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We evaluate an efficient overset grid method for two-dimensional and three-dimensional 
particulate flows for small numbers of particles at finite Reynolds number. The rigid 
particles are discretised using moving overset grids overlaid on a Cartesian background 
grid. This allows for strongly-enforced boundary conditions and local grid refinement 
at particle surfaces, thereby accurately capturing the viscous boundary layer at modest 
computational cost. The incompressible Navier–Stokes equations are solved with a fraction-
al-step scheme which is second-order-accurate in space and time, while the fluid–solid 
coupling is achieved with a partitioned approach including multiple sub-iterations to 
increase stability for light, rigid bodies. Through a series of benchmark studies we 
demonstrate the accuracy and efficiency of this approach compared to other boundary 
conformal and static grid methods in the literature. In particular, we find that fully 
resolving boundary layers at particle surfaces is crucial to obtain accurate solutions to many 
common test cases. With our approach we are able to compute accurate solutions using as 
little as one third the number of grid points as uniform grid computations in the literature. 
A detailed convergence study shows a 13-fold decrease in CPU time over a uniform grid 
test case whilst maintaining comparable solution accuracy.
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Flows of finite-sized particles in viscous fluids are common to many industrial as well as natural processes, such as 
primary cementing in the oil and gas industry [1] and blood flow [2]. Being so ubiquitous, particulate-flow problems span 
a large range of material and flow properties. Of interest to this work are flows of an incompressible Newtonian fluid with 
rigid, spherical (circular) particles of finite Reynolds number, where the Reynolds number describes the relative strength of 
inertial to viscous forces.
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Approximate solution methods have been applied to both high and low particle Reynolds number flow regimes, where by 
neglecting viscous or inertial contributions, respectively, the equations of motion can be linearised and solved with powerful 
mathematical tools; see [3–5] for examples in both flow regimes. It is the intermediate flow regime, where such approx-
imations are not valid, that the full incompressible Navier–Stokes equations must be solved. A wide range of numerical 
techniques have been developed for simulating particulate flows through solution of the full Navier–Stokes equations. These 
include arbitrary Lagrangian–Eulerian (ALE) methods [6–8], methods based on level-sets [9,10], fictitious domain methods 
[11–13], embedded boundary methods [14] and immersed boundary methods (IBM) [15–27]. An extensive overview may 
be found in [28].

In this work we will evaluate the overset grid, or Chimera grid, method for viscous particulate flow. Overset grid methods 
have been widely used for problems with moving geometries. They were recognised early on to be a useful technique for 
treating rigid moving bodies, such as aircraft store separation [29], and have subsequently been applied to many other 
moving-grid aerodynamic applications, see for example [30–36]. English et al. [37] present a novel overset grid approach 
using a Voronoi grid to link Cartesian overset grids. This differs to the method used here, where interpolation stencils 
are directly substituted into the coefficient matrix and solid boundaries are represented using curvilinear grids. The basic 
approach of moving overset grids used in this article was developed for high-speed compressible and reactive flows by [31]
and included the support for adaptive grid refinement. The deforming composite grid (DCG) approach was developed in [38]
for treating deforming bodies with overset grids, and a partitioned scheme was developed for light deforming bodies that 
was stable without sub-iterations. A method to overcome the added-mass instability with compressible flows and rigid 
bodies was developed in [39]. More recently, stable partitioned schemes for incompressible flows and deforming solids have 
been developed [40–42] and extended to non-linear solids [43].

The method described in this paper retains much of the efficiency of static structured grid methods whilst still allowing 
for sharp representation of solid boundaries. The overset grid method can be seen as a bridge between the static grid 
methods such as IBM and boundary conformal grid methods; the curvilinear particle grids allow for higher than first-order 
accuracy and boundary conditions to be implemented strongly, while grid connectivity with the static Cartesian background 
grid is only locally updated. Since the grid connectivity is only updated locally, the regridding procedure is less costly and 
complex than for unstructured body conformal methods, such as ALE. Local grid refinement allows boundary layers to be 
fully resolved without appreciably affecting the total grid point count. This is in contrast with general static grid methods 
where the solver efficiency is offset by the unfavourable scaling associated with uniform grids, making large fully resolved 
simulations very costly [44]. For these reasons, we evaluate the suitability of the method for fully resolved simulations 
of incompressible fluid flow with rigid particles. Note that the scheme described here is implemented in the Cgins solver 
that is available as part of the Overture framework of codes (overtureFramework.org). Although past papers have 
described the use of Cgins for bodies undergoing specified motions (e.g. [45]), the discussion here of the algorithm involving 
freely-moving rigid-bodies is new.

In section 2 the overset grid method is summarised, before stating the mathematical formulation in section 3. These 
equations are discretised in space and time in section 4 and 5, respectively, while section 6 presents the fluid–solid coupling 
methodology. A grid convergence study is performed in section 7.1 using a representative test case to determine appropriate 
spatial resolutions for the wake structures captured by the background grid, and boundary layer captured by the particle 
grid. Following this, validation cases in both two and three space dimensions are presented, comparing against published 
experimental and numerical results. The results of our evaluation are summarised in section 8, along with an outlook 
towards future work.

2. Overset grids

The method of overset grids (also called overlapping, overlaid or Chimera grids) bridges the stationary and boundary 
conformal grid methods. A complex domain is represented by multiple body-fitted curvilinear grids that are allowed to 
overlap, as shown in Fig. 1. Overset grids bring flexibility to grid generation since component grids are not required to align 
along block boundaries. This flexibility allows component grids to be added in a relatively independent manner, requiring 
only local changes to grid connectivity.

A composite grid G consists of logically rectangular component grids Gk , with k = 1, 2, . . . , Ng . As illustrated in Fig. 1 the 
grid points of G are classified as interior points, boundary points, interpolation points and exterior or un-used points. The 
algorithm for generating a composite grid from a collection of component grids is intricate; a detailed description is beyond 
the remit of this work and so it will be only briefly discussed, with the intention of showing why the method of overset 
grids is appropriate for particulate flow problems. The interested reader is referred to [46] and [47] for a full description of 
the algorithm and implementation.

