hauptmann et al., 1993; 

Hauptmann, 2000) to plain acceptance (Strahm, 1984) and more cautious reception (Muhly, 1989; Pernicka, 

1990; Craddock, 2001; Roberts et al., 2009; Birch et al., 2013) to open scepticism (Tylecote, 1976; Radivojević 

et al., 2010). Against such a backdrop, a full re-analysis of the original metallurgical ‘slag’ from Çatalhöyük was 

the only way to resolve this enigma.  

Major progress has been made recently in our understanding of the beginnings of metallurgy in Eurasia, pushing 

the boundaries of what is known about the emergence of metal extraction, chronologically and spatially (e.g. 

Bourgarit, 2007; Radivojević, 2007; 2012; Radivojević et al., 2010; Radivojević et al., 2013; Murillo-Barroso 

and Montero-Ruíz, 2012; Leusch et al., 2014). Sensorial aspects of early technology in particular are growing in 

importance in these debates (for the Balkans see Radivojević and Rehren, 2016; Rehren et al., 2016). Some of 

these studies have revived the theory of multiple origins of metal extraction in Eurasia, as opposed to the long-

standing argument for its single place of invention in the Near East (see Roberts et al., 2009). In this light, and 

drawing from the expertise gained from studying early Balkan metallurgy, our team revisited the Çatalhöyük 

metallurgical evidence. We were guided by the intention to investigate further the convergence hypothesis of 

metal invention (e.g. Renfrew, 1969; Radivojević, 2015), and to clarify the initial results from analyses by 

Neuninger et al. (1964).  

                                                        
1 Full bibliography on http://www.catalhoyuk.com/research/bibliography 
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A total of 41 items from Mellaart’s ‘metallurgical finds’ (polished blocks and glass containers with dozens of 

small fragments) from Çatalhöyük and Hacılar were available to us, including the material analysed by 

Neuninger et al. (1964) and Sperl (1990; 1991) (Fig. S1, Supplementary Materials). The results of our analyses 

of the key Çatalhöyük finds are presented below, as the basis for a revised hypothesis on how metallurgy 

developed in this Neolithic site in Anatolia, and beyond.  

 

1.1. Early metal use in Eurasia  
The view of early metallurgy as closely interwoven with, but distinct from stone bead manufacture has 

been presented elsewhere (Radivojević et al., 2010: 2784; Radivojević and Rehren, 2016); the latter going back 

well into the 11th millennium cal BC. By c. 6000 cal BC, the use of copper minerals and native copper had 

spread from Anatolia and the Levant across wide parts of Eurasia, including Syria (Golden, 2010), Transcaucasia 

(Kavtaradze, 1999), the Balkans (Glumac and Tringham, 1990; Radivojević and Kuzmanović-Cvetković, 2014; 

Radivojević, 2015), Iran (Pigott, 1999; Thornton, 2009; Helwing, 2013) and Pakistan (Kenoyer and Miller, 

1999). The use of copper minerals has been strongly associated with their aesthetics, as has been observed in the 

use of ‘greenstones’ as inherently related to the rich symbolism of the green colour as a fertility charm (Bar-

Yosef Mayer and Porat, 2008).    

By the end of the 6th millennium cal BC, green copper minerals were transformed into copper metal by 

extraction, or smelting. Pernicka (1990) showed that low trace element concentrations (particularly cobalt and 

nickel) in copper metal indicate the use of native copper metal, based on hundreds of analyses of both objects 

and (native) copper from Anatolia and the Balkans (cf. Pernicka et al., 1993; Pernicka et al., 1997). The earliest 

securely documented evidence for copper smelting falls at around the transition of the 6th to the 5th millennium 

cal BC in the Balkans (Radivojević et al., 2010), and probably around that time in the Near East (Dougherty and 

Caldwell, 1966); the latter is still debated due to uncertainty concerning the archaeological and chronological 

evidence (cf. Frame, 2012; Thornton, 2014). 

Thus, the copper ‘slag’ that Neuninger et al. (1964: 100-107) reported in Level VI at Çatalhöyük (c. 6500 cal 

BC, (Cessford, 2005: 69-70) as a potential evidence for local smelting of copper metal stands out as unusually 

early, by c. 1,500 years from the earliest recorded evidence elsewhere. Neuninger et al. (1964) reported that the 

sample in question has a limonitic core, akin to gossan, while the structure of the outer zone reflected high 

temperature treatment that resulted in the formation of a slag matrix with copper dross, delafossite and metal. 

Many scholars supported the idea of the intentional nature of a metal-making event this sample had been argued 

to demonstrate. While Muhly (1989) advocated that the ‘slag’ sample was melting (or refining) debris, 

Hauptmann et al. (1993) called it ‘slagged ore’. Furthermore, Pernicka (1990), although acknowledging its 

confusing nature, interpreted this sample as a testimony of continuing heat treatment of different minerals, 

anticipating Craddock’s (2001) interpretation that it sat at ‘the verge of true smelting’ at the site of Çatalhöyük. 
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Tylecote (1976), on the other hand, was more careful with accepting this sample as related to metallurgy, given 

its low content of iron, which would have been essential for a slag formation. Radivojević et al. (2010: 2776) 

have commented that the limited penetration of the outer slagged (‘hot’) zone into the core of the studied sample 

suggested a short-lived thermal impact, inconsistent with a mature process of early copper extraction. Here, we 

present a full analytical reassessment of this and other samples from the assemblage analysed by Neuninger, 

Pittioni and Sperl in the 1960s, in light of analytical advances made during the last half century.  

 

1.2. Introduction to the site of Çatalhöyük  

Mellaart conducted excavations at Çatalhöyük from 1961 to 1963 and in 1965. This period proved to be a 

‘Golden Age’ for him as he had identified a Neolithic site that was hitherto unknown in central Anatolia. He had 

not only pushed back the boundary of the period of early farming and the domestication of cattle and plants west 

of the Fertile Crescent, but he also placed Çatalhöyük on the international stage of remarkable archaeological 

discoveries. He courted media to great effect and employed important scientific advances of the time to enhance 

his findings, such as 14C dating, obsidian sourcing, and indeed archaeometallurgy.  

The site of Çatalhöyük comprises two mounds, the East Neolithic Mound that dates from c. 7100 to 5950 cal BC 

(Bayliss et al., 2015; Marciniak et al., 2015) and the West, largely Chalcolithic or Late Neolithic Mound that 

ends at about 5600 cal BC, in a seemingly continuous occupation. The mounds formed through successively 

constructed houses; growing in height but also in extent as peripheral areas were expanded over. As each ‘layer’ 

of abutting buildings was exposed and excavated, Mellaart designated these neighbouring buildings into Levels 

that defined roughly contemporary neighbourhoods. Thus, at the top of the East mound, Level I represents the 

latest occupation horizon with Level XII towards the base of the mound; Level XII represents the earliest 

structures or middens excavated but not, necessarily, the earliest at the site. Although Mellaart distinguished 

between ‘houses’ and ‘shrines’ (see Supplementary Materials), excavations and research conducted under the 

directorship of Ian Hodder (1993 - current) reviewed these distinctions and led to a preference for a non-

hierarchical classification of ‘building’, which will be used here. 

Buildings were constructed independently on the footings of the old ones, and side-by-side. The walls of one 

building abutting the walls of its neighbouring building created tightly clustered buildings interspersed with open 

‘courtyard’/midden areas. Access into the buildings was via a roof opening. Internally, they followed a standard 

pattern of furnishing and arrangement but were differentiated through variances in size and detail. In general, 

ovens and hearths lay to the south coinciding with the roof entrance above. The western side was the usual place 

for storage features, and shallow platforms were arranged against other walls beneath which the dead were 

buried. Some buildings were embellished with wall art of geometric and figural paintings and moulded plaster 

relief sculpture. 
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Figure 1: Floor plan for Levels VI (A&B) and VII with indicated building contexts and nature of studied samples. 
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1.3. Mellaart and metallurgy 
It is difficult to assess Mellaart’s excavation and sampling methodology as very little of the original 

archive survived a fire at his home in Istanbul in 1977 (J. Mellaart, pers. comm.). The available information 

mainly consists of the annual Anatolian Studies reports (Mellaart, 1962; 1963; 1964; 1966), his synthesis 

account (Mellaart, 1967) and some other published materials2. Beyond this, there is neither a comprehensive 

inventory of finds, nor any contextual records – that is the description of deposit type with lists of finds by 

deposit type or by building. Thus, the data available is very limited, despite detailed reports by artefact, which 

report on the material assemblage only (e.g. Bialor, 1962; Burnham, 1965; Mellaart, 1964: 73, 85, 92; Angel, 

1971), rather than in conjunction with depositional events. Similarly, the ‘Neolithic use of Metal’ (Mellaart, 

1964: 111) provides an overview of the material, the technology and the possible use of the objects; but lacking a 

comprehensive list of all metal finds and without the detailed description within depositional events, further 

interpretation is very limited. It is interesting to note, however, that whilst Mellaart was not an expert in the 

subject, it does, nevertheless, coincide with the report by Neuninger et al. (1964) and an article by Wertime 

(1964) at the end of that year, suggesting that Mellaart by this time had some specialist input. It is significant for 

the purpose of this paper that the renewed excavations, with ongoing field seasons from 1993 and careful sieving 

and flotation of excavated soil, revealed only very few further metal finds from the early layers. Most finds from 

the resumed excavation campaign recorded on site as metal were intrusive and of much later (Roman and 

Byzantine) date (Birch et al. 2013: 310). No further suspected metallurgical slag (or other metal production 

debris) has been identified to date. 

The samples that Neuninger et al. (1964: 100-107) analysed came from six buildings only (Fig. 1, Table 1), from 

Levels VII and VI on the East Mound, and it is possible that some of the unprovenanced fragments, marked 

Level VI, could have come from the open midden areas that Mellaart called ‘courtyards’. The six buildings, all 

defined by Mellaart as shrines (see Supplementary Materials for details on this designation), represent only 2 

percent of the nearly 300 buildings recorded or excavated.  

The only ‘list’ of metals is a published table (Mellaart, 1967: 81, Table 13) and shows a presence of metal 

artefacts identified as such by the excavator plotted against some shrines, together with wall paintings, plaster 

reliefs and materials like mirrors or cult statuettes. The table relevant to metals lists the ‘Level’ and ‘Shrine 

number’ in the y-axis, with types of motifs within the ‘wall paintings’ and ‘plaster reliefs’, and artefacts-types 

within ‘burials’ in the x-axis.  In total, 58 ‘shrines’ are listed spanning Levels II to IX with the presence of metal 

shown in 11 shrines. This table only shows a presence/absence marker and therefore gives no information on the 

form of the metal or any description that would inform the veracity of depositional intent. Significantly, as will 

be shown in the analyses below, Mellaart apparently did not distinguish minerals from metals (see Table 2). 

Throughout his reports, Mellaart’s ‘metallurgical’ terminology included copper, ores, slag, lead, galena and 
                                                        
2 http://www.catalhoyuk.com/research/bibliography 
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lignite; however, none of these differentiations are seen in the presence / absence of ‘metal’ finds in Table 2. The 

inconsistency of such an approach is also detected in selective labelling of copper minerals as ‘metals’, as seen 

for instance in the building E.VIB.83, where two copper minerals were marked as ‘metals’ in the Mellaart’s list 

(Table 2). We therefore doubt that finds from levels IX and VII were metals in a true material sense of this term, 

but rather any type of material Mellaart held as related to the idea of metallurgy, such as various colourful 

minerals. In the light of these inconsistencies in reporting truly metallic finds, we believe that the samples that 

reached Neuninger et al. were all metal and metal-related samples from Mellaart’s excavations. An alternative 

hypothesis that Mellaart did not send all metal-related samples to Austria could be valid; unfortunately there is 

no information of whatever the remaining samples are or where they might be located.  

Noteworthy is in this regard Mellaart’s appreciation for the shared aesthetic appeal of minerals and metals. In his 

1964 report he writes: “The discovery of metal ores or native copper at this early date in Anatolia is perhaps not 

so surprising. The traders and prospectors of Çatal Hüyük roamed far and wide in their search for raw 

materials, colourful stones, fossils, concretions, etc., and the brilliantly coloured copper ores-a bright blue 

azurite and the green malachite (?) which ground up into a powder were used in the burial rites in Levels VI and 

VII - as well as the fine red and heavy native copper, are materials (like lead (galena), haematite, cinnabar, 

apatite, etc.) conspicuous by their colour and weight, sought after and highly prized” (Mellaart, 1964: 114). 

 

     
Figure 2: left) Blue pigments (azurite) scattered as lumps in Burial 1202 in Çatalhöyük (campaign 2003). The 
distribution might have been an indication of deposition as either loose lumps or in a (skin or fabric) pouch that had 
decayed (courtesy of the Çatalhöyük Research Project); right) Green pigment (malachite) from Burial 757 
(campaign 2001) in Çatalhöyük, discovered as a lump that seems to have preserved the shape of the original organic 
carrier (fabric or skin pouch). Note the crumbly nature of recovered pigment and soil coating (courtesy of the 
Çatalhöyük Research Project). 

 

                                                        
3 The numbering convention is as follows: alphabetical prefix indicates the spatial area of excavation (areas A, E & F), the 
Roman numeral infix denotes the level and the numerical suffix represents the building number. 
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Significantly, Mellaart (1964: 92) describes the use of metal-based pigments in ‘burial rites’. He (1961: 56) 

claimed that “green paint was found on three burials in Levels VI and VII. In one case, a male (?), it covered the 

bones; in another, female, it had been applied to the ‘eyebrows’ on the skull”. In the same article, he also 

reported that blue and green powdered azurite and apatite was found in lumps near the skulls of the skeletal 

remains, and “red and green paint was found in lumps or ready for use in the shells of freshwater mussels”. 

Powdered azurite and malachite were also found in renewed excavations of Çatalhöyük in shapes reminiscent of 

a small pouch, or scattered as lumps (see examples in Fig. 2, Table S3 in Supplementary Materials), together 

with miniature bone spatulas, and associated mainly with female and infant burials (Camurcuoğlu, 2015). 

