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Abstract 11 

The elastic properties of crystalline metals scale with their valence electron density. 12 

Similar observations have been made for metallic glasses. However, for metallic 13 

glasses where covalent bonding predominates, such as metalloid metallic glasses, 14 

this relationship appears to break down. At present, the reasons for this are not 15 

understood. Using high energy X-ray diffraction analysis of melt spun and thin film 16 

metallic glasses combined with density functional theory based molecular dynamics 17 

simulations, we show that the physical origin of the ultrahigh stiffness in both, 18 

metalloid and non-metalloid metallic glasses is best understood in terms of the bond 19 

energy density. Using the bond energy density as novel materials design criterion for 20 

ultra-stiff metallic glasses, we are able to predict a Co33.0Ta3.5B63.5 short range 21 

ordered material by density functional theory based molecular dynamics simulations 22 

with a high bond energy density of 0.94 eV/Å3 and a bulk modulus of 263 GPa, which 23 

is 17% greater than the stiffest Co-B based metallic glasses reported in literature.  24 

* Corresponding author, Volker Schnabel (volker.schnabel@mat.ethz.ch)  25 
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1. Introduction 1 

The bulk modulus of known materials spans 5 orders of magnitude from 0.001 GPa 2 

for low-mass-density foams to 440 GPa for diamond [1]. Even for metallic glasses the 3 

bulk modulus ranges from 15 GPa for Sr-based glasses [2] to 224 GPa for Co-B 4 

based [3-7] metallic glasses. The bulk modulus is a measure for a solid’s resistance 5 

to volume changes. It is an important property of any structural material. The elastic 6 

properties of solids depend on their bond stiffness and the bond density per volume 7 

[1]. However, in metallic glasses, where there is a vast range of potential alloy 8 

compositions, it is essential for any meaningful alloy design that there are criteria to 9 

enable the reliable prediction of high stiffness glasses. 10 

The valence electron density has been proposed as the principal factor determining 11 

the bulk stiffness of metals [8], metallic dominated intermetallic compounds [9, 10] 12 

and polar covalent crystals [11]. Furthermore, cohesive energy density has been 13 

observed to correlate with the bulk modulus of metals [12]. Pang et al. [13] extended 14 

the well know elastic property - valence electron density design guideline from metals 15 

[8] to metallic glasses. The alloying guideline for non-metalloid metallic glasses 16 

proposed by Pang et al. [13] relies on the assumption that the elastic properties of 17 

metallic glasses can be described by a rule of mixture approach [13] as described by  18 

𝑑 =
∑ 𝑥𝑖𝑒𝑖𝑖

∑ 𝑥𝑖Ω𝑖𝑖
 (1) 

where d denotes the valence electron density, xi, ei and Ωi the atomic concentration, 19 

number of valence electrons [14, 15] and atomic volume of the element i, respectively 20 

[13].  21 

Models for stiffness that are based on molar volume and on the combination of bond 22 

coordination number, electronegativity and molar density have been proposed as 23 

composition guidelines for metallic [16] and oxide glasses [17], respectively. 24 
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Furthermore, atomic packing density has been shown to correlate with Poisson’s 1 

ratio for oxide glasses, such as aluminates, aluminum silicates and oxynitrides [18]. 2 

However, this correlation is not observed for chalco-halogenides, because van der 3 

Waals interactions are not considered [18]. Furthermore, a reverse trend between the 4 

Poisson’s ratio and the atomic packing density is observed for the case of borates 5 

compared to aluminates, aluminum silicates and oxynitrides [18]. Pang et al. 6 

observed that valence electron density as an alloying guideline is limited to metallic 7 

glasses where the bonding is not predominantly covalent [13]. Because the origin of 8 

the high stiffness in metalloid glasses is not understood, there is no suitable criterion 9 

for designing high stiffness glasses. In particular, there is no understanding of the 10 

relationship of elastic properties, molar density and how this might be related to the 11 

electronic structure. 12 

Here, we introduce the concept of the bond energy density as a criterion for 13 

predicting the stiffness, which goes beyond the rule of mixtures in electron density, 14 

whilst reflecting the physical origin of the ultrahigh stiffness in both metalloid and non-15 

metalloid metallic glasses. Furthermore, we demonstrate that it can be used to 16 

predict ultra-stiff short range ordered materials of Co33.0Ta3.5B63.5 with a bulk modulus 17 

of 263 GPa by density functional theory (DFT) calculations. 18 

 19 

2. Methods 20 

2.1. Density functional theory based molecular dynamics simulations 21 

For the amorphous structure simulations the liquid-quench method [7, 19] was 22 

applied. Density functional theory based molecular dynamics simulations were 23 

performed with the OpenMX [20] code, version 3.7 based on density functional theory 24 

[21]. Electronic potentials with basis functions in the form of linear combination of 25 

localized pseudoatomic orbitals and generalized gradient approximation were 26 
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employed [22, 23]. An N-point grid larger than 72x72x72 and a cutoff energy of 1 