When moving grids are used, as is the case in particulate flow problems where each particle is represented by a sep-
arate component grid, the relative position of overset grids changes continuously. As a result, overlapping connectivity 
information, i.e. Chimera holes (regions of exterior points in the overset component grids) and interpolation points, must 
be recomputed at every time-step. Crucially, this is cheaper than complete grid regeneration and the required connectivity 
information recomputation can be locally confined to those grids affected by the moving grid.

Values of the solution at interpolation points are determined by standard tensor-product Lagrange-interpolation. We use 
quadratic interpolation (three-point stencil in each direction) for the results in this paper, as required for second-order ac-
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Fig. 1. Left: an overlapping grid consisting of two structured curvilinear component grids, x = G1(r) and x = G2(r). Middle and right: component grids for 
the square and annular grids in the unit square parameter space r. Grid points are classified as discretisation points, interpolation points or unused points. 
Ghost points are used to apply boundary conditions.

curacy [46]. This interpolation is not locally conservative. Locally conservative interpolation on overset grids is possible [48]
but has not been found necessary in our experience. Corrections to ensure global conservation are also possible and have 
been shown to have advantages, see for example [49].

3. Governing equations

Incompressible flow is governed by the Navier–Stokes equations,

∂u

∂t
+ (u · ∇)u = − 1

ρ
∇p + ν∇2u + f ,

∇ · u = 0,

where u is the vector of Cartesian components of the velocity ui , p the pressure field, ρ the fluid density, and ν = μ/ρ the 
kinematic viscosity. For discretising the equations on a moving grid (on an overset grid some grids are static while others 
are attached to, and move with the body), we make a change of dependent variables x and t to a frame that moves with 
the grid. As a result, on moving domains, the governing equations transform to

∂u

∂t
+ ((u − w)) · ∇u = − 1

ρ
∇p + ν∇2u + f , (1)

∇ · u = 0, (2)

where w is the velocity of a point attached to the moving domain. The partial derivative in time in the moving frame, as 
appearing in (1), is therefore the derivative in time when keeping the spatial location fixed to a point that is attached to the 
moving domain. We solve an alternative formulation of system (1)–(2). A pressure Poisson equation is derived by taking the 
divergence of the momentum equation (1) and using (2). The resulting velocity–pressure formulation of the initial-boundary 
value problem is

∂u

∂t
+ ((u − w) · ∇)u + 1

ρ
∇p − ν∇2u − f = 0, ∀x ∈ �, (3)

J (∇u) + 1

ρ
∇2 p − ∇ · f = 0, ∀x ∈ �, (4)

B(u, p) = 0, ∀x ∈ ∂�, (5)

∇ · u = 0, ∀x ∈ ∂�, (6)

u(x,0) = u0(x), at t = 0, (7)

where J (∇u) ≡ ∇u : ∇u and � denotes the fluid domain in nd space dimensions. There are nd primary boundary condi-
tions, denoted by B(u, p) = 0. The velocity–pressure formulation requires an additional boundary condition for the pressure. 
Here, the velocity divergence (6) is applied as the boundary condition on the pressure, making the velocity–pressure for-
mulation equivalent to the velocity–divergence formulation [50]. For the second-order accurate scheme used here, boundary 
conditions are required to determine u and p at a line of fictitious (ghost) points outside the domain boundary. Some of 
the numerical boundary conditions are compatibility conditions, derived by applying the momentum and pressure equations 
on the boundary.

The motion of a rigid body immersed in the fluid is governed by the Newton–Euler equations,

dxb

dt
= vb, mb

dvb

dt
= F , A

dω

dt
= −ω × Aω + T ,

dei

dt
= ω × ei .

Here xb(t) and vb(t) are the position and velocity of the centre of mass, respectively, mb is the mass of the body, ω is the 
angular velocity, A is the moment of inertia matrix, ei are the principal axes of inertia, F (t) is the applied force, and T (t)
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is the applied torque about the centre of mass of the body. The principal axes of inertia are integrated over time to find the 
rotation matrix which is used to update positions, velocities and acceleration of points attached to the body surface.

The force and torque on the body are determined from both body forces, such as gravity, and hydrodynamic forces arising 
from the stresses exerted by the fluid on the body surface, �,

F =
∫
�

(−pn + τ · n) ds + f b, T =
∫
�

(x − xb) × (−pn + τ · n) ds + tb,

where x is a point on �, τ = μ(∇u + (∇u)T ) is the viscous stress tensor, n is the unit normal vector to the body surface 
(outward pointing from the fluid domain), f b is any external body force and tb is any external body torque.

4. Spatial discretisation

The equations of the velocity–pressure formulation are discretised to second-order accuracy in space using finite differ-
ence methods on overset grids, see [50] and [51]. An overset grid consists of logically rectangular grids that cover a grid 
region and overlap where they coincide. The solutions between adjacent grids are connected via interpolation conditions. 
Each component grid (numbered k = 1, 2, . . . , Ng ) is associated with a transformation dk : R3 → R

3 from the unit square, 
with coordinates denoted by r = (r1, r2, r3), into physical space, x = (x1, x2, x3), and denoted by dk(r, t) = x(r, t), which al-
lows for body fitted grids of non-rectangular shapes. Consider solving the equations in three space dimensions on a square 
component grid Gk , with grid spacing hm = 1/Nm , for a positive integer Nm:

Gk = {xi,k | i = (i1, i2, i3), Nm,a,k − 1 ≤ im ≤ Nm,b,k + 1, m = 1,2,3},
where i = (i1, i2, i3) is a multi-index and a and b denote the beginning and end grid line numbers, respectively. Ghost points 
are included at the boundaries, im = Nm,a,k or im = Nm,b,k , to facilitate discretising to second order. The component grid 
number k will be dropped in the following discussion. Let U i ≈ u(xi, t), W i ≈ w(xi, t), and P i ≈ p(xi, t) be the numerical 
approximations to u, w and p, respectively. The momentum and pressure equations are discretised with second-order finite 
difference stencils. The derivatives with respect to r are standard second-order centred finite difference approximations, for 
example,

∂u

∂rm
≈ Drm U i := U i+em − U i−em

2hm
,

∂2u

∂r2
m

≈ Drmrm U i := U i+em − 2U i−em + U i−em

h2
m

,

where em is the unit vector in the m-th coordinate direction. Using the chain rule the derivatives with respect to x are 
defined as