Detailed microscopic analyses by Camurcuoğlu (2015) revealed that these pigments were coated with clay and 

iron oxide particles, while angular and sub-angular shapes of either green or blue phases indicated that the 

pigments might have been hand-ground. The startling predominant evidence of blue-only or green-only phases 

present in blue and green pigments respectively imply the importance of colour ‘purity’ that was probably highly 

sought after and that might have had a particular symbolic meaning. The latter assumption is highlighted by the 

fact that no blue or green pigments were identified in the wall paintings or any other activity in this site, which 

leaves us with assumption of their specific ritual role as burial offerings. The context and the results of analyses 

of Çatalhöyük green and blue powders led Camurcuoğlu (2015) to recognise these as the earliest documented 

use of malachite and azurite as pigments, anywhere. Red (ochre or cinnabar) is less commonly found in lumps, 

however, it is also found in powder form staining small containers of shell or stone, or ‘painted’ onto bones 

(Mellaart, 1963: 50; Mellaart, 1964: 93; Mellaart, 1966: 183; Angel, 1971). 

 

1.4. Context evaluation of samples analysed by Neuninger et al. 
Table 1 provides the list of samples that were excavated by J. Mellaart, sent to H. Neuninger for analysis 

and now form the core of this study. Only samples CHM 11 from Grave 5, building E.VI.1 and galena from 

building E.VI.29 have been published thus far (Neuninger et al., 1964; Sperl, 1990; 1991). Neuninger et al. 

(1964: 99, Tab. 1) mention that their team conducted compositional analyses of a further four copper metal 

(bead) samples, however, no actual field labels were provided, apart from analytical numbers (3862-3865). Out 

of forty-one samples in total, thirty-six are studied here (labelled CHM and a related number). We received the 

entire assemblage with an accompanying table designating the context of all finds, and boxes/sections that they 

belonged to (Table 1, Fig. S1 in Supplementary Materials).  

The chronologically earliest samples (CHM 5; CHM 6; CHM 7; CHM 8) are copper-based minerals from a 

single building E.VII.10 at Level VII, where out of c. forty-four buildings exposed only thirteen were excavated 

with their complete occupation sequence. This building was revealed in 1963 (Mellaart, 1964), consisting of two 

spaces (Fig. 1). The larger, eastern space had platforms arranged along three walls, those on the eastern side 

being separated by benches. A sunken area was defined to the south where the oven was set against the wall 
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towards the eastern end with a circular hearth in front. A crawl-hole at the northern end of the west wall led to a 

narrow western space, which was excavated by the Hodder team (Farid, 2007). The building is recorded as 

containing animals sunk in relief and animal installations (Mellaart, 1964; 1967). Numerous burials were 

excavated in the 1965 season, two of which were noteworthy female ochre burials (Angel, 1971). The head of 

one was reported as being ‘entirely covered in red ochre and cowrie shells had dropped out of the eye sockets’ 

(Mellaart, 1966: 183). Whilst there is no indication of any recovered metal objects from this building (see Table 

2), samples CHM 5-8 have labels describing them as ‘ore lump from House E.VII.10’ (CHM 5-6) and as ‘copper 

lumps with soil from House E.VII.10’ (CHM 7-8). Neither label specifies the samples as deriving from in situ 

deposits and indeed, the latter description could imply that CHM 7 and CHM 8 were identified as different from 

the ore lumps CHM 5 and CHM 6 (Fig. 3), or, alternatively, that they were collected from the infill of the 

building where a secondary context would not be too far from their primary phase. 

The overlying Level VI horizon of buildings was by far the largest exposed comprising c. forty-nine excavated 

buildings, from which five buildings yielded materials for our study (Tables 1 and 2). At Level VI Mellaart 

encountered stratigraphic problems such that he reports (Mellaart, 1964: 40), arguing that it was necessary to 

divide Level VI into Levels VIA (Late) and VIB (Early). Any of these numbering conventions (Level VI, Level 

VIA, Level VIB) may be encountered in relation to this paper, which have not been changed from the initial 

numbering in order not to lose original citations. However, for the purpose of this paper all have been 

stratigraphically validated as Level VI4. It is also at this level that Mellaart reports the end of Level VI as a 

‘violent destruction’ (Mellaart, 1964: 115). He (Mellaart, 1964: 85) also notes: “The conflagration which put an 

end to Level VI A was of such intensity that the heat of the burning buildings above penetrated to the depth of 

about 3 feet or more below the floor level of the buildings, carbonizing bodies and burial gifts alike and 

preventing all further bacterial decay”. 

Current discourse on burnt buildings from the renewed excavations centre around the debate of deliberate versus 

accidental burning of buildings (Cessford and Near, 2005; Twiss et al., 2008). The forensic fire examination of 

these burnt buildings conducted by Harrison et al. (2013) identified a range of mechanisms by which buildings 

burned at Çatalhöyük involving ‘compartment’ and ‘combustion’ fires, which depend on fuel load and thermal 

characteristics. Experimental work conducted to assess the ability to raise subsurface deposits to such 

temperatures that fully charred skeletal remains and, in some cases carbonised brain tissue, was undertaken on 

porcine brain tissue. It demonstrated that a temperature of c. 300 °C must be maintained over about a two-hour 

period for the brain tissue to be carbonised but to char bone 30 kg of timber was required to fuel a fire over an 

eight-hour period. The conclusion is that the duration of burning was the dominant variable in producing 

carbonisation of bone rather than the peak temperature achieved.  
                                                        
4 E.VI.29 & E.VI.31 were both reassigned to Level VII later in the excavations by Mellaart, although he later kept changing 
his mind on the assignment of these buildings to Levels VIa, VIb or VII. For the purpose of this report, we keep the original 
assignment to Level VI, which also matches the labels of the studied samples. 
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Figure 3. Copper-based minerals and haematite samples. Clockwise: CHM 1, CHM 2 polished, CHM 2 unpolished, 
CHM 3, CHM 4, CHM 5, CHM 6, CHM 7, CHM 8, CHM 9, CHM 10, CHM 12, CHM 33, CHM 31 and CHM 32. 

 

Building A.VI.1, which yielded samples CHM 1-2 and CHM 13-16, was excavated in 1962 (Mellaart, 1963). 

Later, it is renumbered on plans as ‘shrine 61’ in both Levels VI A and VI B (Mellaart, 1964: Fig. 1, 2). The 

building is shown as a large space with platforms along the north, east and south walls (See S61 in Fig. 1). Along 

the southern wall was the mark of the ladder and an oven set into the wall, with a hearth in front. A second space 

seems to have been entered through a ‘post-and-plaster’ screen along the western side. It was embellished with 

red panels and red-painted grooves. There were two ‘bull pillars’ and a bench with seven pairs of cattle horns 
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(Mellaart, 1963; 1967). A total of 13 skeletons were excavated from this building (Mellaart, 1967: 205). Mellaart 

(1964: 95) reports that “women as well as men in Shrine A.VI.1 wore copper finger-rings” (see Tables 1 and 2), 

which is the only suggestion that rings were found on more than one skeleton in this shrine.  

Other artefacts in Shrine 61 included an obsidian lance and arrowheads, two pots and numerous food remains in 

the anteroom where the floor was covered in matting, as well as the carbonised remains of two circular baskets, a 

wooden dish with handles, two polished stone maceheads and a painted clay figurine (Mellaart, 1963; 1966; 

1967). This was described as “massive remains of a very large shrine of Level VI (A VI. I), which had been 

destroyed in a tremendous conflagration” (Mellaart, 1963: 50). Such an interpretation was probably based on the 

presence of two large carbonised roof beams that were recovered in the debris of the main room. Samples CHM 

1 and 2 are simply labelled as ‘ore lump from Shine A.VI.1’ (see Table 1). Samples CHM 13 to 16, however, are 

labelled as ‘beads from the grave in the northern corner of Shrine A.VI.1’. These ‘beads’, whilst positively 

associated with a primary context in this building are not, however, associated to a specific grave or platform in 

the northeast corner. We believe that these beads are the only metal samples available for study from the context 

of this building, since we could not identify any of the ‘copper finger-rings’ Mellaart (1964: 95) documented, not 

even in fragmented state (see below Fig. 7).  

Shrine E.VI.1 is the building from which samples CHM 9-12 originate. It was excavated in 1961 (Mellaart, 

1962) as a three ‘room’ building. A small northwestern room had two storage features along its east wall and 

was accessed from a crawl-hole at its western end. The larger, central, space had platforms along the east wall. A 

recess in the southern space marked the place of an oven with a hearth in front and a possible large storage bin in 

the southeastern corner, which Mellaart generally described as ‘plaster bins for grain’ (Mellaart, 1963: 45). 

Several wall paintings of symbols, kilim/textile patterns, and simple patterns were revealed. There were also 

reliefs of a goddess, a female breast, a possible animal-head and horns set along the edge of a bench (Mellaart, 

1967). Thirty skeletons were recorded as being excavated (Mellaart, 1964) from this building, although only 25 

were studied by Angel (1971), of which one male and four female skeletons were carbonised black. In addition, 

fragments of charred textile were recovered and carbonised cloth found inside the skull of one (Burnham, 1965). 

These are the only references corroborating that the building had ‘been replastered after a fire’ (Mellaart, 1963: 

59). A necklace of fine limestone and carved serpentine beads were found with a female skeleton and a bone 

belt-set from another burial. Other artefacts from within the house included pottery, a double-pointed ‘willow-

leaf’ obsidian point, eight other projectile points, a lancehead (Bialor, 1962), two stamp seals and a wooden box 

with a lid (Mellaart, 1964; 1967). Samples CHM 9 to 12 are labelled as originating from ‘Grave 5 from the 

central platform, House E.VI.1’. As there is only one central platform in this building, against the eastern wall, it 

is with some certainty that we can assign Grave 5 to that platform, but no further information is available on the 

number of graves that cut the platform or the stratigraphic location of Grave 5 within the platform. The same is 

therefore valid for samples CHM 9 to 12; we do not know which buried individual were they associated with 
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except that these samples were reported as a potential burial offering. We also do not know if the individual 

buried in Grave 5 was carbonised black after a fire, although we are aware that the fire reached up to c. 90 cm (3 

feet) deep ‘carbonising bodies and the burial gifts alike’ (Mellaart, 1964: 85). Sample CHM 11 was identified as 

copper slag by Neuninger et al. (1964), prompting Mellaart (1964: 114) to suggest that the process of copper 

smelting might have been known at the time.  

The neighbouring building to the east, E.VI.8, was excavated in 1962 (Mellaart, 1963) and at the end destroyed 

by fire (Mellaart, 1964: 40). The largest of three rooms in this building led into to a southeastern room through a 

crawl-hole, which led in turn via another crawl-hole to a southwestern room. The southeastern area appears to 

have contained a central circular hearth or basin as well as a sub-rectangular hearth in the southwest corner. The 

larger room had platforms along its north and east walls, with a bench between the two most southerly. Mellaart 

(1967) reported a sunken animal relief, a goddess, an animal-head, bucrania, and breast reliefs, as well as a 

pattern of hands and a red ‘net’ design on the east wall. Fifteen skeletons were excavated, four of which were 

carbonised black (Angel, 1971). Mellaart (1963: 95) also mentions a burial whose complete corpse was covered 

by red ochre. A fragment of charred textile was recovered (Burnham, 1965: 172), together with two greenstone 

celts and two ceramic pendants from female burials. Also, a recovered assemblage includes a wooden spoon 

from a burial, an obsidian pendant, lignite beads and a red sandstone spouted dish. The label for samples CHM 3 

and 4 describes these as ‘copper lumps from grave 2 at E.VI.8’ but again, we do not have further contextual 

information on which platform ‘grave 2’ was located. 

Separated by two buildings, E.VI.31 was excavated in 1962 (Mellaart, 1963). It consisted of a large space with 

two small spaces entered by crawl-holes to the north (see Fig. 1). The larger space had two platforms along the 

east wall ending in a bench and a possible platform against the west wall. To the south lay an oven with two 

hearths and a platform in the southwest corner. There was also an installation of two superimposed bull’s heads 

between two plastered posts with other features above (Mellaart, 1963). The presence of burials was indicated 

only on Table 13 (Mellaart, 1967: 81), and therefore the number is unknown. Mellaart (1963) records that the 

building was destroyed by fire but provides no further information. The samples CHM 29 and 30 from this 

building are labelled and described as ‘two beads from a burial, Shrine E.VI.31’, and as such it is not possible to 

identify which of the four possible platforms this ‘burial’ may have been located in.   

Neighbouring to the north, E.VI.29 was also excavated in 1962 (Mellaart, 1963). This was a single space 

demarcated into four with a possible sunken southeast quadrant where the oven was located. A platform possibly 

lay to the northeast with a series of features in the southwest corner. It may have had a relief on its western wall. 

Ten skeletons were studied from this building (Angel, 1971), and a white marble dish and flint dagger were 

recorded as being found with a male burial. Another male burial was found with a bone or horn scoop, and a 

bone belt-set was found from another burial. There is no mention of a fire or burning and the occurrence of 

‘metal’ from this building is recorded on Table 13 (Mellaart, 1967: 81) only. The label ’lead from Grave 
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E.VI.29’ accompanies samples CHM 17 to 28 (Table 1). The location of the grave within this building is, again, 

unknown. Although initially identified as ‘lead metal’, they were since shown as made from cerussite and 

galena, minerals rich in lead, but not lead metal (Sperl, 1990). 

A further five samples (CHM 31 to 35, haematite and copper-based minerals), CHM 36 (obsidian) and CHM 37 

(a ‘green’ sample) have simply been labelled as coming from ‘Level VI’, and as such are a group of un-

provenanced samples albeit but all being from Level VI and therefore relatively significant for this study. 