150 Ry was used. As an initial configuration for the simulations a bcc supercell 2 

containing 115 atoms was heated to 4000 K by scaling the velocity, constituting a 3 

canonical ensemble. After quenching to 0 K the structures were relaxed in terms of 4 

atomic positions and volume. The sequence of heating to 4000 K, quenching to 0 K 5 

and equilibration at the ground state was repeated until the volume difference of 2% 6 

was reached between consecutive steps. The ground state calculations were 7 

performed using the Vienna Ab initio Simulation Package [24], version 5.2.12. 8 

Previous reports by Hostert et al. [7] and Schnabel et al. [39] have shown good 9 

agreement between ab initio simulation and experiment regarding elastic properties 10 

and density for various metallic glasses using 115 atom simulation cells. Elastic 11 

properties were calculated at the ground state after the last heating cycle. The bulk 12 

modulus was calculated according to the Birch-Murnaghan equation of state [25], 13 

whereas the shear modulus was calculated according to Hill [26]. The Young’s 14 

modulus was obtained from the shear and bulk moduli [26]. The pair distribution 15 

functions g(r ) were calculated according to Eq. (2) from the relaxed atomic positions,  16 

g(r )=
1

4πρ0r2��
bibj

〈b〉2
δ(r -rij)

ji

 (2) 

where the sum goes over all pairs of atoms i and j within the system separated by rij 17 

[7]. bi,j denotes the scattering power of atom i and j, respectively, and 〈b〉 is the 18 

average scattering power of the system. The average atomic number density and 19 

atomic distance is denoted by ρ0 and r, respectively. To compare to experimental 20 

data the pair distribution functions are transformed to reduced pair distribution 21 

functions G(r ). 22 

G(r ) = 4πρ0r [g(r )− 1] (3) 
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For the reduced pair distribution function the slope below the lowest bond distance is 1 

proportional to the atomic number density. The crystal orbital Hamilton population 2 

(COHP) was calculated using the LOBSTER package [27-29]. Here the partial crystal 3 

orbital Hamilton population (pCOHP) was integrated to the Fermi level εf. The bond 4 

energy density Ω was obtained through summation of the integrated pCOHP for all 5 

bonds within the first coordination shell i, normalized by the supercell volume V. Due 6 

to the volume normalization, bond energy densities can be discussed independent of 7 

the supercell size.  8 

𝛺 =
∑ ∫ −𝑝𝐶𝑂𝐻𝑃𝑖

𝜀𝑓
−∞𝑖 (𝐸)𝑑𝐸

𝑉
 (4) 

 9 

2.2. Synthesis 10 

All thin film metallic glasses were synthesized by physical vapor deposition. For the 11 

sputtering process elemental targets were mounted in an ultrahigh-vacuum system, 12 

in which up to four targets can be installed. The magnetrons were tilted 19° normal to 13 

the substrate. The target to substrate distance was fixed to 10 cm for all targets. All 14 

metals were sputtered employing separate direct current power supplies, whereas B 15 

was sputtered employing a radio frequency power supply. The base pressure of the 16 

system was below 6∙10-5 Pa. Ar was used as a sputtering gas at a working pressure 17 

of 0.4 Pa. No intentional heating was employed during deposition. Film thickness was 18 

at least 3 μm. For Co, Fe and Y targets power densities in the range of 1.1-2.1, 0.7-19 

1.2 and 0.1-1.7 W/cm2 were employed, respectively. At the B target the power 20 

density was kept constant at 8.7 W/cm2. For mechanical testing single-crystal Si 21 

(001) wafers with a diameter of 50.8 mm were used as a substrate. For the high 22 

energy X-ray diffraction experiments thin film powders were synthesized by 23 
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employing polycrystalline sodium chloride substrates. The sodium chloride was later 1 

removed by rinsing with demineralized water, acetone and methanol [30].  2 

The metallic glass ribbons were produced by melt spinning from a master alloy of the 3 

specific composition using a single-roller melt spinner. Ingots of high elemental purity 4 

(99.9%) were remolten to 1350 °C and injected at 30000 Pa onto the spinning copper 5 

wheel with a wheel speed of 25 m/s. The rapidly quenched ribbons were in the 6 

dimension of 5 mm in width, thickness of about 40 μm and several cm in length. Due 7 

to the cooling rate [31] of up to 106 K/s achieved by the melt spinning process all 8 

ribbons were characterized as amorphous in the as-prepared state by X-ray 9 

diffraction. 10 

 11 

2.3. Chemical and stiffness analysis 12 

For the chemical analysis of the prepared samples three-dimensional atom probe 13 

tomography (3D-APT) measurements were performed using a local electrode atom 14 

probe (LEAP 3000 X HR, CAMECA Instruments). The APT tips were prepared using 15 

a dual-beam focused-ion beam system (FIB, FEI Helios Nanolab 600i), employing a 16 

standard lift-out procedure [32]. The final shaping was performed with low energy (5 17 

keV) to prevent Ga implantation. The APT measurements were performed in voltage 18 

mode at a base temperature of 60 K, 200 kHz pulse repetition rate, 15% pulse 19 

fraction and 0.5% target evaporation rate. The APT data were analyzed and 20 

evaluated using the software IVAS 3.6.8 (CAMECA Instruments) showing the 21 

compositions and their chemical homogeneity. 22 

The reduced Young’s modulus was measured employing the Oliver and Pharr 23 

method [33]. A depth-sensing nanoindenter (Hysitron TriboIndenterTM) equipped 24 

with a Berkovich indenter tip with a tip radius of 100 nm was used. The results were 25 

averaged over 24 indentations. The maximum depth corresponds to less than 10% of 26 
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the thin film thickness. To obtain Young’s modulus the Poisson’s ratio of the 1 

corresponding density functional theory based calculations was employed. The bulk 2 

modulus was obtained employing  3 

𝐵 =
𝐸

3(1 − 2𝜈)
 (5) 

where the bulk modulus, Young’s modulus and Poisson’s ratio are denoted by B, E 4 

and ν, respectively. 5 

 6 

2.4. Synchrotron real space topology analysis 7 

The thin film powder samples were analyzed at the high resolution powder diffraction 8 

beamline P02.1 (DESY, Hamburg, Germany). The thin film powder was put into a 9 

quartz capillary with a wall thickness of 20 μm with a diameter of 1 mm and 10 

illuminated with a monochromatic photon beam with a wavelength of 0.2072 Å. A two 11 

dimensional plate detector Perkin Elmer 1621 was used to record diffracted photons. 12 