∂u

∂xm
=

∑
n

∂rn

∂xm

∂u

∂rn
≈ Dxm U i :=

∑
n

∂rn

∂xm
Drn U i,

∂2u

∂x2
m

=
∑
n,l

∂rn

∂xm

∂rl

∂xm

∂2u

∂rn∂rl
+

∑ ∂2rn

∂x2
m

∂u

∂rn

≈ Dxm Dxm U i :=
∑
n,l

∂rn

∂xm

∂rl

∂xm
Drmrl U i +

∑
n

(
Dxm

∂rn

∂xm

)
Drn U i,

where the entries in the Jacobian matrix, ∂rm/∂xn are obtained from the mapping x = dk(r, t).
The discretised governing equations are

d

dt
U i + ((U i − W i) · ∇2)U i + 1

ρ
∇2 P i − ν∇2

2 U i − f i = 0,

1

ρ
∇2

2 P i +J (∇2U i) − ∇2 · f i = 0,

where ∇2U i = (Dx1 U i, Dx2 U i, Dx3 U i), ∇2
2 U i = (Dx1x1 + Dx2x2 + Dx3x3 )U i , and ∇2 · U i = Dx1 U 1,i + Dx2 U 2,i + Dx3 U 3,i .

5. Temporal discretisation

The method of lines is used for solving the equations in time. After discretising the governing equations in space they 
can be regarded as a system of ODEs,

d

dt
U = F (U , t),

where pressure is considered a function of the velocity, P = P (U ). The equations are integrated in time using either a 
fully explicit or semi-implicit scheme, depending on the stability restriction imposed by the viscous time-step characteristic 
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to the problem. The explicit scheme uses a second-order accurate Adams–Bashforth predictor followed by a second-order 
accurate Adams–Moulton corrector. For light rigid bodies, multiple correction steps are used to stabilise the scheme, under-
relaxing the computed forces on the bodies. The semi-implicit scheme treats the viscous term of the momentum equation 
implicitly with a second-order Crank–Nicolson method, which is once again combined with Adams–Moulton corrector steps 
if under-relaxed sub-iterations are required. To illustrate this we will use the momentum equations as an example. Splitting 
the equations into explicit and implicit components we have

du

dt
= −((u − w) · ∇)u − 1

ρ
∇p + ν∇2u ≡ F E + F I ,

where F E and F I are the explicit and implicit components, respectively

F E = −((u − w) · ∇)u − 1

ρ
∇p, F I = ν∇2u. (8)

The equations are integrated using either fully explicit or semi-implicit schemes. The explicit integration scheme used in the 
present work is the second-order in time Adams predictor–corrector method. It consists of an Adams–Bashforth predictor

up − un

�t
= β0 F n + β1 F n−1,

with the constants β0 = 1 + �t
2�t1

and β1 = − �t
2�t1

chosen for second-order accuracy even with a variable time-step where 
�t1 = tn − tn−1, and an Adams–Moulton corrector

un+1 − un

�t
= 1

2
F p + 1

2
F n.

Though only one corrector step was taken here, one may in practice correct multiple times. In fact, this is necessary when 
dealing with moving, light rigid bodies and partitioned fluid–solid coupling, as will be discussed later.

A semi-implicit approach is taken in some diffusion dominated problems where the explicit diffusive time-step is overly 
restrictive. Generally, this is the case when the Reynolds number is very low or the grid is highly refined near solid bound-
aries. Here, the non-linear convective terms are treated with the explicit Adams predictor–corrector method while the 
viscous terms are treated with the implicit second-order in time Crank–Nicolson method. Using the notation introduced 
in (8) then the time-step consists of a predictor,

up − un

�t
= β0 F n

E − β1 F n−1
E + αF p

I + (1 − α)F n
I ,

and a corrector

uc − un

�t
= 1

2
F p

E + 1

2
F n

E + αF c
I + (1 − α)F n

I ,

where the superscript c denotes the corrected solution and α = 1
2 gives the second-order Crank–Nicolson method.

The basic Navier–Stokes solver uses a solution algorithm that decouples the pressure and velocity fields [50,51] in a 
similar fashion to many fractional-step and projection schemes, cf. [52–54] and many others. The advantage of the cur-
rent scheme over typical projection schemes is that the boundary conditions for the pressure are well-defined and it is 
straightforward to obtain full second-order accuracy for all variables.

Assume that at time t − �t the values of U (t − �t) and P (t − �t) are known at all points in the solution domain and 
the values of F (U (t − �t), t − �t) are known at all interior points. To advance the solution in time to t the fully explicit 
algorithm proceeds as follows:

Steps 1. Determine an intermediate solution U ∗
i (t) at all interior nodes using a predictor sub-step

U ∗
i (t) = U i(t − �t) + α�t F i(U i(t − �t), t − �t), ∀i ∈ �

Steps 2. Determine U ∗(t) at the boundary and ghost nodes by solving the boundary conditions

U ∗
i (t) − uB(xi, t) = 0

∇2 · U ∗
i (t) = 0

Extrapolate ghost values of tμ · U ∗
i

⎫⎪⎬⎪⎭∀i ∈ ∂�

where μ = 1, . . . , nd − 1 and only the tangential component of the momentum equation is used.
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Steps 3. Determine P i(t) by solving the pressure Poisson equation along with the remaining boundary conditions

∇2
2 P i(t) = −J (∇2U ∗

i (t)) + ∇2 · f i(t), ∀i ∈ �

n · ∇2 P i(t) = −n ·
[

∂U ∗
i (t)

∂t
+ ((U ∗

i (t) − W i(t)) · ∇2)U ∗
i (t) + ν∇2 × ∇2 × U ∗

i (t) − f (t)

]
, ∀i ∈ ∂�.

The normal component of the momentum equation is used here as a Neumann boundary condition for the pressure Poisson 
equation. The ν�u term has been replaced by −ν∇ × ∇u to avoid a viscous time-step restriction, see [55] for more details.

Steps 4. Given U ∗(t) and P (t) the pressure gradients can be computed and F (U ∗(t), t) found at interior nodes.