A further eight buildings are indicated in Table 13 (Mellaart 1963: 81) as having yielded ‘metal’ but from which 

no material was exported for analysis by Neuninger et al. Chronologically, the earliest mention of ‘metal’ comes 

from Level IX, from where in Shrine E.IX.1 Mellaart records that a female was covered in red ochre, cinnabar 

was applied to her skull and with her ‘were several necklaces and some copper and lead beads, the earliest 

found on the site’ (Mellaart, 1964: 93; 1967: 207). At Level VI a burial of an adult woman and child from 

building E.VI.25 is described as containing patches of carbonised textile, including ‘many fragments of a string-

skirt the ends of which appear to have been encased in thin copper tutuli to weight it down’ (Mellaart, 1963: 

101; 1967: 219). ‘Metal’ from another Level VI building is reported from E.VI.5, from which Angel (1971: 79) 

studied 19 skeletons. One male and three females were carbonised black. Many of the bones were wrapped in 

textile of various weaves and fineness, and tied into bundles with tapes. One skull was wrapped in textile soaked 

in red ochre. No pottery was found in this pit, but two polished bone pendants, a small copper roll, and a number 

of carbonised wooden vessels were recovered (Helbaek, 1963). Finally, the presence of metal from the following 

six buildings is shown in Mellaart’s Table 13 only (Mellaart, 1967: 81): E.VII.35, E.VIB.10, E.VIB.12, E.IV.8 

and the chronologically latest, in A.II.1. 

Other references to ‘metals’ emerge throughout Mellaart’s reports and publications in general discourse and 

overview of technology, craftsmanship and ritual. He asserts that the use of two metals, copper and lead was 

familiar at least as early as Level IX, and that “lead beads and pendants, especially in Levels VII and VI, and 

copper was used for beads, pendants, finger-rings, small tutuli which enclosed the lower ends of string skirts (in 

VI), small tubes (VII) and possibly pins and awls in Level II.” However, it was the occurrence of a “supposed 

lump of copper ore from House E VI A, that proved to be not ore, but copper slag, suggesting that the process of 

smelting may already have been known, by the middle of the 7th millennium, but further analyses are required to 

establish how usual this was” (Mellaart, 1964: 111), that is finally being addressed in this paper. 

Whilst from today’s perspective the reporting of the ‘metal’ finds is limited and frustrating, for the time when 

Mellaart was conducting his excavations, the discovery was practically a unique one, which he dealt with within 

the recording and analytical tools available at the time. Due to the absence of detailed locational or contextual 

data it is not possible to ascertain veracity of the exact find spots for all of the re-analysed metal samples; 

however, for the first time we were able to gather all relevant information for their context in the text above.  
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The most recent analyses of three Neolithic copper beads from the East Mound by Birch et al. (2013) further 

attest the presence of copper metal artefacts on this site from levels II to VI, with a greater contextual precision 

(see Table S4 in Supplementary Materials). Five pieces of metal were analysed, belonging to three distinctive 

groups of fragmented beads and rings from both burial and infill/dump deposit layers. They were found to 

consist of hammered and annealed pure copper metal, rolled up to form beads which contained only traces of Ag 

(up to c. 300 ppm) and As (up to c. 90 ppm) in two ring fragments (Birch et al., 2013: 309, Tab. 17.2). Given the 

low concentrations of trace elements such as cobalt, nickel, antimony and lead in these objects, it is argued that 

they were most likely made from native copper (Birch et al., 2013; cf. Pernicka et al., 1997). The working 

evidence corroborates the findings of Neuninger et al. (1964), matching the common metal working practice in 

Anatolia from as early as the 8th mill cal BC (e.g. Stech, 1990; Maddin et al., 1991).  

 

 
Figure 4: Estimated dates for buildings that yielded metal-related finds (black: derived from wiggle-match of 
floating tree-ring sequence; dark grey: calibrated radiocarbon dates; light grey: derived from interim chronological 
model for ongoing dating project). 
 

The dating of the site in the 1960s is based on radiocarbon measurements of 27 samples that spanned buildings 

from all levels, of which eight were from buildings that contained metallurgical finds. These radiocarbon dates 

have been combined with Mellaart’s phasing scheme of successive building levels in a Bayesian chronological 

model, which estimates the dates of those levels (Cessford, 2005: 66-79). The stratigraphic integrity of these 

levels, however, is under review by a current programme of radiocarbon dating and Bayesian modeling. This is 

attempting to combine the stratigraphical sequence of buildings and open areas with a large series of carefully 

selected radiocarbon dates, from both the renewed excavations and the 1960s archive. Both the radiocarbon 

dating and stratigraphic programmes are on-going and only partially reported (Bayliss et al., 2015; Marciniak et 

al., 2015); nevertheless, this project has thus far obtained radiocarbon dates for four buildings from which 

Mellaart reports metallurgical finds and has stratigraphic evidence allowing seven to be included in the Bayesian 
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chronological model (for a detailed account see Supplementary Materials). This model provides a more detailed 

account of chronology of Level VI in indicating that it does not form a concentrated chronological horizon (Fig. 

4). A.VI.1, for example, appears to be about a century later than E.VIB.8 and E.VIB.29, and overall buildings 

assigned to Level VI appear to fall anywhere between the 67th and 64th centuries cal BC. On current evidence, it 

appears that metal and metal-related finds occur at Çatalhöyük across much of the seventh millennium cal BC 

(A. Bayliss, pers. comm.). 

 

2. Materials and Methods 

2.1. Characterisation of minerals and metal finds in Çatalhöyük 

The assemblage of samples received consists of 41 items in total, 36 from Çatalhöyük, 4 from Hacılar and one 

that turned out to be a modern slag piece (see Supplementary Materials for further detail). It includes copper-

based minerals, crumbs of copper-based ‘slag’, galena minerals, galena and copper metal beads, a piece of 

obsidian, and a green stained piece of bone (?). We concentrate below only on copper-based minerals, copper 

metal beads and the copper ‘slag’. 

Copper-based minerals include CHM 1 to 10, 12 and 33 (Table 1, Fig. 3). Their macroscopic appearance varies 

in relation to the context. The ‘free’ building finds (CHM 1, 2, 5 and 6) are of similar appearances both as free 

and as mounted samples: they are lumps of minerals 1-2 cm in length, with blue and green streaks coming 

through the pale surface of amorphous samples, while the polished surfaces expose a mix of dark body with 

green/blue components. Samples CHM 7 to 10 and 12 come from either a domestic (E.VII.10) or funerary 

context (E.VI.1), and although originating from different levels, they share a similar appearance, being coated 

with soil, granular and crumbly green materials a few millimetres wide. Samples CHM 3 and 4 come from a 

burial, and are up to 1 cm long lumps of green and red components visible on the polished surface. We studied in 

more detail samples CHM 1, 3 to 5, 9, 10, 12 and 33. Resin blocks with samples CHM 9, 10, 12 and 33 consist 

of several similar-looking items (ranging from 2 to 9), which we refer to as ‘locations’ in our analyses (see Fig 

3). 

The ‘slag’ sample CHM 11 belongs to a batch of items from the central platform, Grave 5, building E.VI.1, 

which consists of a dozen non-magnetic crumbly copper-based minerals (here embedded in blocks CHM 9, 10 

and 12) in addition to this one. Sample CHM 11 consists of 15 smaller items marked as ‘locations’ (Fig. 5) in 

our microstructural and compositional analyses, giving each item a unique number. According to the images 

available to us from the previous study, we believe that CHM 11 is the sample Neuninger et al. (1964: 100) 
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identified as ‘slag debris with molten copper oxide’. Neuninger and collaborators (1964: 99, Tab. 1) identified 

traces of Ni, Zn, As and Co in the mentioned sample, while Sperl in 19975 identifies antimony in it as well.  

 

Figure 5. Copper ‘slag’ sample CHM 11 with marked ‘locations’ 
 

Copper metal beads (CHM 13 to 16, 29, 30, 34 and 35) originate from two burial contexts in buildings A.VI.1 

and E.VI.31 respectively, while CHM 34 and CHM 35 come from the soil of Level VI. The richest collection of 

metal beads comes from the burial in building A.VI.1; we estimate there are c. 53 copper metal beads, although 

the exact number is difficult to assess due to the heavy corrosion and fragmentation of these artefacts (Fig. 6). 

The beads are either of a short, circular shape, or tubular, common for the period and with a long history in the 

region of origin (e.g. Maddin et al., 1999). We studied in more detail samples CHM 14, 15 (joint block with 

CHM 30), CHM 34 and 35, while CHM 13 and 16 were analysed for provenance only (see Table S2 in 

Supplementary Materials). The published analyses of four of these metal beads identified high purity copper 

metal with traces of Ag (Neuninger et al., 1964: 99, Tab. 1) without specifying which samples these were. In 

addition to the described set of samples, we also analysed two blocks with several samples of mineral haematite 

(CHM 31 and 32, Fig. 3), which are not further considered here. Also, the analyses of galena minerals and beads 

will be presented separately elsewhere. 

                                                        
5 We found this information as a note on what appears to be a poster presentation by G. Sperl, titled “New Research on the 
Beginnings of Metallurgy at Çatalhöyük, Turkey (7th mill BC)”, presented at Harvard University in 1997.  
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Figure 6: Copper metal. Clockwise: CHM 13, CHM 14, CHM 15 & CHM 30 (CHM 30: loc. 1 and CHM 15: loc. 2-5), 
CHM 16, CHM 29, CHM 34, CHM 35. 
 

2.2. Methods 

In total, we analysed 19 samples for microstructure, chemical composition and possible provenance (as indicated 

in Tables 1 and S2), out of the assemblage consisting of 36 samples excavated by J. Mellaart in Çatalhöyük in 

the 1960s, including some that had already been analysed by Neuninger et al. (1964) and Sperl (1990). Of these 

19, 18 belong to Neolithic Çatalhöyük, while one (CHM 27) is a modern slag sample that might have ended up 

accidentally in this collection. A further five samples (CHM 6, 7, 8 and 29) were only characterised 

macroscopically. Table S2 indicates that we have also conducted analytical work on galena samples, which we 

will report in a separate article.  

In total, we analysed all existing polished blocks (16 samples were already mounted in 15 blocks that were re-

cast and re-polished by us), together with a freshly made block (CHM 9) for microstructure and composition 

with OM (Optical Microscope) and SEM-EDS (Scanning Electron Microscope with Energy Dispersive 

Spectrometer) at the Wolfson Archaeological Science Laboratories, UCL Institute of Archaeology, London. 

Provenance and trace element analyses were conducted with MC-ICP-MS (Multi-Collector Inductively-Coupled 

Plasma Mass Spectrometer) and LA-ICP-MS (Laser Ablation Inductively-Coupled Plasma Mass Spectrometer) 

at the Curt-Engelhorn Centre for Archaeometry in Mannheim, Germany (see Supplementary Materials).  

Copper-based minerals studied here are recognised as only potentially representing copper ores, which is why 

we kept the neutral term ‘mineral’. We see ore as a culturally and economically defined term referring to 

agglomerations of minerals from which the extraction of one or more metals is seen as a profitable action 
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(Rehren, 1997; Rapp, 2009). The importance of this distinction of copper minerals in the context of potential 

pyrometallurgical activities has already been recognised by Muhly (1989), who noted that the presence of 

malachite at an archaeological site has little to do with copper metallurgy, as much as the presence of haematite 

in a cave painting context has nothing to do with iron metallurgy. The only potential evidence of extractive 

metallurgy, CHM 11, we termed ‘slag’ with quotation marks because we question here the nature of its creation.  

 

Figure 7: left) Photomicrograph of CHM 3 under cross polarised light (magnification 50x, width 3.2mm). Note the 
green matrix rich in copper content; right) Photomicrograph of CHM 4 under cross polarised light (magnification 
50x, width 3.2 mm). 
 

 

Figure 8: left) Photomicrograph of CHM 33 (location 1) under cross polarised light (magnification 100x, width 
1.6mm); right) Photomicrograph of CHM 33 (location 2) under cross polarised light (magnification 100x, width 
1.6mm). Note green copper-rich phases in both locations in this sample. 
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3. Results 

3.1. Copper-based minerals 

The copper-based minerals form two distinctive groups: oxide (CHM 3, 4, 9, 10, 12 and 33) and sulfide (CHM 1 

and 5) minerals. Macroscopically, they differ in texture: while oxide minerals are small-sized and crumbly, the 

sulfide examples are solid lumps of ore (Fig. 3). The oxide minerals contain a predominant copper-rich phase 

(see Figures 7-10) with only traces of zinc found in CHM 9 and 10 (Table 3). Besides the copper-rich matrix, 

both CHM 9 and CHM 10 contain phases with various antimony and antimony and arsenic readings respectively 

(Table 4). These phases contain lead and various levels of Cu, pointing at the composition of minerals that 

belong to the lead-bearing arsenates and vanadates (Dana and Ford, 1922).  

The composition of the Sb-bearing mineral phase in CHM 9 is close to valentinite (Sb2O3), however the calcium 

and lead components classify it as more likely as a mineral of romeite group, or a similar mineral that belongs to 

the family of antimonates, arsenates and vanadates. This could have originated as a weathering product of 

primary stibnite (Sb2S3), with lead and calcium precipitating from the surrounding geological environment. 

Stibnite is usually accompanied with various other antimony-bearing minerals produced by its alteration, and 

significantly for this context, occurs with sphalerite, galena or cinnabar (Dana and Ford, 1922: 359); this could 

explain the presence of lead in the phase observed here. The common denominator for these secondary minerals 

is the antimony content, while their outer appearance varies from pale yellow to olive green tones.  

 

Figure 9: left) Photomicrograph of CHM 9 under cross polarised light (magnification 100x, width 1.6mm). The green 
phases are rich in copper, while white/bright ones are antimony oxides; right) Photomicrograph of CHM 10 (location 
2) under cross polarised light (magnification 100x, width 1 mm). The white/bright phases have significant levels of 
Sb, As, Pb and Cu. Both samples appear coated in soil and rich in iron oxides (orange/red). 
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A macroscopically similar mineral phase in CHM 10 reveals significant readings of antimony, arsenic and lead 

besides copper, and is a potential member of the same mineral group as the similar phase in CHM 9, romeite, 

with variations including cuproromeite (with Cu), oxyplumboromeite (with Pb) and oxycalcioromeite (with Ca). 

Since the copper content is significant in this phase, the green-olive tint prevails. Broadly speaking, all minerals 

in CHM 9 and CHM 10 could be weathering products of lead-bearing sulfidic ores deposit including fahlore-

type minerals. The same may apply for CHM 12, given that the sample was discovered together with CHM 9 

and CHM 10, and bears microscopic and macroscopic resemblance. 