The sample to detector distance was fixed to 30.8 cm, which results in a maximum 13 

wave vector of 16 Å-1. The beam size was 0.7 by 0.7 mm. For integration of the two-14 

dimensional patterns the FIT2D software package [34] was used. The integrated data 15 

were corrected for background, fluorescence contribution, sample absorption and 16 

inelastic scattering. From the total structure factor the reduced pair distributions 17 

functions were obtained through a sine Fourier transform algorithm [7]. 18 

 19 

3. Results and discussion 20 

3.1. Valence electron density 21 

To begin, the usefulness of the valence electron density as a design guideline is 22 

examined for metalloid metallic glasses with a bulk modulus above 200 GPa. We use 23 
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available literature data, our experimental values and data from density functional 1 

theory based simulations. References to literature data are compiled within Table 1. 2 

Figure 1 shows the bulk modulus as a function of valence electron density according 3 

to equation 1 [13]. Figure 1 also contains our DFT and experimental data, colored in 4 

green and red, respectively. Metalloid metallic glasses are denoted by full rectangular 5 

symbols, whereas non-metalloid metallic glasses are denoted by full triangular 6 

symbols. The metalloid metallic glasses exhibit an overall higher bulk modulus 7 

compared to non-metalloid metallic glasses. The significant difference is the covalent 8 

contribution to the bond character of metalloid metallic glasses [6]. The linear 9 

dependence between valence electron density and bulk modulus is evaluated by the 10 

Pearson correlation coefficient [35] r, which can be expressed in a general form as 11 

𝑟 =
∑ (𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)𝑛
𝑖=1

�∑ (𝑥𝑖 − 𝑥)2𝑛
𝑖=1 �∑ (𝑦𝑖 − 𝑦)2𝑛

𝑖=1
 (6) 

where n, x, y, 𝑥 and 𝑦 denotes the number of systems evaluated, the abscissa of 12 

system i, the ordinate of system i and the mean values for all systems, respectively.  13 

The linear correlation between bulk modulus and valence electron density of 14 

metalloid and non-metalloid metallic glasses is characterized by significant scatter as 15 

quantified by the corresponding linear correlation factor (Pearson’s r) values of 0.610 16 

and 0.613, respectively. Furthermore, two different slopes for the linear fits of the 17 

metalloid metallic glasses and non-metalloid metallic glasses are observed. Hence, 18 

the results from figure 1 are in agreement with literature reports stating that valence 19 

electron density as an alloying guideline is limited to metallic glasses without 20 

significant covalent contributions to the overall bond character [13].  21 

Evaluating the valence electron density as design guideline for ultra-stiff metallic 22 

glasses reveals that it is imperative for knowledge based design to identify the origin 23 

of the ultrahigh stiffness in metallic glasses. Hence, we employ a correlative 24 
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experimental and theoretical approach, where we evaluate two Co-Fe-Y-B melt spun 1 

metallic glasses synthesized with an approximate cooling rate [31] of up to 106 K/s, 2 

three thin film Co-Fe-Y-B metallic glasses synthesized with an approximate cooling 3 

rate [36] of 1015 K/s and three simulated Co-Fe-Y-B metallic glasses quenched with 4 

an infinite cooling rate with increasing B to Y ratios from 1.8 to 10.2. We have 5 

devised this research strategy to probe the significance of different processing 6 

techniques for the bulk modulus of metallic glasses. We expect variations in the B to 7 

Y ratio to change molar density and stiffness significantly as B forms strong covalent 8 

bonds [6, 7], but has a small ionic radius of 0.98 Å compared to Y [15], which in turn 9 

gives rise to metallic bonds and exhibits a larger ionic radius of 1.80 Å [15].  10 

 11 

3.2. Comparison of stiffness and short range order between simulation and 12 

experiment 13 

To identify a criterion that reflects the origin of the ultrahigh stiffness in both, metalloid 14 

and non-metalloid metallic glasses, we first critically examine the calculated data by 15 

comparing it to experimentally obtained stiffness and short range order data. Then 16 

we analyze the simulated glasses by means of electronic structure and detailed 17 

topology analysis. 18 

The bulk modulus as a function of B to Y ratio for all eight Co-Fe-Y-B glasses is 19 

depicted in figure 2. Here the bulk modulus is chosen as a measure for the stiffness 20 

of the glasses. For the simulations, the chemical compositions of the metallic glass 21 

thin films are chosen for comparison purposes. There is good agreement with a 22 

maximum error of 7.5% in bulk modulus between thin films and simulated metallic 23 

glasses of the same chemical composition. Furthermore, it can be observed that with 24 

increasing B to Y ratio from 1.8 to 10.2 the bulk modulus increases, being 25 

independent of the synthesis technique applied. The glass with the lowest stiffness of 26 
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149 GPa is the simulated Co42.6Fe25.2Y11.3B20.9 glass with a B to Y ratio of 1.8, 1 