Steps 5. Correction steps can now be taken to either increase the time-step, or as needed, to stabilise the algorithm for 
light rigid bodies. The correction steps consists of the Adams–Moulton corrector for the velocity followed by an additional 
pressure solve. For light bodies, when added mass effects are large, under-relaxed sub-iterations are used during these 
corrector steps to stabilise the scheme. Typically 3–7 corrector steps are used in the present work, depending on the 
significance of added mass effects in the problem.

For moving grids, additional steps in the algorithm are required to evolve the rigid-body equations (as discussed in the 
next section) and subsequently move the component grids. After the component grids have been moved the overset grid 
connectivity information is regenerated. Note that since the governing equations are solved in a reference frame moving with 
the grid, no additional interpolation is needed to transfer the solution at discretisation points from one time step to the 
next. As grids move, however, some unused points may become active and values at these exposed-points are interpolated 
at previous times as discussed in [31].

For small problems (number of grid points O(104)) the linear systems of equations for the velocity components and 
the separate system of equations for the pressure are effectively solved using direct solution methods. Larger problems 
necessitate iterative approaches; we use Krylov subspace methods from the PETSc library [56], algebraic multigrid solvers 
from the Hypre package [57] and the geometric multigrid solvers for overset grids from Overture [58].

6. Fluid–solid coupling

This system of ODEs governing the particle motion is discretised in time using a Leapfrog predictor and Adams–Moulton 
corrector scheme. The predictor consists of

v p
b = vn−1

b + 2�t

mp
F n, xp

b = 2xn
b − xn−1 + �t

mp
F n,

ωp = ωn−1 + 2�t(−ωn × Aωn + T n), ep
i = en−1

i + 2�t(ωn) × en
i ,

and is performed before Step 1 in the time-stepping algorithm of Section 5. The corrector is

vn+1
b = vn

b + �t

2mp
(F n + F p), xn+1

b = xn
b + �t

2mp
(vn

b + v p
b ),

ωn+1 = ωn + �t

2
(−ωn × Aωn + T n − ωp × Aωp + T p), en+1

i = en
i + �t

2
(ωn × en

i + ωp × ep
i )

and is performed after Step 3 (pressure solve) in the time-stepping algorithm. A predictor–corrector scheme is used to 
facilitate the fluid–solid coupling, and to allow for sub-time-step iterations for light bodies as discussed next.

Low solid/fluid density ratios can cause the standard time-stepping routine to become unstable, owing principally to the 
added-mass instability [40]. To alleviate this, under-relaxed sub-iterations are performed during the correction stages (i.e. 
fluid velocity solve and pressure solve) of the time-stepping algorithm. These sub-iterations are thus relatively expensive 
although the implicit systems are not changed during these iterations.

The approach used here is similar to that used by many previous authors, although we prefer to under-relax the force 
on the rigid-body as opposed to under-relaxing the entire state of the rigid-body. Note that more sophisticated approaches 
exist to reduce the required number of sub-iterations such as those based on Aitken acceleration [19,59].

We illustrate the relaxed sub-iteration through consideration of the rigid-body velocity equation, though this is per-
formed for the angular velocity equation as well. The force-relaxation sub-iteration replaces the update for vn+1

b in the 
corrector step above by the iteration

vn+1,k
b = vn

b + �t

2
(F n + F n+1,k), k = 1,2, . . .

where k denotes the iteration count. The iterative forcing used to evolve the equation is

F n+1,k = (1 − α)F n+1,k−1 + α F̃
k
, α ∈ (0,1]
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where α is a relaxation parameter and F̃
k

is the forcing at step k, which initially is simply the predicted force from the 
previous fluid solve step, i.e. F̃

1 = F p . During each sub-iteration, the fluid velocity and fluid pressure are recomputed and 
these updated fluid values are used to compute the next approximation to the force on the rigid body. A small α can 
ensure stability—at the cost of increased iterations. An optimal value of α is problem dependent and some experimentation 
is required to reach a good compromise between stability and computational cost. For example, a value of 0.1 was used 
in the pure wake interaction test case of §7.4 where the maximum number of sub-iterations was 39 during the first few 
time-steps, likely due to the non-smooth forcing at start up, and the minimum and average number of sub iterations were 
5 and 7, respectively. Iterations are performed until the absolute or relative change in the force fall below their respective 
convergence criteria, �F k < τa , or �F k/(|F k| + εF ) < τr , where �F k = |F n+1,k − F k|.

6.1. Collision model

A hard-sphere collision model based on the linear conservation of momentum is used to handle cases in which particles 
touch.5 During the predictor step of the particle advancement scheme the new positions are used to determine whether or 
not particles breach the minimum separation distance, as stipulated by the requirements of the interpolation stencils. If this 
minimum separation distance is breached, a collision is deemed to have occurred and the particle velocities are corrected. 
The velocity corrections are calculated by

v̂n+1
b,A = vn+1

b,A +
[

vn
A − vn+1

A − (1 + er)mb,B

mb,A + mb,B
(vn

A + vn
B)

]
nA,

v̂n+1
b,B = vn+1

b,B +
[

vn
B − vn+1

B − (1 + er)mb,A

mb,A + mb,B
(vn

A + vn
B)

]
nB ,

where v A = vb,A · nA , v B = vb,B · nB , er is the coefficient of restitution and nA = −nB is the unit normal vector pointing 
from the centre of mass of particle A to the centre of mass of particle B . In this work, collisions were modelled as perfectly 
elastic with a coefficient of restitution of er = 1. This is a frictionless model, so tangential forces are assumed to be zero 
during the collision, and angular velocities are not corrected by the model. This hard-sphere model is also restricted to the 
contact of only two particles at any given moment in time.

7. Numerical results

7.1. Convergence study

To accurately simulate viscous flows the grid resolution must be fine enough to fully capture boundary layers adjacent 
to solid surfaces. These can be very thin, depending on the Reynolds number of the problem as the boundary layer depth 
scales approximately as 1/

√
Re, see [60]. A major advantage of boundary-conformal over static grid methods is the ability to 

selectively refine the grid near solid boundaries. In a detailed grid independence study of viscous flow past a static cylinder, 
Nicolle [61] investigated how refinement of different areas of the grid affected the behaviour of the cylinder. Predictably, 
the surface resolution was found to most affect the cylinder behaviour, but the downstream wake resolution was found to 
affect the Strouhal number. Nonetheless, large ratios between surface and wake resolution were found to give very accurate 
results.