 

Figure 10: Photomicrograph of CHM 12 (location 3) under cross polarised light (magnification 100x, width 1 mm). 
Similarly to sample CHM 9 (Fig. 10), this sample is mixed with soil and iron oxides (orange/red). 

 

The copper minerals with high sulfur content are CHM 1 and 5 (Figure 11). Compositionally, they represent a 

mixture of copper oxides/carbonates and sulfides, with high readings of arsenic, antimony, zinc and iron between 

them (Tables 5 and 6). The copper oxide/carbonate phases are optically dark and light grey, with the latter 

compositionally resembling olivenite (Cu:As is roughly 2:1), with some zinc (Table 5). Olivenite 

[Cu2(AsO4)(OH)] is a relatively common secondary copper mineral usually found in the oxidized zones of 

copper deposits containing arsenic-bearing phases, particularly tennantite, enargite, and others. The colour of 

this mineral varies from olive green to yellow and dark green (Dana and Ford, 1922: 603). A similar colour is 

also found in zinc-bearing olivenite [CuZn(AsO4)(OH)]. 

The composition of sulfidic phases in both CHM 1 and 5 (Table 6) is closest to stibioenargite [Cu3(Sb,As)S4], or 

antimony-bearing enargite, which is chemically close to the tennantite and tetrahedrite (=fahlore) series, 

altogether classified as sulfosalts, generally similar to the phases observed in CHM 9 and 10. The colour of these 

minerals is usually steel grey, or dark, as observed in the cross-sections of samples in Fig. 3. Overall, and despite 

the general compositional differences, minerals CHM 1, 5, 9 and 10 (and possibly 12) could have originated 

from a similar deposit of lead and zinc-bearing fahlores, with oxidic minerals collected from near-surface 

weathering zones. Their aesthetic appeal could have been the decisive factor in the initial selection, particularly 
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given that the green component was predominant (copper), mixed with metallic-grey enargite. The latter could 

have also resembled galena, which was also used at Çatalhöyük.  

 
Figure 11: left) Photomicrograph of CHM 1 under cross polarised light (magnification 50x, width 3.2mm); right) 
Photomicrograph of CHM 5 under cross polarised light (magnification 50x, width 3.2mm). The white/bright phases 
have significant levels of Sb, As, Pb and Cu. The pale/white phases in both samples are sulfide-rich one, most likely 
Sb-bearing enargite. The grey and light grey phases are copper oxides with varying levels of As, Sb and Zn. 
 

3.2. Metallurgical ‘slag’  
Neuninger et al. (1964) had identified one ‘slag’ sample in the analysed assemblage, CHM 11. Although this 

sample consists of 15 small items (each given a location number, see Fig. 5), they probably originate from the 

same crumbly lump, given that their structural characteristics are very similar. Interestingly, Neuninger et al. 

(1964) do not mention more than one ‘slag’ sample. The first impression from microstructural examination is 

that there is very little corrosion visible. Some locations, like No. 5 (Fig. 12f) contain copper corrosion products 

in their core, while there is little to none preserved on the outer edges on any other (for example see Figures 12j 

or 12l).  

The most common feature in all locations are pale pink particles of metallic copper, which were, judging by their 

distinctive morphology formed in situ (Figures 12b, 12c, 12f, 12g, 13c), and never fully liquid. The reduction of 

copper ore to copper metal can happen at the solid state at temperatures from c. 700 °C upwards (Pollard et al., 

1991), while the melting of copper metal requires temperatures in excess of 1083 °C. Hence, the clusters of 

metallic particles in our case are most likely a testimony of a solid-state process of reduction of copper oxide 

into copper metal, or one that happened at the threshold of conditions required to produce fully liquid copper 

metal.  
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Figure 12: Photomicrographs of various locations in sample CHM 11 taken under both plain (ppl) and cross polarised 
(xpl) light.a) Photomicrograph of location 4 (magnification 100x, width 1mm, ppl). Note ‘cold’ core of the sample and 
metallic copper on its periphery, with cellular structure of a remaining charcoal (light grey); b) Photomicrograph of 
location 7 (magnification 100x, width 1mm, ppl). Note globules of metallic copper formed in situ, surrounded by copper 
oxides; c) Photomicrograph of location 2 (magnification 500x, width 0.34mm, ppl). Note globules of metallic copper formed 
in situ; d) Photomicrograph of location 5 (magnification 50x, width 3.2mm, ppl). Note metallic copper suspended in a slag 
matrix (top) and a mix of quartz and metallic copper formed in situ in centre and bottom; e) Photomicrograph of location 
5 (magnification 50x, width 2mm, xpl). Note metallic copper and slag matrix (top) and ‘cold’ centre with metallic copper 
globules and corroded copper (oxide/carbonate); f) Photomicrograph of location 5 (magnification 100x, width 1mm, xpl). 
Note white metallic globules in a grey matrix (centre) surrounded by globules of bright copper metal and copper oxides 
(green and red phases); g) Photomicrograph of location 5 (magnification 500x, width 0.2mm, ppl). Note bright metallic 
globules with light grey and grey eutectic phases surrounded by copper metallic globules; h) Photomicrograph of location 8 
(magnification 100x, width 1mm, ppl). Note ‘cold’ core and top of the sample, and slag matrix at the bottom left periphery; 
i) Photomicrograph of location 8 (magnification 500x, width 0.2mm, ppl). Note under higher magnification lathes of 
delafossite and spinel agglomerations embedded in slag matrix; j) Photomicrograph of location 11 (magnification 50x, 
width 2mm, ppl). Note ‘cold’ core and top right corner of the sample with slag matrix and metal prills embedded in it; k) 
Photomicrograph of location 11 (magnification 100x, width 1mm, xpl). Note heterogeneous ‘cold’ core with green patches 
of corroded copper, and ‘hot’ periphery with slag, copper metal and copper oxides; l) Photomicrograph of location 13 
(magnification 50x, width 2mm, ppl). Note ‘cold’ core and ‘hot’ periphery at the bottom with cuprite and a metal prill. 
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Figure 13: Backscattered electron images of four different locations (left to right): 5, 11, 8 and 9 in sample CHM 11. a) 

Location 5 (magnification 45x, width 2.5mm). Note slag matrix (light grey) with partially reacted (dark grey) and metallic 

phase (bright) in the bottom part, and a mix of metallic globules (dross) and quartz in the middle; b) Location 5 

(magnification 400x, width 250 µm). Note bright copper metal phases and partially reacted quartz (dark grey) embedded 

in slag matrix; c) Location 5 (magnification 250x, width 450 µm). Note bright copper metallic globules forming within the 

mineral-like structure of copper oxide present in this sample; d) Location 5 (magnification 200x, width 450 µm). Note a 

mixture of convoluted agglomerations of copper oxide mixed with bright globules of copper metal and a light grey metal 

prill in the left bottom corner (antimonial copper); e) Location 11 (magnification 50x, width 2.5 mm). Note slag matrix 

(light grey) with copper metal prills (bright) and partially reacted quartz (dark grey) in left bottom and core with a few 

bright globules of copper metal in the middle; f) Location 11 (magnification 350x, width 250 µm). Note partially reacted 

quartz grains in a bright metal-speckled slag matrix; g) Location 8 (magnification 80x, width 1.4mm). Note slag matrix 

(light grey) with partially reacted quartz and bright phases suspended in it; h) Location 8 (magnification 400x, width 250 

µm). Note bright spinel agglomerations and lathes of delafossite surrounded by partially reacted quartz and embedded in 

slag matrix. i) Location 9 (magnification 100x, width 1.2 mm). Note bright globules of copper metal throughout the item, 

with partially reacted and unreacted quartz. 
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Nevertheless, there are two locations in CHM 11 (location 5 and 11) where the copper metal appears as fully 

chemically and physically transformed (Figures 12d, 12e, 12j, 13a, 13b), forming pools of liquid metal in a 

glassy slag matrix speckled with dark red patches of copper oxide. In location 8 (Figures 12h, 12i, 13h), the slag 

matrix formed two distinctive phases: straight lathes of delafossite and convoluted agglomerations of iron-rich 

oxides (see below for analyses).  

Significantly, the position of the molten phases/slag in the observed items is predominantly at their edges, not 

their cores (Figures 12d, 12e, 13a). The cores are, almost by rule, populated with specks and agglomerates of 

metallic copper (not molten throughout), quartz grains and an unreacted copper-oxide rich matrix (e.g. Figures 

12c, 13g, 13g, 13i). Neuninger et al. (1964: 100) also noticed this and characterised the studied item (probably 

only loc. 5 here) as a ‘combination of a porous molten material with natural mineral structure’. Such position and 

morphology of these fully liquefied phases in locations 5, 8 and 11 is telling of a high-temperature impact and 

reducing conditions that took place on the outer surface of some fragments in CHM 11, but failed to reach 

throughout the material. Given that these patches of fully liquefied phases represent ‘true’ slag, we will give a 

more detailed analytical account of these areas below. The mostly unreacted (‘cold’) core in the majority of 

observed items is the evidence of this thermal impact not reaching sufficiently high temperatures long enough to 

transform them into a fully liquefied (slag and metal) mass, like the one observed on the edges of three out of 

fifteen locations in sample CHM 11. 

Bulk composition of the slag matrix 

The slag in locations 5, 8 and 11 is heterogeneous, containing metal prills and partially reacted quartz in 

locations 5 and 11, and delafossite instead of metal prills in location 8, all present to different extents and 

embedded in a matrix of crystallised slag glass (Figures 12, 13). All locations are dominated by a significant 

copper (oxide) content. The bulk chemical analyses of the ‘true’ slag portions of these locations were conducted 

in areas relatively free from corrosion with the main aim of understanding their formation.  

The bulk composition of slag in locations 5, 8 and 11, including all primary phases, shows that major oxides 

(silica, alumina, iron and copper oxides) add up to c. 77wt% on average. Lime, potash, magnesia and phosphorus 

oxide contribute c. 19wt% mean sum, and ore contamination (zinc and lead oxides) amounting up to c. 7.3wt% 

in location 5 (Table 7). Significant differences in the bulk slag composition, particularly in location 5, affect lime 

(c. 23wt% mean), which is four to five times higher than in the other two locations. This might be an indication 

of either a higher fuel ash content, or lime coming from both ore and fuel contamination (see example in 

Radivojević and Rehren, 2016: 224, Fig. 11). The contamination from ore elements (zinc and lead oxides) is 

only present in this location, and is reflected also in the composition of the glassy slag matrix (Table 8).  

Spot analyses of the glassy slag matrix were conducted in areas relatively free of copper-rich phases or residual 

quartz. The major oxide distribution is similar to the bulk analyses, despite the lower copper content (Table 8). 
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The ore contamination is the most significant in location 5 (zinc and lead oxides at 7.5 wt%). The silica to 

alumina ratio is 4:1 in both locations 8 and 11, while in location 5 it is around 15:1. This observation identifies 

locations 8 and 11 as those containing a metallurgical slag, while location 5 appears more affected by silica-rich 

fuel ash.  

 

Figure 14: The ternary plot of compositional values of Si/Al/Ti-Ca/Mg/P/K-Fe/Zn/As/Sb/Pb oxides in glassy slag 
matrices in CHM 11, locations 5, 8 and 11. All values re-cast as Cu-free oxides. 
 

The ternary plot (Fig. 14), representing all components influencing the formation of slag: ceramic/soil 

(SiO2/Al2O3/TiO2), fuel ash (CaO/MgO/P2O5/K2O) and ore (FeO/ZnO/As2O3/Sb2O3/PbO), illustrates well the 

differences in the studied locations in sample CHM 11. The locations produce slightly distinctive patterns by 

their predominant formation by acidic oxides (SiO2/Al2O3/TiO2 corner, location 8), stronger intake of fuel 

component (location 5), or ore contamination (location 11), respectively. 

Copper oxides are the dominant phase in all locations in CHM 11, as newly generated phases or as corrosion 

products. It is mostly found as a copper ‘dross’ outside the slag matrix, with traces of Zn and As. Tenorite was 

found in locations 3, 12 and 13 (Fig. 5), with only one measurement showing Zn (5 at%, location 13) in addition 

to copper. These metal oxide-rich ‘dross’ areas, are indicative of copper melting events (Bachmann, 1982), 

although they also occur in very early examples of copper smelting, like in the Balkans (Radivojević et al., 2010; 

Radivojević and Rehren, 2016) or in Iberia (Müller et al., 2004). 
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Delafossite, Cu1+Fe3+O2, is usually recognised optically as straight lathes embedded in the glassy matrix (Table 

9, Figures 12i, 13h) and mixed with iron spinels in convoluted agglomerations embedded in the slag matrix. Its 

co-occurrence with cuprite in a sample indicates fairly oxidising conditions of the melt, bordering the partial 

oxygen pressure required to reduce copper from cuprite (Müller et al., 2004: 40). It forms both during melting 

and smelting (see Bachmann, 1982: 16 for melting; and Hauptmann et al., 1993: 566; Hauptmann, 2000: 147 for 

smelting examples).  

Iron spinels form characteristic grey cubic crystals in the glassy matrix, corresponding to the general formula 

A2+B2
3+O4

2-. In both locations 11 and 15, they are found intergrown with delafossite in convoluted 

agglomerations, containing copper in addition to predominant iron (Table 9), as well as impurities coming from 

the surrounding slag matrix.  

Metal prills and particles are found both suspended in the slag matrix and freely forming in other ‘cold’ areas 

throughout different locations (see Figures 12, 13). SEM-EDS analyses revealed almost pure copper with 

occasional presence of Sb and S (at c. 1 at%). LA-ICP-MS analyses (Table 10, Fig. 15) of the copper metal prills 

embedded in the peripheral slag matrix of location 5 showed the copper to contain As, Sb and Ni, consistent with 

the copper composition being reduced from malachite with some admixture of mostly antimonial fahlore. 

 

Figure 15: The orange circle indicates the location of copper metal phase analysed by LA-ICP-MS in sample CHM 
11 (loc. 5) from Çatalhöyük. 
 