whereas the melt spun Co42.2Fe24.3Y3.0B30.5 metallic glass with a B to Y ratio of 10.2 2 

exhibits the highest bulk modulus of 201 GPa. The observed increase in stiffness 3 

with increasing B content is in agreement with reported literature on other Co-B 4 

based metallic glasses [6, 37].  5 

Figure 3 shows the experimentally obtained and simulated reduced pair distribution 6 

functions as solid lines and open symbols, respectively. The reduced pair distribution 7 

functions are depicted within a range between 1 to 10 Å, with equally spaced offsets 8 

in the vertical direction for better clarity. From bottom to top the B to Y ratio 9 

increases. For the glass with the lowest B to Y ratio of 1.8 the first coordination shell 10 

is between 1.9 to 3.4 Å. With increasing B to Y ratio the coordination shell-width 11 

decreases to between 1.8 and 3.2 Å. The main amplitude can be attributed to the 12 

(Co,Fe)-(Co,Fe) bond population. The shoulder to the right of the main amplitude can 13 

be attributed to the presence of (Co,Fe)-Y bonds, while the small amplitude to the left 14 

of the main peak can be attributed to (Co,Fe)-B bonds. The experimentally obtained 15 

and simulated reduced pair distribution functions show good agreement in terms of 16 

peak position and relative amplitudes, signifying that the topology obtained in 17 

experiment and theory is consistent.  18 

At higher B to Y ratios or lower Y contents the amplitude of the shoulder to the right 19 

of the (Co,Fe)-(Co,Fe) bond population decreases, due to the decrease in the 20 

(Co,Fe)-Y bond population. It is clear that at lower Y content and hence higher B 21 

content the population density of Y bonds decreases, while the population density of 22 

B bonds should increase. This is precisely what we observe: The population density 23 

of (Co,Fe)-B bonds to the left of the (Co,Fe)-(Co,Fe) bond population increases, with 24 

increasing B to Y ratio. This increase in amplitude can be attributed to an increase in 25 

(Co,Fe)-B bond population density with increasing B content. The increase in 26 

10 
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(Co,Fe)-B bond population density is consistent with the observed increase in bulk 1 

modulus, see figure 2. Figure 3b,c shows atomic configurations of the 2 

Co41.7Fe23.5Y3.5B31.3 and Co42.6Fe25.2Y11.3B20.9 with the highest and lowest boron 3 

content of the simulated metallic glasses. Co, Fe, Y and B atoms are colored in dark 4 

blue, light blue, orange and green, respectively. Within the atomic configurations 5 

(Co,Fe)-B bonds smaller than 2.2 Å are displayed. It can be observed that the 6 

Co41.7Fe23.5Y3.5B31.3 metallic glass exhibits a higher metal to boron bond density as 7 

the Co42.6Fe25.2Y11.3B20.9 metallic glass, which is consistent with the reduced pair 8 

distribution function analysis of figure 3a. In literature strong metal to metalloid 9 

hybridization, associated with an increase in bond energy is proposed as the cause 10 

for the increase in stiffness observed for Co-B based glasses with increasing B 11 

content [6, 7, 30, 37-39]. From figure 3 we learn that the experimentally obtained 12 

short range order data from high energy X-ray diffraction and the predicted data are 13 

consistent. Also, good agreement between the elastic properties determined by 14 

experiment and theory is obtained, as presented in figure 2. The short range order 15 

analysis provides evidence that with increasing B content the metal to metalloid 16 

population density increases. Hence, the question remains, if the rise in stiffness with 17 

increasing boron content can primarily be attributed to the augmentation in bond 18 

energy and/or bond density. Therefore, we next evaluate the electronic structure of 19 

Co-Fe-Y-B metallic glasses regarding bond energy and bond density.  20 

 21 

3.3. Bond energy and topology analysis 22 

Figure 4 compares the relative change in bulk modulus, Co-B bond energy, Co-Co 23 

bond energy, average bond energy, coordination number and molar density for 24 

Co45.2Fe23.4Y7.0B24.3 and Co41.7Fe23.5Y3.5B31.3 with respect to the Co42.6Fe25.2Y11.3B20.9 25 

metallic glass. To evaluate the individual bond energy we have integrated the crystal 26 
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orbital Hamilton population (COHP), which provides information on the bond energy 1 

and according to Deringer et al. [40] “hints towards” the bond strength. Through this 2 

electronic structure analysis we investigate the influence of increasing B to Y ratios in 3 

Co-Fe-Y-B metalloid metallic glasses on bulk modulus. 4 

The bar charts on the left and on the right side of figure 4 show the comparison for 5 

Co45.2Fe23.4Y7.0B24.3 and Co41.7Fe23.5Y3.5B31.3 simulated metallic glass, respectively. 6 

The relative increase in bulk modulus as the B to Y ratio is increased from 1.8 to 3.5 7 

and 1.8 to 8.9 is 11.1 and 21.6%, respectively. We first discuss the relative change 8 

for Co45.2Fe23.4Y7.0B24.3 compared to Co42.6Fe25.2Y11.3B20.9 metallic glass. Even though 9 

the bulk modulus increases, the Co-B and Co-Co bond energy decreases by 0.7 and 10 

36.9%. It has been reported in literature that an increase in bond distance causes 11 

bond weakening [41]. Hence, the decrease in Co-Co bond energy is in agreement 12 

with literature data on combinatorial grown Co-Zr-Ta-B metallic glass thin films [37], 13 

which reports that as the B content increases from 26.4-32.7 at.%, the Co-Co and Zr-14 