In the present work, emphasis is placed on the grid characteristic length scales to optimise run time. Following Nicolle 
and Eames [62] we use two grid length scales to quantify the quality of the computational grid: the domain length scale 
(DLS) is the background grid element size while the surface length scale (SLS) is the grid element size on the surface of the 
particle.

The grid independence study is first performed using a grid with nearly uniform grid spacings and is then repeated 
using grid refinement near the particle boundary. Descriptions of the grids used are provided in Table 1. Because curvilinear 
grids are used to represent the particles, the cells are slightly distorted in physical space. Thus, Table 1 provides minimum, 
average and maximum cell volumes (areas).

The test used in both convergence studies is as follows: the domain is a rectangular channel of dimensions (W ∗, H∗) =
(4 D, 40 D) filled with an a priori quiescent fluid of density ρ f = 1 g/cm3 and kinematic viscosity of 0.05 cm2/s. The particle 
(D, ρp) = (0.25, 1.5) is released from rest at (x∗

0, y
∗
0) = (D, 38.4 D) with the gravitational constant set to g = 981 cm/s2 in 

the negative y-direction. The problem geometry can be seen in Fig. 2. The results are non-dimensionalised as follows:

u∗ = u

U T
, v∗ = v

U T
, x∗ = x

D
, y∗ = y

D
, ω∗ = ωD

U T
, t∗ = tU T

D
(9)

where U T = 8.6041 cm s−1 is the measured terminal settling velocity.
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Table 1
Description of the uniform and refined grids used in the convergence study.

Grid Node count Cell volume DLS SLS

Min. Ave. Max.

GU1 1497931 0.66 0.678 0.678 D/96 D/96
GU2 670984 1.47 1.53 1.53 D/64 D/64
GU3 380394 2.58 2.71 2.71 D/48 D/48
GU4 171724 5.65 6.10 6.10 D/32 D/32
GU5 98102 9.90 10.8 10.9 D/24 D/24
GU6 44967 21.3 24.4 24.4 D/16 D/16
GR1 679685 0.67 1.52 1.53 D/64 D/96
GR2 390285 0.78 2.68 2.71 D/48 D/96
GR3 191265 0.78 5.68 6.10 D/32 D/96
GR4 123095 0.71 9.09 10.9 D/24 D/96
GR5 63935 0.78 18.2 24.4 D/16 D/96
GR6 31455 0.78 39.5 97.7 D/8 D/96

Fig. 2. Left: Cropped view of GR4, showing the boundary layer grid (green), transition grid (red) and background grid (blue) with interpolation points. Right: 
Geometry of the convergence study problem. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.)

Fig. 3. Left: Normalised angular velocity history for the convergence study at increasing grid resolutions. Right: Position of the disk in the channel for the 
convergence study at increasing grid resolutions.

Under the action of gravity the particle rotates in a clockwise sense, as if rolling down the wall. Immediately after 
release it moves a short distance towards the near wall before migrating towards its equilibrium position along the channel 
centreline.

The wake remains attached but is unsteady. This is reflected in the oscillatory u∗ and ω∗ velocity time histories, shown 
in Figs. 4 and 3. The angular velocity time history exhibits a large initial peak after which it is rapidly damped to low 

5 Note that in principle the particles should never actually touch, but resolving the near contact would require a very fine grid.
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Fig. 4. Left: Normalised horizontal velocity history for the convergence study at increasing grid resolutions. Right: Normalised vertical velocity history for 
the convergence study at increasing grid resolutions.

Fig. 5. Left: Comparison of relative error magnitude in v∗ and ω∗ at t = 1 s against required CPU time using uniform and refinement grids. Right: relative 
vertical and angular velocity errors at early (t = 0.2 s) and late (t = 1.0 s) stages of the simulation.

amplitude oscillations about ω∗ = 0. After a very small negative peak, the u∗ time history exhibits a large positive peak, 
much like ω∗ , with damped successive peaks. However, unlike in ω∗ , the following u∗ oscillations have a non-zero mean 
value as the disk drifts towards its equilibrium position. In contrast, the vertical velocity, v∗ , shows the particle rapidly 
reaching a steady settling velocity, unaffected by the attached unsteady wake.

Fig. 5 show relative errors (meaning differences compared to the reference solution) in v∗ and ω∗ , which were calculated 
as εv = (v∗ − v∗

ref)/v∗
ref and εω = (ω −ω∗

ref)/ω
∗
ref, where data from the GU1 simulation are used as reference values. Relative 

errors in v∗ and ω∗ taken early on in the simulation, at t = 0.2 s, and late in the simulation, at t = 1.0 s, show greater 
than second order convergence for both components early on but a decrease in convergence rate for ω∗ as the simulation 
progresses. The gravitational acceleration is impulsively turned on at t = 0, and this non-smooth forcing could have a 
detrimental effect on the convergence rates.

The test was repeated using a series of refined grids. These were constructed using a fine grid immediately surrounding 
the particle surface, smoothly connected to a coarse background grid using a transition grid. This construction can be seen 
in Fig. 2. Detailed descriptions of the grids are provided in Table 1, where uniform grids are denoted by the prefix GU and 
refinement grids by GR.

Table 2 shows absolute values of u∗ , v∗ and ω∗ at t = 1.0 s as well as relative errors, where data from GU1 were taken 
as reference values. As before, it is evident that v∗ is fairly insensitive to the grid resolution, while u∗ and ω∗ show a large 
dependence on the near surface resolution. With a high resolution surface grid capturing the boundary layer, the motion 
of the disk can be captured quite accurately, even with a large surface to background grid resolution ratio. In fact, the GR5
grid with a resolution ratio of 6 : 1 reproduced solutions of GU1 with a maximum error of 5%, with a more than 23 fold 
reduction in number of grid points. Fig. 5 shows the relative error in v∗ and ω∗ at t = 1 s against the total CPU time of the 
calculation.
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Table 2
Absolute values and relative errors for the convergence study taken at t = 1.0 s.