Location 5 also includes optically pale metal prills that contain a eutectic of a light grey and a grey phase 

(Figures 12f, 12g, 13d). SEM-EDS analyses showed that they are antimonial copper (Table 11), with c. 25 at% 

of Sb in both phases, and a significant intake of Pb in the latter (c. 15 at% on average). This clearly reflects the 

original mineral, pointing at the tetrahedrite mineral series, similar to the phases observed in CHM 1, 5, 9 and 10 
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(Tables 4-6). These pale metal prills formed outside the slag matrix, in the cold ‘core’ of the location 5, and are 

surrounded by metallic particles of copper, interpreted above as very likely produced in situ. It is therefore 

equally likely that the antimonial copper prills were created in the same way, under conditions long and hot 

enough to ensure the in situ metal reduction but not the thorough melting of slag and copper in this location. 

Antimonial copper of this composition melts at around 650 °C, a temperature obviously exceeded in this spot as 

indicated by the prills’ shape. The occurrence of such a compositionally distinctive phase only in location 5 in 

sample CHM 11 matches the compositional variability of the mineral fragments presented above, and further 

corroborates the assumption of it representing an incomplete in situ smelting event, not reaching conditions 

sufficient to homogenise the molten metal beyond a fraction of a millimetre. Effectively, location 5 mirrors the 

diverse composition of a mineral association that included pure copper minerals as well as antimonial fahlore, 

similar to that already seen in the copper minerals from the same archaeological context of grave 5, building 

E.VI.1 (CHM 9, 10 and 12) and other contemporary buildings in Level VI. 

 

3.4. Metal beads 
We re-cast the existing blocks of the metal beads CHM 14, 15, 30, 34 and 35. These represent individual metal 

artefacts, barring CHM 15, which consists of four locations (2-5) (Fig. 6). CHM 13 and 16 (a metal bead from 

each assemblage) were analysed for their lead isotope ratios only.  

All beads were heavily corroded with little if any metal left. The surviving structure showed that they were 

worked into their shape by hammering, as seen in the orientation of (corroded) grains, e.g. in CHM 14, 15 (loc. 

3), 30, 34 and 35 (Figures 16a, 16d, 16g, 16h and 16i). Metal bead CHM 34 in particular preserved the elongated 

direction of grains in the corroded metallic structure, thus indicating the heavy hammering work conducted on it 

(Fig. 16h). A metal bead in CHM 15 (location 2, Figures 16b, 16c) has annealing twins in the preserved copper 

metal, indicating that the last working step for this artefact was heating above the recrystallization temperature 

for copper to soften the metal. Thus, the beads were made in a sequence of steps already recognised for copper 

beads from this site (Neuninger et al., 1964; Birch et al., 2013), and in Anatolia in general, from as early as the 

8th mill cal BC (e.g. Stech, 1990; Yalçın and Pernicka, 1999; Özdoğan and Özdoğan, 1999; Maddin et al., 1999). 

To produce these beads, native copper was hammered into sheet, divided into strips, rolled and cut, and 

subsequently worked and annealed. Although we were able to positively recognise this only in sample CHM 15 

(loc. 2), we are confident in the light of the regional and contemporary evidence that this working procedure was 

applied to all copper artefacts from the site of Çatalhöyük, too. 

LA-ICP-MS analysis of the metal phases in CHM 15 (locations 2 and 3) revealed pure copper metal, with very 

low concentrations of trace elements (Table 10, Fig. 17). From the pattern of the trace elements with silver and 

arsenic as the only elements that could be quantified (except for silicon, certainly part of the host rock), it can 

safely be concluded that this bead was made of native copper. 
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Figure 16: Photomicrographs of metal beads from Çatalhöyük taken under both plain (ppl) and cross polarised light 
(xpl). a) Photomicrograph of CHM 14 (magnification 100x, width 1mm, xpl). Note green corrosion inside a porous 
copper metal sheet; b) Photomicrograph of CHM 15, location 2 (magnification 25x, width 6.4mm, ppl). Note still 
preserved shiny copper metal amongst corrosion layers that outline a minimum of four structures/objects welded 
together due to post-depositional processes; c) Photomicrograph of CHM 15, location 2 (magnification 200x, width 
0.6 mm, ppl). Note the ‘natural’ etching effect coming out of an extensive polishing. The grain structure shows 
evidence of working/hammering and annealing; d) Photomicrograph of CHM 15, location 3 (magnification 50x, 
width 3.2mm, xpl). Note the shiny copper metal and the outlines of corrosion products revealing the circular shape of 
a metallic bead; e) Photomicrograph of CHM 15, location 4 (magnification 25x, width 6.4mm, ppl). Note at least 
three structures/objects that corroded together; f) Photomicrograph of CHM 15, location 5 (magnification 50x, 
width 3.2mm, xpl). Note the outline of a circular bead with several preserved spots of copper metal amongst 
corrosion products; g) Photomicrograph of CHM 30 (magnification 25x, width 6.4mm, ppl). Note the circular shape 
of a bead made out of corrosion only; h) Photomicrograph of CHM 34 (magnification 50x, width 3.2mm, xpl), Note a 
shape of a fragmented metal bead outlined with a corrosion product. The metallic part (in the middle) retained still 
visible shape of elongated grains in its structure, a result of an intensive hammering work conducted in order to gain 
a desired shape of this object; i) Photomicrograph of CHM 35 (magnification 50x, width 3.2mm, xpl). Note a thick-
walled metallic bead with corrosion layers growing out of folding lines (see top right for this detail). 
 

Metal beads CHM 13 and CHM 15 were studied for provenance with lead isotope analyses (Table 12). A 

comparison of the lead isotope ratios of the two samples with the available data of copper ores in Turkey 

(Seeliger et al., 1985; Wagner et al., 1986; Wagner et al., 1989; Yener et al., 1991; Begemann et al., 2003, and 
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unpublished data from Curt-Engelhorn-Zentrum Archäometrie, Mannheim) finds the closest parallels in 

northeastern Turkey at Murgul and Gümüshane in the Artvin province (Fig. 18). There is also one sample from 

Ikiztepe near Kirklareli in Turkish Thrace (Fig. 19) that seems to match but this is a rather unlikely provenance. 

However, when taking into account 204Pb in the denominator (Fig. 20), it is clear that no complete match is to be 

found in the available data. In this diagram the closest sample is from Esendegirmentepe in the Nigde province 

(Yener et al., 1991), which would also be geographically closest to Çatalhöyük, however, since other lead 

isotope ratios of these beads do not show consistency with this location, we must exclude it as a possible source. 

In summary, the geological origin of the studied samples remains unknown at this point. 

 

Figure 17: The orange circle indicates the location of copper metal phase analysed by LA-ICP-MS in sample CHM 
15 from Çatalhöyük. 
 

 

Figure 18: Overview lead isotope ratios of copper ore samples from Turkey compared with samples CHM 13 and 
CHM 16 from Çatalhöyük in red. 
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Figure 19: Detailed comparison of Turkish copper ores with the two samples CHM 13 and CHM 16 from 
Çatalhöyük in red. The red halos comprise data within 0.1% of the copper samples. No consistency has been found 
with the available dataset. 
 

 

 

Figure 20: Alternative diagram for the detailed comparison of Turkish copper ore with the two samples CHM 13 
and CHM 16 from Çatalhöyük (in red). The red halos comprise data within 0.1% of the copper samples. No 
consistency has been found with the available dataset. 
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4. Discussion  

The analyses above identify two distinctive groups of materials in the studied assemblage from Çatalhöyük: 

copper minerals and the ‘slag’ samples form one related category of materials, while copper metal beads make 

another.   

The underlying criterion that links the copper minerals with a ‘slag’ in the same group is the distinctive chemical 

signature dominated by copper, and also containing zinc, lead, antimony and arsenic. These elements were found 

in mineral-based samples CHM 1, 5, 9, and 10 (in various ratios), as well as in the glassy slag matrix and some 

metal prills in CHM 11. Although different minerals were identified in the samples, it is important to emphasise 

their close geological relationship in nature. Broadly speaking, they probably originate from a weathered 

hydrothermal copper deposit with lead and zinc-bearing sulfidic minerals including the tennantite and 

tetrahedrite series, like (antimony-bearing) enargite and other fahlore-type minerals. Specimens from such a 

deposit would also be aesthetically appealing, with a colour palette dominated by different shades of green (for 

instance from malachite), including shades from pale/yellow to metallic grey or black. Noteworthy in this 

context is the crumbly nature of studied minerals, which macroscopically finds parallel with the hand-crushed 

pigments deposited in a few Çatalhöyük burials (see Fig. 2).  

 

 
Figure 21: Photomicrographs of experimentally produced metallic globules ‘in situ’, in an hour long experiment in 
Serbia in 2013, taken under the plain polarised light (left: magnification 100x, width 1mm; right: magnification 
200x, width 0.5mm). Note similarity with Figures 12c or 12f. 
 

4.1. CHM 11: Metallurgical slag? 
This combination of elements closely links the mineral samples to the only ‘slag’ sample in the studied 

collection, CHM 11. It consists of finely scattered copper particles with discrete prills of a metal phase rich in 
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antimonial copper in location 5 (Table 11, Figures 12f, 12g). Its morphology and immediate surrounding appear 

as formed ‘in situ’ in an environment that did not reach full liquefaction, thus preventing a merging of the 

individual metal particles to a few larger prills. As an illustration to the ‘in situ’ solid state production of metallic 

copper, preserving the original outline of the copper mineral despite its reduction to copper metal, we show in 

Fig. 21 results from a copper smelting experiment conducted by the first author in Serbia in 2013. The slag 

produced after a short-lived thermal impact shows an incompletely liquefied area populated by small copper 

particles that transformed chemically from the initial copper oxide, but failed to amalgamate into larger prills. 

The principle of such solid-state metal reduction without producing a molten metal phase is well known from 

bloomery iron smelting, which produces very similar structures. 

 

Figure 22: The ternary plot of compositional values of Si/Al/Ti-Ca/Mg/P/K-Fe/Zn/As/Sb/Pb oxides in glassy slag 
matrices in CHM 11, locations 5, 8 and 11, plotted against values from the Vinča culture slags from the sites of 
Belovode, Vinča and Gornja Tuzla in Serbia and Bosnia and Herzegovina (data from Radivojević et al. 2010; 
Radivojević 2012; Radivojević 2015; Radivojević and Rehren 2016). All values re-cast as Cu-free oxides. 
 

Metallic particles of copper that possibly formed below melting temperature (cf. Pollard et al., 1991) are 

common throughout all locations in CHM 11, more often embedded in baked soils rather than proper slag. 

Islands of glassy slag matrix formed at the outskirts of only three out of fifteen locations within CHM 11, 

consisting of a ‘true’ slag phase with fully molten (antimonial) copper prills and newly-formed crystals of 

cuprite, delafossite and iron spinels. Their paragenesis in a slag matrix illustrates variable, and slightly reducing 

conditions, sufficient to smelt copper (cf. Elliott, 1976). However, despite the formal conditions for smelting 

being met, it is difficult to identify intentionality in this pattern. Another indicator of a haphazard nature of 
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exposure of different locations in CHM 11 to high temperatures is the slags’ diverse compositional patterns (Fig. 

14). The three locations with slag matrix in their outskirts differ considerably in their intake of the three major 

components in slag formation: minerals, fuel ash, and ceramic/soil. 

The compositional values extracted from these ‘islands’ of glassy slag matrices are corresponding well to the 

values obtained from c. 7000 years old metallurgical slag samples from three different Vinča culture sites in 

Serbia (Fig. 22), with which they also share common phase associations and textures (Radivojević et al., 2010; 

Radivojević, 2012; Radivojević and Rehren, 2016: 215 ff., Fig. 6). In effect, this ternary plot confirms that the 

glassy slag areas from CHM 11 are indeed similar to the earliest known metal smelting evidence to date. 

However, the context of the observed glassy matrices in Çatalhöyük’s CHM 11 and Vinča slag samples 

highlights important differences: while the Vinča slags, despite being highly viscous and heterogeneous, are 

liquefied throughout (Radivojević and Rehren, 2016), the slag in CHM 11 is a peripheral formation to a core that 

has not been exposed to the ash of some organic material near-by which acted as a flux to produce a liquid slag 

on the surface of some fragments. The haphazard nature of the slag phase formation in CHM 11 underlines the 

accidental nature of these three out of fifteen locations in the mentioned sample (Fig. 5). Their overall 

heterogeneous nature is a result of a compositional rather than a thermal gradient, even though the vitrification is 

predominantly on the surface of the fragments as if they were affected by a short direct exposure to fire. 

Compositional heterogeneity is a normal feature of a fine-grained rock or a powder with a mixture of minerals 

which on its surface was fluxed by ash, while the temperature would have been the same across such a small 

sample with minute size inclusions as in sample CHM 11 which was slowly baked as part of a burial affected by 

a major conflagration above it.  

In addition, the solid-state formation of metallic copper particles alongside similarly shaped antimonial copper in 

location 5 in CHM 11 illustrates the reduction of a mineral association that contained both pure copper minerals 

and a fahlore-type mineral, as seen in the copper mineral fragments (CHM 9, 10 and 12) from the same context. 

Thus, any artefacts made from metal smelted from such a mixed ore would inevitably contain noticeable 

concentrations of elements such as antimony or lead naturally present in the green-grey minerals, but none of 

these have been found in any of the analysed copper metal artefacts from Çatalhöyük. Instead, their composition, 

as determined by LA-ICPMS, matches that of native copper (see also Birch et al. 2013), indicating that the 

demand for metallic copper was met by sources of the native metal, and not through smelting of copper ores. 

We were unable to find evidence of an intentional smelting event at the site of Çatalhöyük directed towards 

extracting copper metal for further use. Therefore, we propose here that the ‘slag’ sample CHM 11 was produced 

accidentally, most likely when a collection of minerals was caught up in a fire event in building E.VI.1, earlier 

reported by Mellaart (1964: 85) as carbonizing skeletons and burial goods buried up to 3 feet (c. 90 cm) deep. 

Hence, the ‘slag’ sample (CHM 11) is best termed as a partially vitrified mixture of minerals and soil, which 
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happened to be the most heat-exposed specimen in the contextually associated collection of samples (CHM 9-

12).  