Zr first order bond distances increase by 1%, implying a boron induced weakening of 15 

metallic bonds [37]. Even though the relative decrease in Co-Co bond energy is 16 

36.9%, due to a large fraction of metal to metalloid bonds the average bond energy 17 

decreases by only 1.3%. What can be observed, however, is that the coordination 18 

number increases by 5.7%, which can be understood by considering the decrease in 19 

atomic size by replacing Y with B [15]. The increase in coordination number goes 20 

along with an increase in molar density of 7.8%. Based on the combined topological 21 

and electronic structure analysis the B induced increase in bulk modulus can be 22 

rationalized by an increase in coordination number and molar density rather than 23 

individual bond energy. 24 

Comparing Co41.7Fe23.5Y3.5B31.3 with a B to Y ratio of 8.9 with Co42.6Fe25.2Y11.3B20.9, 25 

which exhibits a B to Y ratio of 1.8, an increase in Co-B bond energy by 5.5% is 26 
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observed. On the other hand the Co-Co bond energy decreases by 63.3%. However, 1 

on average the bond energy increases by 2.9%. The coordination number and molar 2 

density increase by 12.5 and 16.0%, respectively. What can be learned from the 3 

relative comparison of the simulated Co-Fe-Y-B metallic glasses is that as the B to Y 4 

ratio from is increased from 1.8 to 8.9 the average bond energy increases by up to 5 

2.9%, whereas the molar density increases by up to 16.0%. The increase in molar 6 

density is induced by an increase in coordination number. Hence, from the electronic 7 

structure analysis it is inferred that the B induced increase in bulk modulus is 8 

dominated by an increase in molar density of strongly bonded metal to metalloid 9 

bonds. This is in agreement with the experimentally observed increase in population 10 

density of strongly bonded bonds in figure 3. To understand the influence of average 11 

bond energy, bond density and bond energy density on bulk modulus in general, nine 12 

metallic glasses including six metalloid containing glasses and three non-metalloid 13 

glasses are further examined.  14 

 15 

3.4. Effect of average bond energy, bond density and bond energy density on bulk 16 

modulus for metallic glasses in general 17 

The bulk modulus values as a function of average bond energy, bond density and 18 

bond energy density, obtained from density functional theory based simulations are 19 

shown in figure 5a-c. Positive values for bond energy and bond energy density are 20 

bonding contributions, whereas negative values represent antibonding contributions. 21 

All glasses studied exhibit on average bonding contributions. Figure 5d summarizes 22 

the chemical composition, average bond energy, bond density, bond energy density, 23 

molar density, bulk modulus, shear modulus and Young’s modulus for all glasses 24 

presented in figure 5a-c. Figure 5a reveals that the metalloid containing glasses 25 

exhibit both, high bond energy and bulk modulus. The Au49.0Ag5.5Pd2.3Cu26.9Si16.3 26 
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glass with the lowest bulk modulus of 109 GPa possesses also the lowest average 1 

bond energy of 0.16 eV. However, the Co33.0Ta3.5B63.5 short range ordered material 2 

exhibits the highest bulk modulus, yet, with a value of 0.98 eV only the third highest 3 

average bond energy of all glasses evaluated here. Hence, a linear relation with a 4 

Pearson’s r value of 0.790 is observed between bulk modulus and average bond 5 

energy. It is not surprising that no ideal linear relationship, which would correspond to 6 

a Pearson’s r value of 1 between bulk modulus and bond energy, is observed. The 7 

bulk modulus is a measure of a solid's resistance to a volume change, whereas bond 8 

energy obtained through integration of COHP according to Deringer et al. [40] “hints 9 

towards” bond strength. From the data in figure 5a we can observe that ultra-stiff 10 

metalloid metallic glasses exhibit an overall higher average bond energy than non-11 

metalloid metallic glasses. Furthermore, metalloid metallic glasses possess an 12 

overall higher molar density compared to non-metalloid metallic glasses, which is in 13 

agreement with literature reports on binding-energy – bond distance relationships for 14 

metals and bimetallic interfaces [42, 43] and both metallic and covalent bonds in 15 

chemisorption [44]. The Co33.0Ta3.5B63.5 short range ordered material predicted here 16 

by density functional theory based molecular dynamics simulations exhibits a 17% 17 

higher bulk modulus than the stiffest Co-B based metallic glass reported in literature 18 

[3-7]. With 0.207 mol/cm3 Co33.0Ta3.5B63.5 also has the highest molar density of all 19 

nine glasses studied. A linear relation with a Pearson’s r value of 0.931 is observed 20 

between bulk modulus and bond density. It is straightforward to recognize that with 21 

more bonds per unit volume the bulk modulus, which is a measure for the average 22 

bond stiffness per unit volume, increases, if the individual bond stiffness is not 23 

decreased. The bond density induced rise in bulk modulus is consistent with the B 24 

induced increase in Co-B bond population density in figure 3. The analysis of 25 

figure 5a,b suggests that bond density exhibits a better fit to the linear relationship 26 
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with bulk modulus compared to average bond energy. This observation is in 1 

agreement with the topology and electronic structure comparison of Co-Fe-Y-B 2 

metallic glasses from figure 4. Figure 5c reveals that the combination of average 3 

bond energy and bond density, or bond energy density, provides an even better 4 

linear relation with bulk modulus compared to the bulk modulus – bond density 5 

relationship reflected in a Pearson’s r value of 0.955. Hence, we propose that an 6 