Grid v/U T u/U T ωD/U T × 10−4 εv × 10−4 εu εω

GU1 1.0000 0.0033 6.4761 — — —
GU2 0.9994 0.0034 6.1663 5.9299 0.0288 0.0521
GU3 0.9994 0.0034 6.8561 14.000 0.0969 0.2275
GU4 0.9957 0.0041 9.2127 43.000 0.2775 0.4609
GU5 0.9900 0.0046 9.4015 100.00 0.4513 0.6093
GU6 0.9734 0.0052 0.0016 266.00 0.6329 1.7913
GR1 0.9995 0.0034 6.5961 1.1599 0.0292 0.0277
GR2 0.9998 0.0033 6.4250 1.6028 0.0141 0.0069
GR3 1.0000 0.0031 6.4250 0.0755 0.0186 0.0062
GR4 1.0002 0.0031 5.8773 2.3025 0.0161 0.0061
GR5 1.0006 0.0032 6.1766 6.0949 0.0013 0.0573
GR6 1.0043 0.0026 6.9848 43.000 0.1915 0.1956

Fig. 6. Histories of the y∗-coordinate and v∗ component of the centre of the disk for a low Reynolds number sedimentation of a symmetrically placed disk 
test case with data from Hu et al. [64] (�), Wang et al. [63] (◦), Glowinski et al. [13] (♦) and the present study (−).

7.2. Settling disk impacting a wall

This test simulates the fall of a rigid circular disk in a bounded domain and its impact with the bottom boundary. 
This test has been performed by other researchers using DLM/FDM [13], an FEM fictitious boundary method [63], and an 
immersed boundary lattice Boltzmann method [64]. The computational domain has a width of W = 8 D , a height of H =
24 D and grid characteristic length scales DLS = D/16 and SLS = D/96, where D = 0.25 cm is the disk diameter. The disk is 
initially placed along the centreline of the domain, 8 D from the top boundary. The disk has density ρd = 1.25 g/cm3 and 
the kinematic viscosity of the fluid is ν = 0.1 cm2/s. The results are non-dimensionalised as in (9), where the characteristic 
velocity scale Us is an estimated terminal velocity,

Us =
√

π D

2

(
ρd − ρ f

ρ f

)
g. (10)

The present results (Fig. 6) are in good agreement with the previous studies. The disk reaches the terminal settling velocity 
at t∗ = 20, with a terminal particle Reynolds number of ReT = 17.45, consistent with the literature. As the disk approaches 
the bottom wall the results differ slightly. The studies compared against in Fig. 6 all exhibit a rebound of the disk from the 
bottom boundary while the present results do not.

In the present study the grid around the disk and along the bottom of the tank is very fine (SLS = D/96 for both the 
disk and the bottom of the tank), allowing the lubrication forces and flow in the gap to be better resolved. This slows the 
particle down more before “contact” is made with the wall.6 Additionally, the present study used a conservation of linear 
momentum based hard-sphere collision model approach to model the collision between the disk and the bottom boundary. 
The previous studies compared against here all used repulsive potential type methods. We can estimate a Stokes number 
for the particle to comment on the “correctness” of the present results. The Stokes number, Stk, is the ratio between the 

6 In fact an infinitely smooth disk with flow governed by the Navier–Stokes equations should never actually contact the wall but in this settling case only 
approach the wall exponentially slowly with the gap becoming ever thinner.
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Fig. 7. Settling of two disks in a quiescent fluid. Contours of the vorticity at five different time, with a vorticity scale between −3.6 ≤ ξ D/Us ≤ 3.6.

particle and fluid relaxation times, τp and τ f , respectively. Taking τ f = R/U T , where R is the disk radius, τp = mv/Fd , and 
Fd is the drag force on the disk, then Stk = mv2/(R Fd). Once the disk reaches its terminal settling velocity the drag force 
balances with the force due to gravity, so Fd = π R2 g(ρd − ρ f ) and thus the Stokes number is Stk = v2/(Rg(1 − ρ f

ρd
)). Here, 

the Stokes number is approximately 2. It has been demonstrated that for 3D cases particles settling with Stk < 10 there is 
no rebound after contact is made with the bottom boundary [65,66]. Assuming this holds true for the 2D equivalent, then 
the above results indicate that the repulsive potential collision model is a poor sub-grid model for low speed impacts. The 
rebound evident in the study of Glowinski et al. [13] indicates that a higher grid resolution is required to adequately resolve 
the lubrication forces than the hydrodynamic interactions during free-fall. While the current approach is adequate here it 
is clear that in many situations resolving the gap is not practical and prohibitively expensive. Qiu et al. [67] presented a 
novel solution to computing incompressible flow in thin gaps using pressure degrees of freedom on virtual solid surfaces to 
provide solid–fluid coupling in the gap region, which when extended to no-slip boundaries could be a good alternative for 
this sort of problem.

7.3. Settling of two offset disks

Two offset cylinders settling in a quiescent fluid are simulated to demonstrate the drafting, kissing, tumbling behaviour 
observed experimentally by Fortes et al. [68]. This is a difficult problem to simulate owing to the non-linear nature of 
the particle motion and the particle–particle and particle–wall interactions. Results are compared to previous studies of 
Patankar et al. [69,70], Wan and Turek [63], Niu et al. [71], Zhang and Prosperetti [72] and Feng and Michaelides [73] for a 
low Reynolds number case and Uhlmann [16] for a moderate Reynolds number case. The low Reynolds number case uses 
a computational domain of width 10 D and height 40 D , with the particles of diameter 0.2 cm placed along the vertical 
centreline, 4 D and 6 D from the top boundary. The high Reynolds number case uses a computational domain of width 8 D
and height 24 D , with the particles of diameter 0.25 cm placed 4 D and 6 D from the top boundary, and offset by D/250 and 
−D/250 from the vertical centreline. For the low Reynolds number case, the grid characteristic length scales are DLS = D/19
and SLS = D/76 whilst for the moderate Reynolds number case DLS = D/24 and SLS = D/128. In each case, both the top 
and bottom particles have the same density ratio. For the low Reynolds number case, the density ratio is ρr = 1.01 and the 
fluid has kinematic viscosity ν = 0.1 cm2/s. For the moderate Reynolds number case, the density ratio is ρr = 1.5 and the 
kinematic viscosity is ν = 0.01 cm2/s. In both cases the gravitational constant was taken as g = 981 cm/s2 and the results 
are non-dimensionalised as in (9), where the characteristic velocity, Us , is again calculated using (10).