Considering the nature of their context and the miniature size of the studied ‘locations’, it appears very likely 

that these samples were originally deposited in the burial (Grave 5 from the central platform) as hand-crushed 

green or blue minerals, and then burned in a post-depositional fire. This matches the documented contexts of 

burial deposition of green (malachite) or blue (azurite) pigments that Mellaart reported (1964) as paint (on a 

skull) or as free lumps; similar finds originate from funerary contexts in the renewed excavations, too (Thornton, 

2001). Çamurcuoğlu (2015) documented powdered malachite and azurite pigments coated with clay and iron 

oxide particles, which match closely what we see in Figures 2, 9 and 10, although our samples appear more 

finely dispersed in soil. Although green stones were used for artefact (bead) making in Çatalhöyük, it is 

important to emphasise that those stones were not malachite, but apatite, or similarly green-coloured minerals, in 

line with the argument that green colour was more important than the mineral type (e.g. Bar-Yosef Mayer and 

Porat, 2008). However, malachite was used at Çatalhöyük as a pigment in burial contexts, on which we base our 

interpretation for the nature of CHM 9 -12 samples studied here. 

The copper metal beads analytically stand in stark contrast to all studied minerals, including the vitrified mineral 

CHM 11. The beads are all consistent with being made of native copper, clearly distinguishing them from the 

lightly antimonial copper seen in CHM 11. The composition and technology of working of these pure metal 

samples corresponds well with contemporary finds across Anatolia, while their provenance remains unknown.  

 

5. Conclusions 

For nearly half a century, Çatalhöyük has played a major role in the discussion of the inception of 

metallurgy, based primarily on the frequent reference Mellaart made to the occurrence of metal finds in layers as 

early as the 7th millennium cal BC, and the identification by Neuninger et al. (1964) of metallurgical slag in one 

of the samples they analysed. Careful reconciliation of the surviving documentation from Mellaart’s excavations 

with the material record demonstrated beyond doubt that Mellaart used the word ‘metal’ in a very liberal sense, 

clearly including different minerals in that category. Unfortunately, the excavation records do not allow to 

pinpoint individual samples to specific contexts within individual houses to the level of detail one would expect 

today; however, Mellaart’s enthusiasm to engage with scientific analysis at that time resulted in the survival and 

identification of this crucial and unique material. What remains particularly commendable is the great detail of 

excavation technique, which led to the recovery of miniature metallic samples from the soil, as exemplified in 

Fig. 5. 
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Detailed re-analysis of the CHM 9 -12 samples sent to Neuninger in the 1960s proved beyond doubt that only 

sample CHM 11 showed the formation of metallic copper from minerals, which prompted Neuninger et al. 

(1964) to define it as ‘metallurgical slag’. Indeed, three out of 15 fragments within sample CHM 11 closely 

match the chemical and microstructural features known from very early smelting slag elsewhere (Bachmann, 

1980; Müller et al., 2004; Höppner et al., 2005; Bourgarit, 2007; Radivojević et al., 2010; Radivojević, 2013), 

including the formation of small prills of antimonial copper and of a range of copper and iron oxides in a semi-

molten and compositionally heterogeneous siliceous matrix. The remaining fragments are rich in finely dispersed 

copper particles apparently reduced in the solid state from some secondary copper minerals, whose outer shape 

they sometimes retain, without agglomerating into prills. 

In the light of the analytical and contextual evidence, we interpret this material as the result of accidental copper 

reduction when some crushed green minerals in a burial context were baked in a post-depositional fire in 

dwelling E.VI.1 in Çatalhöyük, whose thermal effect reached not only these minerals/pigments, but also the 

bodies and burial items to a depth of at least 90 cm (see Mellaart, 1964; Angel, 1971; Burnham, 1965). These 

crushed green minerals might have been sprinkled over the body, or deposited in a pouch that decayed over time; 

the result of both processes would have been loose green mineral fragments (pigments?) scattered around the 

human remains. The accidental result of this event was the solid-state reduction of metallic (antimonial) copper 

and formation of peripheral copper slag in some of the surviving fragments. This process would have taken place 

in mildly reducing conditions created by the burning or charring of some organic matter in the burial; the ash of 

this would have led to the superficial vitrification (’slagging’) of some of the mineral-rich particles.  

Taken together, the evidence from Mellaart’s ‘metal’ samples therefore is consistent with our understanding of 

the selection and different treatment of green minerals and native copper during the 7th millennium BC in 

Anatolia and surrounding regions, rooted in earlier practice and continuing for another couple millennia. A link 

from this material to the inception of metallurgy, however, has been finally put to rest, effectively removing 

from the discussion the already much-damaged this ‘Exhibit #1’ for a single origin of metallurgy. Conversely, 

this leaves intact the notion of probably independent origins of metallurgy in the Balkans and possibly Iran c. 

1500 years later, at the turn of the 6th to the 5th millennium BC. It is beyond the remit of this paper to explore the 

socioeconomic and technical conditions leading to this broadly synchronous emergence of metallurgy in 

geographically widely separated regions. However, accepting multiple origins of metallurgy enables us to 

advance the focus of our research onto those parameters, which these progenitor cultures and metalliferous 

regions share, in order to identify the essential conditions leading to the invention and innovation of the 

controlled smelting of metal. 
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Box (Section) No. Description Material characterisation Publication 

CH 5/88 Ore from Shrine A.VI.1 
  

CHM 1 1 round block Cu-based mineral 
 

CHM 2 2 halves of a large mineral (polished and unpolished) Cu-based mineral 
 

CH 2/88 Copper lumps from Grave 2 in  E.VI.8 
  

CHM 3 1 block Cu-based mineral 
 

CHM 4 1 block Cu-based mineral 
 

CH 5/88 Ore lump from House E.VII.10 
  

CHM 5 1 block Cu-based mineral 
 

CHM 6 remaining fragment Cu-based mineral 
 

CH 2/88 Copper lumps with soil from House E.VII.10 
  

CHM 7 1 Phial Cu-based material 
 

CHM 8 1 Phial Cu-based material 
 

CH 6/88 House E.VI.1. Grave 5, Central Platform 
  

CHM 9 1 Phial Cu-based material  

CHM 10 1 block A Cu-based material  

CHM 11 1 block B copper slag' Neuninger et al. 1964 

CHM 12 1 Block C Cu-based material 
 

CH 1/88 Beads from the grave in the northern corner in Shrine A.VI.1 
  

CHM 13 1 Phial copper metal 
 

CHM 14 1 block copper metal 
 

CHM 15 1 block (shared with large bead CHM 30) copper metal 
 

CHM 16 1 can copper metal 
 

CH 4/88 Lead from Grave E.VI.29 
  

CHM 17 1 block, 7/1 galena Sperl 1990 

CHM 18 1 block, 7/2 galena Sperl 1990 

CHM 19 1 block, 7/4 galena Sperl 1990 

CHM 20 1 Phial /5 galena Sperl 1990 

CHM 21 1 Phial /6 galena Sperl 1990 

CHM 22 1 Phial /7 galena Sperl 1990 

CHM 23 1 Phial /8 galena Sperl 1990 

CHM 24 1 block, 7/3 galena Sperl 1990 

CHM 25 1 block galena Sperl 1990 

CHM 26 1 block (Pb CH 13.6.80) galena Sperl 1990 

CHM 27 1 block (CH3393 27.8.87) modern slag 
 

CHM 28 1 free sample of lead? galena? 
 

CH 1/88 Shrine E.VI.31, 2 beads from the burial 
  

CHM 29 1 Phial copper metal 
 

CHM 30 1 block (shared with beads CHM 15) copper metal 
 

CH 7/88 Level VI 
 

“Pittioni 1963” (?) 

CHM 31 1 large block a haematite 
 

CHM 32 1 large block b haematite 
 

CHM 33 1 large block c Cu-based material 
 

CHM 34 1 small block a copper metal 
 

CHM 35 1 small block b copper metal 
 

CHM 36 1 Obsidian obsidian 
 

CHM 37 a green object bone in contact with malachite? 
  

Table 1: Çatalhöyük samples available for analyses from the Austrian collection (partially published in Neuninger 
et al. 1964). Please note that we were not able to locate reference “Pittioni 1963”, written down next to the CH 



Levels No. of Shrine (Mellaart 1967: 
81, Tab. 13) 

‘metal’ 

Finds available for study from Neuninger et al. (Table 1) 

   Cu mineral Galena Metal Slag (?) Other 

II A.II.1 X      

IV E.IV.8 X      

VI (B) E.VIB.1 X 3   1  

VI (B) E.VIB.8 X 2     

VI (B) E.VIB.10 X      

VI (B) E.VIB.12 X      

VI (B) E.?VIB.29 X  dozen beads   modern slag 

VI (A&B) E.VI.31 X   2 beads   

VI (A&B) A.VI.1=E.VI.61=A.VI.61 X 2  dozen beads   

VI un-provenanced  1 (2)  2  obsidian, haematite, bone 
fragment? 

VII E.VII.10  2 (1) + 4     

VII E.VII.35 X      

IX E.IX.1 X      

 

Table 2: Table associating shrines with the presence/absence of metal finds (according to Mellaart 1967: 81, Tab. 13, presence marked with X) 
and number of samples available for study, separated by the material type: Cu mineral, galena, metal, slag (?) and other.  Note that no material 
marked initially by Mellaart as ‘metal’ is available from Shrines A.II.1, E.IV.8, E.VI.B.10, E.VI.B.12, E.VII.35 and E.IX.1.  

 

!

!



7/88, Level VI in the original documentation. Samples marked as bold were (re)analysed, while samples in italic 
(CHM 2, 6-8, 29) were characterised only macroscopically. 

 

 

 
Al Si S K Ca Fe Cu Zn Sb O 

sample at% at% at% at% at% at% at% at% at% at% 

CHM3 1.4 3.4 0.0 0.1 0.0 0.3 42.9 0.0 0.0 52.0 

stdev.s 0.9 1.5 0.0 0.2 0.0 0.6 3.1 0.0 0.0 0.7 

CHM4 1.6 7.5 0.8 0.1 0.2 0.7 34.2 0.0 0.0 54.9 

stdev.s 1.2 2.0 0.2 0.3 0.3 0.5 1.6 0.0 0.0 0.7 

CHM 9 0.0 0.0 0.0 0.0 0.0 0.0 49.5 0.4 0.1 50.0 

stdev.s 0.0 0.0 0.0 0.0 0.1 0.0 0.6 0.5 0.2 0.1 

CHM10 0.0 0.0 0.0 0.0 0.1 0.0 48.8 1.1 0.0 50.0 

stdev.s 0.0 0.0 0.0 0.0 0.2 0.0 1.5 1.5 0.0 0.0 

CHM 33 0.0 0.0 0.0 0.0 0.0 0.0 55.0 0.0 0.0 45.0 

stdev.s 0.0 0.0 0.0 0.0 0.0 0.0 7.5 0.0 0.0 7.5 

!

Table 3: SEM-EDS compositional data for green phases in copper-based minerals from Çatalhöyük, normalised to 
100%. As and Pb values were below the detection limit of 0.1 wt%. All values are given as stoichiometrically 
calculated at% averages and sample standard deviation.  
!

!

 
Si Ca Mn Fe Cu Zn As Sb Pb O 

sample at% at% at% at% at% at% at% at% at% at% 

CHM 9 2.8 9.1 0.0 0.9 2.0 0.0 0.0 22.8 5.4 57.1 

stdev.s 0.0 0.2 0.0 0.1 0.8 0.0 0.0 0.4 0.1 0.1 

CHM 10 0.9 3.8 0.0 0.9 16.7 0.5 9.8 6.6 6.3 54.5 

stdev.s 0.8 1.0 0.0 0.4 2.2 0.8 2.7 4.0 0.9 0.7 
!

Table 4: SEM-EDS compositional data for white/bright phases in copper-based minerals CHM 9 and CHM 10 
from Çatalhöyük, normalised to 100%. All values are given as stoichiometrically calculated at% averages and 
sample standard deviation. 

 

 
Si Ca Fe Cu Zn As Sb O 

 
at% at% at% at% at% at% at% at% 

CHM1 dark grey 0.0 0.2 0.3 46.1 0.3 2.5 0.0 50.6 

stdev.s 0.0 0.2 0.3 4.5 0.5 2.9 0.0 0.7 

CHM 1/5 light grey 0.2 0.4 0.2 24.4 5.5 14.2 1.1 53.9 

stdev.s 0.4 0.7 0.4 1.6 1.0 1.0 1.2 0.2 
 



Table 5: SEM-EDS compositional data dark (CHM 1) and light phases in CHM 1 and CHM 5, normalised to 
100%. All values are given as stoichiometrically calculated at% averages and sample standard deviation. 

 

 
S Fe Cu Zn As Sb 

 
at% at% at% at% at% at% 

CHM 1 45.5 3.2 34.2 3.2 5.0 8.9 

stdev.s 0.3 0.2 0.4 0.2 0.2 0.2 

CHM 5 45.3 2.0 35.1 3.6 5.4 8.7 

stdev.s 0.3 0.1 0.2 0.2 0.2 0.2 
 

Table 6: SEM-EDS compositional data for pale/white phases in CHM 1 and CHM 5, normalised to 100%. All 
values are given as at% averages and sample standard deviation. 

 

 
Na2O MgO Al2O3 SiO2 P2O5 SO3 K2O CaO TiO2 MnO FeO CuO ZnO PbO 

 wt% wt% wt% wt% wt% wt% wt% wt% wt% wt% wt% wt% wt% wt% 

loc 5 1.3 5.9 2.9 45.5 2.2 0.0 0.6 23.4 0.0 0.0 2.8 8.2 6.9 0.4 
stdev.s 1.2 1.1 0.8 8.5 0.5 0.0 0.2 4.0 0.0 0.0 0.8 3.8 1.6 0.7 
loc 8 2.6 2.3 12.4 50.2 1.3 0.0 2.8 6.0 1.0 0.0 10.3 11.0 0.0 0.0 

stdev.s 0.2 0.5 0.9 9.4 0.5 0.0 0.5 2.5 0.2 0.0 6.3 2.5 0.0 0.0 
loc 11 0.7 2.2 8.0 45.8 3.7 0.3 1.7 4.8 0.1 0.0 26.2 6.5 0.0 0.0 
stdev.s 1.0 0.5 2.0 15.1 1.2 0.7 0.3 1.0 0.2 0.0 10.5 1.9 0.0 0.0 

!