increase in average bond energy and bond density, constituting bond energy density, 7 

is capable of reflecting the origin for the increase in bulk modulus. Based on the bond 8 

energy density criterion we have predicted by density functional theory based 9 

molecular dynamics simulations that a Co33.0Ta3.5B63.5 short range ordered material 10 

should have a high bulk modulus of 263 GPa.  11 

Our data clearly demonstrate that the bond energy density is capable of reflecting the 12 

origin of the ultrahigh stiffness in metallic glasses. Hence, we propose bond energy 13 

density as the design parameter for ultra-stiff metallic glasses. We find that for 14 

metallic glasses a change in chemical composition leads to a combined change in 15 

average bond energy and preferred coordination number. Both chemically induced 16 

changes are inherently captured by the molar density. Hence, our results suggest 17 

that bond energy density is capable to rationalize the bulk modulus - molar density 18 

relationship observed in literature [16].  19 

  20 
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4. Conclusions 1 

For identifying the origin of ultrahigh stiffness in metallic glasses, we have studied the 2 

effect of an order of magnitude increase of the B to Y ratio in Co-Fe-Y-B thin film and 3 

melt spun metallic glasses on the elastic behavior, both theoretically and 4 

experimentally. It is observed that with increasing B to Y ratio from 1.8 to 10.2 the 5 

bulk modulus increases, which is consistent with previous reports on Co-B based 6 

metallic glasses [6, 7, 30, 37-39]. Using high energy X-ray diffraction experiments 7 

combined with density functional theory based molecular dynamics simulations, it is 8 

shown that the B induced increase in stiffness is dominated by the increase in metal 9 

to metalloid bond density and the concomitant increase in molar density.  10 

COHP based electronic structure analysis of six metalloid and three non-metalloid 11 

metallic glasses suggests that the bulk modulus increases from 109 to 263 GPa as 12 

the bond density increases from 0.33 to 0.96 Å-3. Based on the combined 13 

experimental and theoretical data, we propose that bond energy density is capable of 14 

reflecting the origin of ultrahigh stiffness in metallic glasses including metalloid 15 

metallic glasses. Based on bond energy density, the well-known and accepted bulk 16 

modulus - molar density relationship and the limitation of the bulk modulus – valence 17 

electron density guideline can be rationalized. We propose bond energy density as a 18 

generic design criterion for stiffness in metallic glasses including metalloid metallic 19 

glasses.  20 

The bulk modulus is one the most important properties of a structural material. 21 

However, to date there is no knowledge based criterion for designing ultra-stiff 22 

metallic glasses with a bulk modulus above 200 GPa is lacking. We have shown the 23 

bond energy density, reflects the origin of the elastic properties in both, metalloid and 24 

non-metalloid metallic glasses. This has enabled us to predict a Co33.0Ta3.5B63.5 short 25 

range ordered material by density functional theory based molecular dynamics 26 
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simulations. It has a bond energy density of 0.94 eV/Å3 and bulk modulus of 263 GPa, 1 

which is 17% greater than the stiffest Co-B based metallic glasses reported in 2 

literature [3-7].  3 

We therefore propose bond energy density as a generic design criterion for predicting 4 

stiffness in metallic glasses including metalloid metallic glasses.  5 
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 1 

Figure 1. Bulk modulus – valence electron density relationship for metallic glasses. 2 
The full rectangular and triangular symbols represent metalloid and non-metalloid 3 
metallic glasses (MG), respectively. Data from density functional theory (DFT) based 4 
simulations are colored green, whereas data from synthesized (Syn) bulk metallic 5 
glasses are colored in red. 6 
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 1 

Figure 2. Measured and calculated bulk modulus as a function of B to Y ratio of Co-2 
Fe-Y-B metallic glasses. The rectangular, round and star symbols represent data 3 
obtained from thin films, melt spun alloys and simulations, respectively. An increase 4 
in bulk modulus is observed irrespective of the synthesis technique. The top three 5 
images, from left to right illustrate co-magnetron sputtering, melt spinning and density 6 
functional theory based molecular dynamics simulations, respectively. 7 
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 1 

Figure 3. Reduced pair distribution functions for melt spun alloys, thin films and 2 
simulations are depicted in the range of 1 to 10 Å. (a) There is good agreement for 3 
the reduced pair distribution functions in terms of peak position and relative 4 
amplitudes between experiments and simulations of identical compositions. With 5 
increasing Y content the (Co,Fe)-Y bond population increases, whereas for 6 
increasing B content the (Co,Fe)-B bond population increases. Atomic configuration 7 
snapshots of the Co41.7Fe23.5Y3.5B31.3 and Co42.6Fe25.2Y11.3B20.9 metallic glasses are 8 
shown in (b) and (c), respectively. Co, Fe, Y and B atoms are colored in dark blue, 9 
light blue, orange and green, respectively. 10 
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 1 

Figure 4. Comparison in terms of bulk modulus, Co-B bond energy, Co-Co bond 2 
energy, average bond energy, coordination number and molar density for Co-Fe-Y-B 3 
metallic glasses with increasing B to Y ratio from 1.8 to 8.9. With increasing B content 4 
the coordination number increases, which goes in hand with an increase in molar 5 
density. This increase in molar density and coordination number, which infers an 6 
increase in bond density, dominates the increase in average bond energy.  7 
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 1 