Fig. 7 shows the positions of the particles as they sediment, interacting with each other and the domain boundary, along 
with instantaneous vorticity contours. The observed dynamical interactions are in good agreement with those observed 
in the quasi two-dimensional experiments in [68]. Initially, the two particles begin moving from rest under the influence 
of gravity with the same acceleration. As the wake forms behind the lower particle the top particle becomes shielded in 
the resultant low pressure region. This allows the top particle to draft behind the lower particle, similar to cyclists in a 
peloton. This is the “drafting” stage. Eventually, the top particle makes near contact with the lower particle (they “kiss”) and 
effectively form an elongated body with axis parallel to the fall. This configuration is inherently unstable and the elongated 
body rotates to align its long axis perpendicular to the fall. This is the “tumbling” stage described in [68]. The particles 
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Fig. 8. Histories of the (a) v∗ and (b) u∗ velocity components of the centre of the disks for the low Reynolds number drafting, kissing, and tumbling test 
case, with ρd = 1.01, ν = 0.1 where the solid line denotes the (initially) top disk and the dashed line the bottom disk, with data from: (a) Patankar [70]
(♦), Patankar et al. [69] (�) and Feng et al. [73] (◦); (b) Patankar et al. [69] (�) and Feng et al. [73] (◦) overlayed.

Fig. 9. Time histories of the (a) v∗ and (b) u∗ velocity components of the centre of the disks for the low Reynolds number drafting, kissing, and tumbling 
test case with ρd = 1.01, ν = 0.1, where the solid line denotes the (initially) top disk and the dashed line the bottom disk, and data from Zhang et al. [72]
overlayed (◦).

separate and the lower particle is overtaken by the top particle, which continues to sediment with a slightly negative u∗
velocity. The other particle impacts the wall, after which it, too, sediments with a slightly negative u∗ velocity.

The results for the low Reynolds number case compare well qualitatively with those of [69,70,73] but not quantitatively 
(see Fig. 8). Though quantitative agreement is not necessarily apparent amongst the results of these studies themselves, 
what is apparent is that their settling velocities are all lower than those found in the present study. Although different 
methods were used, all three of these simulations used low grid resolutions around the particles, particularly [73]. The 
study in [72] used a higher resolution grid, with 20 computational nodes per particle diameter. Very good quantitative 
agreement is found between that study and the present one, as is evident from Fig. 9, though there is a discrepancy in 
the duration of the “kissing” contact and the onset of “tumbling”. The onset of “tumbling” is caused by the build up of 
numerical error, so this is expected to be solver specific. In the absence of numerical error, or bias introduced by the grid, 
the disks would not leave the “kissing” stage [16].

Results for the moderate Reynolds number case are shown in Fig. 10. These are compared to results from [16], who used 
an immersed boundary method on high resolution grids. Both qualitatively and quantitatively the results are in excellent 
agreement for the particle positions and u, v velocity components, with the only differences found during the initial contact 
and subsequent “kissing” stage, due to the different collision models. All of the aforementioned studies used a repulsive 
force based model, while a conservation of linear momentum model is used here. Fig. 10 shows good qualitative but poor 
quantitative agreement for the angular velocity component. This is a very sensitive metric [16] and it is likely that the 
differences are due, in large part, to the different collision mechanisms used. The novel approach of Kempe and Fröhlich [21], 
which uses a sub-grid lubrication force correction and conserves angular momentum, would probably be a more appropriate 
collision mechanism for this case.
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Fig. 10. Time histories of x∗ , y∗ , v∗ , u∗ and ω∗ for the moderate Reynolds number drafting, kissing, and tumbling test case with ρd = 1.5, ν = 0.01, where 
the solid line denotes the (initially) top disk and the dashed line the bottom, and data from Uhlmann [16] overlayed (◦).

Fig. 11. Problem geometry for the two particle wake interaction test case.

7.4. Two particle wake interaction

This is a case presented by Uhlmann [16] to test the fluid–structure interaction, with particular emphasis on examining 
the effect of wake interactions between the particles on the angular velocity. Two particles of differing densities settle in an 
otherwise quiescent fluid. The heavier particle passes the lighter particle, subjecting it to perturbations from its wake. The 
particles do not collide and therefore no collision model is required, making it an attractive benchmark case.

The computational domain, shown in Fig. 11, has a width of 10 D , a height of 50 D and the grid characteristic length 
scales are DLS = D/40 and SLS = D/100, where the particle diameter is D = 0.2 m. A heavier particle of density ratio 
ρr,1 = 1.5 is initially positioned at x = (−0.65 D, 4 D) from the channel centreline and top boundary respectively, while 
the lighter particle of density ratio ρr,2 = 1.25 is positioned at x = (0.65 D, 6 D). Both particles are initially at rest and the 
fluid of kinematic viscosity ν = 0.0008 m2/s is quiescent at t = 0 s. The gravitational constant is set to g = 9.81 m/s2. The 
results are non-dimensionalised as in (9), where the characteristic velocity Us is calculated using (10) and the density ratio 
of the heavier disk, viz. ρr,1 = 1.5.

The maximum particle Reynolds numbers of the heavy and light particle are 280 and 230, respectively [16]. 
Uhlmann [16] used a uniform grid resolution of DLS = D/40, allowing for fewer than three grid points across the estimated 
boundary layer depth for both the light and heavy particles. Given the findings of the convergence study in section 7.1 it is 
not likely that the solutions at this grid resolution are grid independent. A brief convergence study was performed, shown 
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Fig. 12. Contours of vorticity at times t = 0.8, t = 3.2, t = 5.6, t = 8.0 for the pure wake interaction test case compared to plots from Uhlmann [16] taken 
at the same times and with the same vorticity extrema. Left: present study using a quasi-uniform grid with DLS = D/40 and SLS = D/40. Right: results 
from [16] computed on a uniform grid of resolution D/40.