Table 7: SEM-EDS compositional data for bulk slag analyses in areas varying from c. areas varying in size from c. 
50 x 50 microns to 100 x 100 microns in locations 5, 11, and 8 in CHM 11, normalised to 100%. As and Sb values 
were below the detection limit of 0.1 wt%. All values are given as averages and sample standard deviation. 

!

 
Na2O MgO Al2O3 SiO2 P2O5 SO3 K2O CaO TiO2 MnO FeO CuO ZnO PbO 

 wt% wt% wt% wt% wt% wt% wt% wt% wt% wt% wt% wt% wt% wt% 
loc 5 0.4 5.7 3.6 45.3 2.9 0.0 0.7 23.0 0.0 0.0 3.4 7.6 7.4 0.1 
stdev.s 0.8 0.9 0.8 2.1 0.7 0.0 0.2 4.5 0.0 0.0 0.8 3.2 0.9 0.3 
loc 8 0.6 2.9 13.6 48.7 1.4 0.1 3.0 6.8 1.1 0.0 8.8 12.7 0.0 0.4 
stdev.s 1.0 0.5 5.1 4.2 0.6 0.3 0.7 2.2 0.5 0.0 3.3 3.3 0.0 0.6 
loc 11 1.2 3.1 11.8 39.0 5.1 0.0 2.1 6.2 0.5 0.0 29.8 1.2 0.0 0.0 
stdev.s 0.3 0.3 1.3 0.8 0.6 0.0 0.4 0.5 0.1 0.0 2.3 0.4 0.0 0.0 

!

Table 8: SEM-EDS compositional data (spot analyses) for the glassy slag matrix in CHM 11 (locations 5, 8 and 
11), all normalised to 100%. As and Sb values were below the detection limit of 0.1 wt%. All values are given as 
averages and sample standard deviation. 

 

 



 

 
Mg Al Si P S K Ca Fe Cu O 

 
at% at% at% at% at% at% at% at% at% at% 

location 8 delaf 0.0 2.7 0.0 0.3 0.0 0.1 0.2 23.5 22.2 50.9 
stdev.s 0.0 0.6 0.0 0.4 0.0 0.1 0.3 0.9 1.7 0.4 

location 11 delaf 0.0 1.9 0.3 0.0 0.4 0.0 0.8 21.8 23.8 51.0 
stdev.s 0.0 0.1 0.4 0.0 0.0 0.0 0.6 1.5 0.3 0.2 

location 11 spinel 0.6 1.9 4.4 1.0 0.1 0.3 1.3 34.6 2.6 53.4 
stdev.s 0.6 0.7 2.9 0.2 0.1 0.2 0.6 6.5 1.3 1.4 

location 15 spinel 0.0 2.1 0.8 0.3 0.0 0.0 0.1 30.7 14.7 51.2 
stdev.s 0.0 1.9 0.7 0.3 0.0 0.0 0.1 2.2 2.1 1.0 

 

Table 9: SEM-EDS compositional data for delafossite in locations 8, 11 and iron spinels in locations 11 and 15 in 
CHM 11. All values are given as stoichiometrically calculated at% averages and sample standard deviation. 

 

  Mg Al Si P Mn Fe Co Ni Cu Zn As Se Ag Cd Sn Sb Te Au Pb Bi 

Lab-ID mLoD 1 13 300 70 3 60 0.6 22 6 2 3 10 2 0.4 1 0.2 0.8 1 1 0.04 

MA-152378 CHM 11 <LoD <LoD <LoD <LoD <LoD <LoD <LoD 250 992000 6 1400 15 17 <LoD <LoD 6100 <LoD <LoD 58 1.84 

MA-152380 CHM 15_30 <LoD <LoD 195 <LoD <LoD <LoD <LoD <LoD 1000000 <LoD 24 <LoD 320 <LoD <LoD <LoD <LoD <LoD <LoD <LoD 

 

Table 10: LA-ICP-MS compositional data for copper metal phases in CHM 11 (location 5) and CHM 15 (this 
sample is in the same resin block as CHM 30, hence the label). All values are given in µg/g. 

 

 
O S Ca Fe Cu Zn As Sb Pb 

 
at% at% at% at% at% at% at% at% at% 

light grey 3.8 0.5 0.0 0.0 70.0 0.0 0.3 24.7 0.7 
stdev.s 1.3 0.5 0.0 0.0 2.3 0.0 0.4 1.1 0.7 
grey 4.2 0.0 0.0 0.0 55.1 0.0 0.0 26.2 14.5 

stdev.s 1.5 0.0 0.0 0.0 7.0 0.0 0.0 2.9 4.8 
 

Table 11: SEM-EDS compositional data for optically pale metal prills with light grey and grey eutectic in the 
middle of location 5, sample CHM 11 (see Fig. 13g). All values are given as at% averages and sample standard 
deviation. 

 

Lab no. Original 
ID 

208Pb/206Pb 
mean 

208Pb/206Pb 
2σ 

207Pb/206Pb 
mean 

207Pb/206Pb 
2σ 

208Pb/204Pb 
mean 

208Pb/204Pb 
2σ 

207Pb/204Pb 
calc mean 

207Pb/204Pb 
calc 2σ 

206Pb/204Pb 
calc mean 

206Pb/204Pb 
calc 2σ 

MA-161935 CHM 13 2.0803 0.0001 0.84255 0.00001 18.620 0.001 38.735 0.006 15.688 0.001 

MA-161936 CHM 16 2.0781 0.0001 0.84187 0.00001 18.636 0.001 38.726 0.006 15.689 0.001 

 

Table 12: Lead isotope ratios of copper metal beads CHM 13 and CHM 16.  
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Supplementary text 

Introduction to the site 

James Mellaart began excavations at Çatalhöyük in 1961 (Mellaart, 1962). Prior to this, he had 

already taken part in several excavations (Balter, 2005: 18), as well as directing his own 

excavations at Chalcolithic Hacilar (Mellaart, 1960), which enhanced interpretations of the 

development of early urban settlements, the appearance of domesticated plants and animals, and 

the accompanying material culture that these discoveries entailed. Because of his survey work of 

the site in 1958 (Mellaart, 1961: 158), Mellaart had a foretaste for what to expect at Çatalhöyük 

and what it should unveil in terms of early pottery production, stone and lithic technology, 

symbolism and metallurgy. In his first preliminary report Mellaart (1962: 41) states: “As Hacilar 

showed a gap in its culture sequence exactly during the Early Neolithic period, which finds 

showed was best represented at Çatal Hüyük, it was decided to start excavations at this site to 

complete the sequence and throw further light on Hacılar”.  

Mellaart defined two types of buildings: ‘shrines’ and ‘houses’. These were differentiated by 

several factors: shrines were identified by the ‘richness’ of decoration; the presence of wall-

paintings of an elaborate nature that have apparent ritual or religious significance; plaster reliefs 

showing deities, animals or animal heads; horns of cattle set into benches; rows of bucrania and 

groups of cult statues found in the main room; ex-voto figures stuck into the walls; human skulls 

set up on platforms, etc. According to Mellaart (1967: 78), all these features do not occur in 

‘normal’ houses and the combination of several of these factors is taken as leaving “little doubt 

that the building in which they are found was used as a cult room or shrine” 

Excavations and research conducted under the directorship of Ian Hodder (1993 - current) 

reviewed these distinctions and led to a preference for a non-hierarchical classification of 

‘building’, which will be used here. This was based on the criteria that the internal plan and 

furnishing of all buildings indicated a uniformly domestic function. The criteria that Mellaart had 

defined were not incorrect but demonstrably all buildings contain a degree of elaboration. 

Current studies, drawn on statistical variations in ‘elaboration’ to define architectural or social 

rank at the site, have introduced the concept of ‘history houses’ (Hodder and Pels, 2010) in place 

of ‘shrines’, thereby removing the presumed religious connotation but acknowledging 

distinctions that Mellaart had rationalised.  
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On fire in Level VI 

Current discourse on burnt buildings from the renewed excavations centre around the debate of 

deliberate versus accidental burning of buildings (Cessford and Near, 2005; Twiss et al., 2008). 

So far, these attest to the clustering of burnt buildings around the Level VI horizon. The fires, 

however, appear to have occurred on a house-by-house basis and there is no clear evidence to 

resolve how they took to flame (Harrison et al., 2013; Farid, 2014: 393). The forensic fire 

examination of these burnt buildings conducted by Harrison et al. (2013) identified a range of 

mechanisms by which buildings burned at Çatalhöyük involving ‘compartment’ and 

‘combustion’ fires, which depend on fuel load and thermal characteristics. Experimental work 

conducted to assess the ability to raise subsurface deposits to such temperatures that fully charred 

skeletal remains and, in some cases carbonised brain tissue, was undertaken on porcine brain 

tissue. It demonstrated that a temperature of c. 300 °C must be maintained over about a two-hour 

period for the brain tissue to be carbonised but to char bone 30 kg of timber was required to fuel 

a fire over an eight-hour period. The conclusion is that the duration of burning was the dominant 

variable in producing carbonisation rather than the peak temperature achieved. 

Chronology of the metallurgical finds  

Since the first excavations on the site, the twin planks of chronology at Çatalhöyük have been the 

deep relative sequence provided by archaeological stratigraphy and radiocarbon dating. 

Combining these two strands of information to provide a calendar timescale for the mound has 

always been a central objective for research on the site. Between 1963 and 1968 Mellaart 

obtained 27 radiocarbon dates from the University of Pennsylvania radiocarbon laboratory 

(Stuckenrath and Ralph, 1965; Stuckenrath and Lawn, 1969). Eight of these measurements come 

from buildings that contained metallurgical finds.  

Arising from further excavations in Mellaart’s Area E in the 1990s, 42 AMS measurements were 

obtained and a Bayesian model constructed for Mellaart’s sequence of Levels (Göktürk et al., 

2002; Cessford, 2005). Although 23 of these measurements came from new excavations on the 

remnants of buildings and courtyards recorded by Mellaart, only the wiggle-match sequence 

from a charred juniper post in E.IV.1 is relevant to this study. This timber formed part of a 577-

ring floating tree-ring chronology (Kuniholm and Newton, 1996; Newton and Kuniholm, 1999; 
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Cessford, 2005: 79-81) that contained timbers from two buildings that contained metallurgical 

finds. 

A new programme of radiocarbon dating and Bayesian modelling for the east mound at 

Çatalhöyük is currently underway. This is attempting to combine the stratigraphical sequence of 

buildings and open areas with a large series of carefully selected radiocarbon dates, from both 

the current excavations and the 1960s archive. The stratigraphic analysis has been immeasurably 

aided by the addition of 27 large-scale original plans of the 1960s excavations, kindly provided 

by James Mellaart before his death. Both the radiocarbon dating and stratigraphic programmes 

are on-going and only partially reported (Bayliss et al., 2015; Marciniak et al., 2015), but so far 

this project has obtained radiocarbon dates for four buildings from which Mellaart reports 

metallurgical finds and has stratigraphic evidence allowing seven to be included in the working 

Bayesian chronological model. 

Radiocarbon dates quoted in normal type in this paper have been calibrated using the maximum 

intercept method (Stuiver and Reimer, 1986); ranges in italics are formal Highest Posterior 

Density intervals from the recalculation of the wiggle-match presented by Cessford (2005) using 

IntCal13; dates cited in italics as ‘circa’ or as ‘centuries cal BC’ are tentative date estimates 

derived from the interim modelling of the east mound sequence. This is based both on an 

incomplete suite of radiocarbon dates and incomplete stratigraphic analysis, and so informal date 

estimates have been provided to avoid over-interpretation at this stage of research. All 

calculations have been undertaken using IntCal13 (Reimer et al., 2013) and OxCal v4.2 (Bronk 

Ramsey, 2009) 

Five buildings with metallurgical finds currently have no radiocarbon dates. E.VII.35 is a 

stratigraphically isolated building that was on the surface of the mound. E.VI.5 was also on the 

surface, but is later than E.VII.5 (partially excavated and recorded between 1995 and 2002 as 

Sp.169) (Farid, 2007b: 325-326). E.VI.31 and E.IV.8 form part of a superimposed stack of six 

buildings, neither is dated, but E.IV.8 is later than E.VI.31 with E.V.8 in between. E.VIB.12 is 

part of a superimposed stack of four buildings and an open area. It is earlier than E.VIA.12, 

which was on the surface and is currently undated, and later than E.VII.12. The remnants of this 

building were investigated in 1995 and 1998 (as B.40) (Farid, 2007b: 313-320), demonstrating 

that in the earlier part of its occupation it was joined to E.VII.2 by an access hole. This building 
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in turn, was later than court E.VIII.12 (investigated as Sp.115). The preliminary model from the 

new dating programme currently suggests a terminus post quem of c. 6600 cal BC for E.VIB.12. 

A bulk sample of charred grain from bin or hearth in building A.II.1 produced a date of 6490–

6230 cal BC (at 2σ, P-796, 7521±77 BP), and a sample of charred human brain from skeleton 3 

in building E.VI.1, which was ‘found under central platform where stratification of skeletons 

indicates that this burial was rather early in the sequence found there’ and was accompanied by a 

necklace of black beads (Stuckenrath and Ralph, 1965: 192), provides a date of 6600–6240 cal 

BC (at 2σ, P-827, 7579±89 BP). The grave containing ‘many fragments of a string-skirt the ends 

of which appear to have been encased in thin copper tituli to weight it down’ (Mellaart, 1963: 

101) was discovered in 1962 and therefore came from E.VIA.25. A sample of carbonised grain 

from this building has been dated to 6510–6240 cal BC (at 2σ; P-769, 7505±93 BP).  

Three further measurements come from charred timbers, two of which have been incorporated in 

the floating tree-ring ring sequence produced by dendrochronology, which is currently dated by 

radiocarbon wiggle matching. One of these, a juniper roof beam from A.VI.1 (previously dated 

by P-770, 7912±94 BP), was complete to bark and so was felled in 6515–6435 cal BC (95% 

probability; CTL-6) (cf. Cessford, 2005: Fig. 4.4). This is compatible with a date of 6560–6220 

cal BC (at 2σ; P-781, 7525±90 BP) from an oak roof beam from the same building. The 

possibility that the timber was reused in A.VI.1 cannot, of course, be dismissed. A juniper post 

from E.VIB.10 (previous dated by P-777, 7704±91 BP) was missing an unknown number of 

rings and so thus felled after 6605–6525 cal BC (95% probability; CTL13&14) (cf. Cessford, 

2005: Fig. 4.4).  