Figure 5. Comparison for metallic glasses in general. (a-c) Bulk modulus as a 2 
function of average bond energy, bond density and bond energy density, obtained 3 
from density functional theory based simulations, are presented, respectively. 4 
Bonding contributions are represented by positive values. (d) Summary of chemical 5 
composition, average bond energy, bond density, bond energy density, molar 6 
density, bulk modulus B, shear modulus G and Young’s modulus E for all glasses 7 
presented in Figure 5a-c. 8 
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Table 1. Molar density, molar volume, bulk modulus, shear modulus and Young’s 1 
modulus data for the metallic glasses shown figure 1. 2 

Chemical composition Molar 
density 

Molar 
volume 

Bulk 
modulus 

Shear 
modulus 

Young's 
modulus Ref. 

 mol/cm3 cm3/mol GPa GPa GPa  
Co33.0Ta3.5B63.5. 0.207 4.83 263 118 307 This work 
Co58.4Fe7.0B34.6 0.181 5.53 225 92 244 This work 
Co43.5Fe20Ta6.1B28.7N1.7 0.160 6.26 195 69 185 This work 
Co43.5Fe20Ta6.1B21.7N8.7 0.161 6.20 199 76 202 This work 
Co43.5Fe20Ta6.1B15.6N14.8 0.157 6.38 192 71 190 This work 
Co43.5Fe10.4Ta6.1B30.4Y9.6 0.145 6.88 176 74 195 This work 
Co43.5Fe13.9Ta6.1B30.4Y6.1 0.152 6.58 187 73 193 This work 
Co43.5Fe10.4Ta6.1B30.4Zr9.6 0.150 6.66 208 100 258 This work 
Co43.5Fe13.9Ta6.1B30.4Zr6.1 0.155 6.44 212 102 263 This work 
Co43.5Fe20Ta6.1B21.7O8.7 0.146 6.86 169 62 166 This work 
Co43.5Fe20Ta6.1B15.6O14.8 0.154 6.50 181 65 174 This work 
Co43.5Fe10.4Ta6.1B30.4W9.6 0.156 6.43 219 84 224 This work 
Co43.5Fe13.9Ta6.1B30.4W6.1 0.161 6.22 218 82 220 This work 
Co43.5Fe20Ta6.1B28.7C1.7 0.163 6.15 202 82 217 This work 
Co43.5Fe20Ta6.1B21.7C8.7 0.166 6.04 213 84 224 This work 
Co43.5Fe20Ta6.1B15.6C14.8 0.166 6.01 215 84 222 This work 
Co43.5Fe18.3Ta6.1B30.4Nb1.7 0.162 6.16 204 82 216 This work 
Co43.5Fe13.9Ta6.1B30.4Nb6.1 0.154 6.48 199 75 201 This work 
Co43.5Fe10.4Ta6.1B30.4Nb9.6 0.153 6.55 204 80 213 This work 
Co43.5Fe10.4Ta6.1B30.4Mo9.6 0.158 6.32 217 87 230 This work 
Co43.5Fe13.9Ta6.1B30.4Mo6.1 0.162 6.19 217 83 220 This work 
Co43.5Fe13.9Ta6.1B30.4Hf6.1 0.157 6.37 202 87 229 This work 
Co43.5Fe10.4Ta6.1B30.4Hf9.6 0.154 6.50 204 82 217 This work 
Co56Ta9B35 0.175 5.72 224 94 247 [38] 
Co58Ta7B35 0.177 5.65 216 92 241 [38] 
Cu70Zr30 0.104 9.62 112 36 98 This work 
Co65Zr35 0.113 8.83 138 39 106 This work 
Au49.0Ag5.5Cu26.9Pd2.3Si16.3 0.096 10.45 109 29 81 This work 
Pt57.5Cu14.7Ni5.3P22.5 0.106 9.40 175 35 100 This work 
Pd57.0Al23.9Cu11.4Y7.7 0.100 9.96 124 39 106 This work 
Mg65Cu25Gd10 0.080 12.49 45 19 51 [45, 46] 
Mg65Cu25Tb10 0.084 11.91 45 20 51 [3, 47] 
Mg58.5Cu30.5Y11 0.082 12.22 49 20 54 [48] 
Mg57Cu31Y6.6Nd5.4 0.081 12.39 48 21 54 [48] 
Mg58Cu27Y10Zn5 0.082 12.20 45 21 55 [49] 
Mg57Cu34Nd9 0.085 11.81 51 21 54 [16] 
Mg64Cu21Nd15 0.073 13.66 45 18 47 [16] 
Mg70Zn25Ca5 0.075 13.34 48 18 48 [16] 
Ti45Zr20Be35 0.107 9.35 111 36 97 [50] 
Ti45Zr20Be30Cr5 0.111 8.97 115 39 106 [50] 
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Table 1. (continued)       
Chemical composition Molar 

density 
Molar 

volume 
Bulk 

modulus 
Shear 

modulus 
Young's 
modulus Ref. 