Fig. 13. Time histories of x∗ , y∗ , v∗ , u∗ and ω∗ for the pure wake interaction test case with ρr,1 = 1.5, ρr,2 = 1.25, ν = 0.0008 m2/s and data from 
Uhlman [16] overlayed.

in Table 3, and solutions were found to converge at SLS = D/100, allowing for 6 points across the boundary layers for both 
the light and heavy particle.

Fig. 12 shows successive snapshots of the instantaneous vorticity field with snapshots from [16] below. The evolving 
flow field and particle positions match well. Fig. 13 shows the time histories of the particles position, velocity and angular 
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Table 3
Absolute values and relative errors for disk 2 taken at t = 1 s of the wake interaction grid independence study.

SLS u/Us v/Us ωD/Us εu εv εω

D/200 0.14550 −0.36470 −0.01123 – – –
D/150 0.14554 −0.36483 −0.01225 0.00028 0.00033 0.00181
D/100 0.14567 −0.36518 −0.01132 0.00121 0.00130 0.00831
D/50 0.14680 −0.36705 −0.01205 0.00896 0.00643 0.07353
D/40 0.01479 −0.36847 −0.01293 0.01644 0.01033 0.15205

Table 4
Parameters used for the four settling sphere cases.

Case number ρ f [kg/m3] μ f [N s/m2] Re Stk

1 970 0.373 1.5 0.19
2 965 0.212 4.1 0.53
3 962 0.113 11.6 1.50
4 960 0.058 31.9 4.13

velocity. The converged solutions of the present study match well with those in [16], although a phase shift is apparent in 
the oscillatory components and the settling velocity is slightly higher in the present study.

The largest differences are found in the horizontal velocity components, particularly for the light particle. These differ-
ences are probably due in large part to the differences in the angular velocity components, which will affect vortex shedding 
and lift on the particles. The amplitudes of the angular velocity component oscillations for the heavier particle match well 
but a slight phase shift is apparent. This is reflected in the horizontal velocity components for the heavier particle by match-
ing amplitudes but markedly different periods of oscillation. The angular velocity components of the lighter particle differ 
in both amplitude and period of oscillation, leading to more pronounced differences in the horizontal velocity components 
of the two studies.

7.5. Settling sphere

As a final validation case we compare experimental [74] and numerical [24] results on the motion of a single sphere in 
a closely confined container to numerical results produced by the current method. The sphere of diameter D = 15 mm and 
density ρ = 1120 kg/m3 is positioned centrally with the bottom of the sphere 120 mm from the bottom of the tank, which 
has depth × width × height dimensions of 100 × 100 × 160 mm. Four cases were run, with Reynolds numbers ranging from 
1.5 to a moderate 31.9. The material parameters used in each case are detailed in Table 4, with g = 9.81 m/s2 throughout. 
For each case the grid characteristic length scales are DLS = D/10 and SLS = D/38, allowing for approximately six points 
across the estimated boundary layer depth for the highest Reynolds number case.

The sphere undergoes three distinct periods of motion after its release from rest: an initial acceleration followed by a 
period of steady fall at a terminal settling velocity and finally a deceleration as it approaches the wall. As the Reynolds 
number is increased the three stages become progressively shorter. Similar to Yang and Stern [24] the wall collisions were 
not considered here and the simulations stopped before the sphere made contact with the wall.

The present results are shown in Fig. 14 and match satisfactorily with the experimental results of ten Cate et al. [74]
although some slight differences remain: the terminal settling velocity in case 1 is found to be approximately 4.6% lower 
here and in case 2 the sphere begins the wall induced deceleration sooner than in [74]. This earlier deceleration in case 2 
is also present in the results of [24], as is the lower terminal settling velocity of case 1. The benefit of using overset grids is 
again evident; the grid used above consists of 5.18 × 105 grid points while the results are as good as those produced on a 
uniform grid over three times the size.

8. Conclusion

We evaluated the overset grid method for DNS of viscous, incompressible fluid flow with rigid, moving bodies. Several FSI 
benchmark test cases were carried out for verification and validation purposes. A systematic convergence test was carried 
out using six uniformly refined grids and six with local refinement near the particle surface. Local refinement was found to 
produce results deviating no more than five percent from the reference solutions, with a more than 23 fold decrease in grid 
point count and a subsequent 13 fold decrease in CPU time.

Results compared favourably with those from the literature for the symmetrically placed disk settling in a tank. Discrep-
ancies in the approach and rebound behaviour are due to the hard-sphere collision model and the selective grid refinement, 
allowing lubrication forces to be better resolved in the current study. The present method compared well with high reso-
lution studies for the dropping, kissing, tumbling test cases and the pure wake interaction test case. Finally, results for a 
sphere settling in a small tank at various Reynolds numbers compared well with both experimental results of ten Cate et 
al. [74] and recent numerical results of Yang et al. [24], using only one third the number of grid points as the latter study.
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Fig. 14. Left: non-dimensionalised vertical position of the sphere compared to numerical results of Yang et al. [24] (♦) and experimental results of ten 
Cate et al. [74] (◦). Right: dimensional vertical velocity of the sphere compared to numerical results of [24] (♦) and experimental results of [74] (◦).

The popular test cases presented in this work are all, to varying degrees, inertially dominated and exhibit viscous bound-
ary layers that must be fully resolved to accurately simulate the behaviour of the rigid bodies in the flow. The second-order 
accurate boundary fitted method demonstrated here was found to produce reasonably converged results with approxi-
mately six grid points across the estimated boundary layer depth. By using a coarse—but fine enough to resolve wake 
structures—Cartesian background grid and refined, boundary-fitted grids, grid point counts were greatly reduced, even in 
two-dimensional problems.

The overset grid method has shown promising capabilities for fully-resolved DNS of small numbers of rigid particles. 
With a more sophisticated collision mechanism, e.g. the multi-scale approach of Kempe et al. [75] or the DEM approach 
of Wachs [76], fully-resolved DNS of larger numbers of arbitrarily shaped particles could be performed. Without modification 
to the underlying discretisation technique other types of flow, for example arbitrarily moving bodies in non-Newtonian 
flows, could be examined.
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