This date for E.VIB.10 is compatible with a new series of measurements from human burials and 

articulating animal bone from E.VII.10 beneath (the remnants of this building were excavated as 

B.24 in 1998) (Farid, 2007b: 330-337). These suggest that the use of this building centered on 

the 67th century cal BC, perhaps suggesting that CTL13&14 from the succeeding building had 

not lost many rings before sampling and came from a freshly felled timber. E.IX.1 and E.VIB.8 

also appear in the new dating programme. Excavations in 1999 demonstrated that E.IX.1 (B.22) 

was one build with E.IX.8 (B.16) and recorded a small area of surviving deposits in the latter 

(Farid, 2007a). This building is securely stratified in a column of six buildings recorded by 

Mellaart (the second of which is E.VIB.8), which can in turn be related to the 1999 deep 
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sounding (Bayliss et al., 2015) and a series of overlying middens (Regan, 2014). Preliminary 

modelling from the new dating programme suggests that use of E.IX.1 centred on the 68th 

century cal BC (the existing result (P-779, 8190±99 BP) either being from the centre of a long-

lived tree or from a reused timber), and that E.VIB.8 was used in the latter part of the 67th 

century cal BC. Some radiocarbon results are now also available from the sequence of eight 

buildings and open areas that include E.VI.29, all from material surviving in the 1960s archive. 

Preliminary modellings suggests that E.VI.29 may have been in use in the generations around 

6600 cal BC.  

A summary of the chronology of the dated buildings with metallurgical finds is provided in 

Figure 4 in the main text. It is clear that Level VI does not form a concentrated chronological 

horizon. A.VI.1, for example, appears to be about a century later than E.VIB.8 and E.VIB.29, 

and overall buildings assigned to Level VI appear to fall anywhere between the 67th and 64th 

centuries cal BC. On currently evidence, it appears that metallurgical finds occur at Çatalhöyük 

across most of the seventh millennium cal BC. 

Characterisation of materials 

All samples were received as mostly polished blocks (with one to several samples embedded in 

each epoxy resin blocks, see for example Fig. 3), several phials and a can with a dozen mineral 

and metal beads, as well as freestanding samples with or without plastic bags. They were packed 

in four customised boxes (Fig. S1), the lids of which were marked with red pen delineating 

sections labelled with CH 1/88 to CH 7/88 and accompanied with a document explaining the 

content of the boxes and related enumerations (see also Table 1). We re-polished the already 

prepared samples in epoxy resin (twenty two blocks, some re-mounted) and made one new block 

from a sample coming from the ‘pyrometallurgical’ batch (CHM 9 as newly mounted in addition 

to already mounted CHM 10-12, see Table 1). 

On modern slag piece (CHM 27) 

Noteworthy is the sample of an industrial slag labelled here as CHM 27 (Fig. 5 in the main text). 

Although it came with the Çatalhöyük material, we concluded that it probably ended up in this 

collection by mistake. The first indication was the label; it revealed the date (27.8.87) different 

from the sample that certainly belonged to the Çatalhöyük project (Pb CH 13.6.80). Also, the 
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first part of the label of an industrial slag piece being CH(3393) could have confused a person 

that dealt with the materials stored for almost 50 years in the Institute for Prehistory and 

Historical Archaeology at the University of Vienna in Austria. Furthermore, compositional 

analyses done by SEM-EDS revealed ferrosilicon droplets suspended in a glass matrix made of 

iron alumina silicates. Ferrosilicons with the content of c. 45 wt% in CHM 27 are known to be 

made in modern electric arc furnaces, which makes them an unlikely find from c. 8500 years 

ago.  

 
Figure S1: Four double-layered accustomed boxes of Çatalhöyük materials as they reached the UCL Institute 

of Archaeology in 2010. 

 

Methodology 

Sampling and Preparation 

The research collection was appropriately catalogued, measured and photographed prior to 

sample preparation and analysis. This stage was followed by a careful designing of analytical 

strategy for each sample.  

We decided to either re-polish or re-cast the ‘old’ blocks with Çatalhöyük samples and later 

include any additional samples that we deem important for further inspection. The only sample 
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that we freshly made was CHM 9, which came from the batch of samples indicative of high-

temperature treatment. We initially tested all five samples belonging to the pack we labelled as 

CHM 9 for magnetic properties, and upon finding that none of them was responsive, we chose 

the largest item from the assemblage for casting in epoxy resin.  

Samples selected for further microstructural and compositional study were ground using abrasive 

disks (1200, 2400 and 4000 grit) and polished using diamond pastes (1 µm and ¼ µm). Mounted 

polished blocks were washed in an ultrasonic bath and rinsed with ethanol between each 

polishing stage. As polished blocks they were suitable for the initial analytical stage, reflected 

light microscopy (OM), with photomicrographs taken on the Leica and Olympus microscopes at 

25x, 50x, 100x, 200x, 500x and 1000x. In the following analytical stage, compositional analysis, 

samples were carbon-coated to be suitable for examination under the Scanning Electron 

Microscope with Energy Dispersive Spectrometer (SEM-EDS). Both preparation and OM and 

SEM-EDS analyses were conducted at the Wolfson Archaeological Science Laboratories, UCL 

Institute of Archaeology, London. 

Microstructural Analysis 

Analyses of microstructures were conducted primarily with optical microscopy (OM), while 

SEM-EDS played only a minor role in distinguishing phases in the studied samples. Optical 

microscopy is an established method in archaeometallurgy for studying optical properties of 

geologically-formed minerals (e.g. oolithic formations) or artificially generated phases (e.g. 

crystals in the slag matrix). These properties were used to identify which minerals/phases were 

present in the sample and inform on their generation. OM analyses were conducted on all 

polished blocks, Leica DMLM microscope (Table S1). 

Compositional Analysis 

SEM-EDS 

SEM-EDS was used to chemically characterise the phases present in the samples and assess their 

relation to the given analytical context (Table S1). It was applied for analysing all types of 

materials mounted in polished blocks. All polished blocks were carbon-coated, and analysed 

under the same conditions: accelerating voltage of EDS was 20 kV, with an average deadtime of 

35-40% and working distance of 10 mm. The analytical volume of the beam varied depending on 
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the density of the analysed material. For metallic phases, its diameter is in the range of 2 µm, 

while for lighter phases/materials such as slag or ceramic, it is nearer 5 µm. BSE imaging was 

used as default for faster recognition of samples’ components. The data processing was 

controlled by INCA X-cite software, which processes, displays and stores the images and spectra 

acquired by the analyser. Cobalt standard is used to calibrate the EDS analyser, which was 

scanned at the beginning of each session to guard against analytical drift. The acquired spectra 

from all analysed samples were carefully checked for every detected element, and particularly 

visually searched for the following elements: Mn, Fe, Co, Ni, Cu, Zn, As, Sn, Sb, and Pb.  

Provenance analysis 

MC-ICP-MS  

For the purpose of this research 4 samples in total were analysed for their lead isotope abundance 

ratios (Table S2) on the Multi-Collector Inductively-Coupled Plasma Mass Spectrometer (MC-

ICP-MS), located at the Centre for Archaeometry in Mannheim. This instrument is a hybrid mass 

spectrometer with an advantage to analyse a broader range of elements than TIMS, commonly 

used in the past for lead isotope measurements. Its primary components are an ICP source (where 

ions are produced, accelerated, focused), an analyser (where ions are filtered to be separated 

based on their mass ratios), and a series of collectors (where the ion beams are measured 

simultaneously). The sample preparation and analyses were done according to the standard 

procedure explained in Niederschlag et al. (2003). 

LA-ICP-MS 
Laser Ablation Inductively-Coupled Plasma Mass Spectrometer was used for trace element 

analysis. The instrumentation was a Thermo X-Series II inductively- coupled plasma mass 

spectrometer coupled with a Resonetics laser ablation system (ArF, 193 nm). The parameters of 

the ICP-MS are optimized to ensure a stable signal with a maximum intensity over the full range 

of masses of the elements and to minimize the formation of oxides and double-ionized species. 

The diameter of the laser beam and thus the analyzed sample area was 100 µm. Quantification 

was carried out using ablation yield correction factors with normalization of the major 

components to 100 % (Kovacs et al., 2009). 
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Instruments Aim of Analysis Analytical Parameters 
Reflected Polarized Light 
Microscopy 
(Leica DMLM) 
 

Phase identification and visual 
characterisation of microstructure  

Plane polarized light and crossed 
polarized light were applied to 
examine phases in samples, their 
colour, homogeneity, porosity and 
inclusions (shape, size and 
uniformity). Cross-polarized light was 
also applied for internal reflection and 
identifying the composition of phases 
present. The microscope was 
equipped with a Nikon digital camera, 
with the highest magnification of 
1000x.  

SEM-EDS 
Scanning Electron 
Microscopy with Energy 
Dispersive Spectrometry 
(Superprobe JEOL- JXA-
8600) 

1. Phase identification in 
samples using electron 
images and area/point 
analyses 

2. Quantitative compositional 
analyses of observed phases  

3. Observation of the 
relationships between 
phases on the basis of their 
atomic number contrast 

Backscattered electron (BSE) 
imaging used. The accelerating 
voltage was 20 kV, with average 
dead-time of 35-40 % and working 
distance of 10 mm. The analytical 
volume of the beam depended on the 
density of analysed material, for 
metallic phases its diameter was c. 2 
µm, and for lighter materials (ie. 
slag), nearer 5 µm. All data are 
presented as normalized with 
stoichiometrically added oxygen, if 
not otherwise stated. The iron content 
is presented as FeO, which here 
stands for total iron (both valencies). 

ICP-MS  
Inductively Coupled 
Plasma Mass 
Spectrometry 
(Neptune Plus HR-MC-
ICP-MS) 
 

Lead isotope analysis The samples were dissolved in diluted 
HNO3 and lead was separated with 
ion chromatography resins from the 
matrix. Each sample was measured 
once, however in 3 runs. 
 

LA ICP-MS 
Thermo X-Series II 
inductively- coupled 
plasma mass 
spectrometer coupled 
with a Resonetics laser 
ablation system (ArF, 
193 nm) 
 

Compositional analysis of copper 
metal phases in CHM 11 and 
CHM 15 

Q-ICP-MS in time resolved mode; 
forward power 1400W, nebulizer gas 
(Ar) 0.8 l/min, cooling gas (Ar) 13 
l/min.  
The diameter of the laser beam and 
thus the analyzed sample area was 
50 µm. Laser settings: 8 mJ, 
repetition rate 5 Hz, helium gas flow 
600 ml/sec. in. 

 
Table S1: Analytical instruments used in this study, aim of analysis and relevant analytical parameters. 
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Label UCL Material characterisation polished block OM SEM LIA LA-ICP-MS 

CHM1 Cu-based mineral YES X X   
CHM2 Cu-based mineral      
CHM3 Cu-based mineral YES X X   
CHM4 Cu-based mineral YES X X   
CHM5 Cu-based mineral YES X X   
CHM6 Cu-based mineral      
CHM7 Cu-based material      
CHM8 Cu-based material      
CHM9 Cu-based material YES X X   

CHM10 Cu-based material YES X X   
CHM11 copper slag' YES X X  X 

CHM12 Cu-based material YES X    
CHM13 copper metal NO   X  
CHM14 copper metal YES X X   
CHM15 copper metal YES shared 15_30 X X  X 

CHM16 copper metal NO   X  
CHM17 galena YES X X   
CHM18 galena YES X X   
CHM19 galena YES X X   
CHM20 galena      
CHM21 galena    X  
CHM22 galena      
CHM23 galena      
CHM24 galena YES X X   
CHM25 galena YES X X   
CHM26 galena YES X X   
CHM27 modern slag YES X X   
CHM28 galena?      
CHM29 copper metal      
CHM30 copper metal YES shared 15_30 X X   
CHM31 haematite YES X X   
CHM32 haematite YES X X   
CHM33 Cu-based material YES X X   
CHM34 copper metal YES X X   
CHM35 copper metal YES X X   
CHM36 obsidian      
CHM37 bone in contact with malachite?      

  

Table S2: Çatalhöyük materials presented in this study. Grey-shaded boxes indicate samples (re)analysed in 
this paper. Samples in italic were characterised macroscopically only.  
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Sample 
No. Material Year Area Unit Context Mellaart Hodder Colour Paint id: 

x19 Pigment 2003 4040 7575 
Arbitary fill of burial [1202]. 
Found with beads and a bone 

tool. 
Scrape Scrape Blue Azurite 

x1 Pigment 2003 4040 7597 Fill of burial cut Scrape Scrape Blue Azurite 

x2 Pigment 2007 4040 16308 

Burial, in situ. Blue pigment 
was found to the north of the 
skeleton. This pigment had a 
bone spatula sticking out of it 

and was surrounded by 
phytoltihs (perhaps a pouch). 

n/a Scrape 
G Blue Azurite 

x1 Pigment 2007 4040 16133 
Sp.17, F3025sk. Cluster of 

grave goods with the skeleton 
16309 

n/a Scrape 
G Green Malachite 

s2 Pigment 2001 BACH 8151 In situ burial (B.3 sk.8115) n/a BAC
H G? Blue Azurite 

s3 Pigment 2006 4040 13416 
B.67, Sp.292-Northwest corner 
of B.67. Demolition backfill of 

space 292 - building 67 
n/a 4040 

H Blue Azurite 

s1 Pigment 1995 SOUTH 1007 Sp.168, F417 (burial) grave fill. 
Mellaart shrine 6 

Level 
VII 

SOUT
H M? 

Green/
Blue Azurite 

 
Table S3: Contextual information for seven burial-related evidence for deposition of green (malachite, 
Cu2CO3(OH)2) or blue (azurite, Cu3(CO3)2(OH)2) pigments in Çatalhöyük. 
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Table S4: Contextual information for five copper fragments from the recent excavations at Çatalhöyük 
published by Birch et al. (2013).  
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