 mol/cm3 cm3/mol GPa GPa GPa  
Ti40Zr25Be30Cr5 0.087 11.56 103 35 95 [50] 
Zr65Cu12.5Be22.5 0.088 11.32 112 28 77 [50] 
Zr41.2Ti13.8Cu12.5Ni10Be22.5 0.101 9.88 116 37 101 [50] 
Zr46.75Ti8.25Cu7.5Ni10Be27.5 0.101 9.92 110 35 95 [50] 
Zr34Ti15Y2Ni11Cu10Be28 0.104 9.57 114 41 110 [51] 
Zr45Nb8Cu13Ni4Fe8Be22 0.100 10.02 115 35 96 [16] 
Zr45Nb10Cu13Ni2Fe8Be22 0.100 10.03 118 36 97 [51] 
Zr48Nb8Cu12Fe8Be24 0.098 10.18 114 35 96 [52] 
Zr45Nb10Cu13Ni10Be22 0.098 10.19 118 36 99 [51] 
Zr48Nb8Cu14Ni12Be18 0.097 10.26 118 34 94 [52] 
Zr65Al10Ni10Cu15 0.086 11.65 107 30 83 [53] 
Zr61.88Al10Ni10.12Cu18 0.087 11.51 108 29 80 [16] 
Zr64.13Al10Ni10.12Cu15.75 0.086 11.68 107 29 78 [16] 
Zr62Al10Ni12.5Cu15.5 0.087 11.56 109 29 80 [16] 
Zr55Al19Co19Cu7 0.087 11.44 115 38 102 [54] 
Zr57Nb5Cu15.4Ni12.6Al10 0.088 11.32 111 32 86 [3, 16] 
Zr52.5Ti5Cu17.9Ni14.6Al10 0.092 10.84 114 32 89 [3, 16] 
Ni45Ti20Zr25Al10 0.104 9.61 130 42 114 [54, 55] 
Ni40Ti17Zr28Cu5Al10 0.103 9.73 141 50 134 [54, 55] 
Cu46Zr46Al8 0.097 10.36 116 34 94 [3] 
Cu46Zr46Al7Gd1 0.096 10.47 124 33 91 [3] 
Cu46Zr42Al7Y5 0.098 10.22 104 31 85 [54] 
Cu50Hf43Al7 0.100 10.04 133 42 113 [54] 
Cu57.5Hf27.5Ti15 0.107 9.36 118 37 103 [54] 
Cu60Zr20Hf10Ti10 0.105 9.52 128 37 101 [56, 57] 
Ca55Mg25Cu20 0.054 18.38 23 11 28 [58, 59] 
Ca35Cu35Mg30 0.070 14.19 33 15 38 [59] 
Ca65Mg8.54Li9.96Zn16.5 0.049 20.25 20 9 23 [3, 16] 
Nd60Fe20Co10Al10 0.066 15.18 47 19 51 [3, 60] 
Pr60Cu20Ni10Al10 0.065 15.33 45 14 37 [3, 53] 
La55Cu10Ni5Co5Al25 0.063 15.90 44 16 42 [3] 
Ce70Al10Ni10Cu10 0.059 16.94 27 12 30 [16] 
Ce68Cu20Co2Al10 0.060 16.57 30 12 31 [61] 
Ce68Cu20Al10Fe2 0.060 16.59 32 12 33 [61] 
Ce68Cu20Al10Nb2 0.060 16.70 30 12 31 [61] 
Sc36Al24Co20Y20 0.081 12.39 78 32 85 [3, 53] 
Er50Al24Co20Y6 0.073 13.69 65 27 71 [3, 53] 
Sm40Y15Al25Co20 0.068 14.66 55 22 57 [3, 53] 
Ho35Y21Al24Co20 0.074 13.48 64 26 69 [3, 53] 
Dy46Al24Co18Y10Fe2 0.071 14.12 59 24 64 [3, 53] 
Tb36Y20Al24Co20 0.071 14.07 61 24 64 [3, 53] 
Gd36Al24Co20Y20 0.069 14.47 57 24 62 [3, 53] 
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Table 1. (continued)       
Chemical composition Molar 

density 
Molar 

volume 
Bulk 

modulus 
Shear 

modulus 
Young's 
modulus Ref. 

 mol/cm3 cm3/mol GPa GPa GPa  
La66Al14Cu10Ni10 0.056 17.83 35 13 36 [3, 53] 
Tm39Y16Al25Co20 0.074 13.51 66 30 78 [16] 
Tm55Y25Co20 0.065 15.34 62 26 72 [16] 
Tm45Y10Al25Co20 0.074 13.50 62 27 72 [16] 
Tm27.5Y27.5Al25Co20 0.072 13.81 62 26 68 [16] 
Tm40Zr15Al25Co20 0.077 12.97 68 28 74 [16] 
Lu55Al25Co20 0.076 13.20 69 31 80 [62] 
Lu39Y16Al25Co20 0.075 13.30 71 30 79 [62] 
Lu45Y10Al25Co20 0.075 13.25 70 31 79 [62] 
Yb62.5Zn15Mg17.5Cu5 0.052 19.24 20 10 27 [16] 
(Ce0.1La0.9)68Al10Cu20Co2 0.057 17.63 36 11 30 [16] 
(Ce0.8La0.2)68Al10Cu20Co2 0.060 16.69 32 12 31 [16] 
Sr60Mg18Zn22 0.043 23.47 15 8 20 [2] 
Sr60Li5Mg15Zn20 0.043 23.29 16 7 18 [2] 
Sr60Mg20Zn15Cu5 0.043 23.17 15 8 20 [2] 
Sr40Yb20Mg20Zn15Cu5 0.045 22.15 18 8 21 [2] 
Sr20Ca20Yb20Mg20Zn20 0.046 21.94 18 9 23 [3] 
Zn40Mg11Ca31Yb18 0.059 16.84 20 11 29 [16] 
Ti40Zr25Be35 0.104 9.62 103 37 100 [50] 

 1 
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