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Abstract 

Metal halide perovskites such as methylammonium lead iodide (CH3NH3PbI3) are generating 

great excitement due to their outstanding optoelectronic properties, which lend them to 

application in high efficiency solar cells and light-emission devices. However, there is currently 

debate over what drives the second order electron-hole recombination in these materials. Here, 

we propose that the band gap in CH3NH3PbI3 has a direct-indirect character. Time-resolved 

photo-conductance measurements show that generation of free mobile charges is maximized 

for excitation energies just above the indirect band-gap. Furthermore, we find that second-order 

electron-hole recombination of photo-excited charges is retarded at lower temperature. These 

observations are consistent with a slow phonon-assisted recombination pathway via the indirect 

band-gap. Interestingly, in the low-temperature orthorhombic phase, fast quenching of mobile 

charges occurs independent of the temperature and photon excitation energy. Our work 

provides a new framework to understand the optoelectronic properties of metal halide 

perovskites and analyze spectroscopic data. 
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Solar cells based on the metal halide perovskite family of materials including CH3NH3PbI3 have 

been rapidly developed in the past few years, reaching record power conversion efficiencies 

exceeding 22%.1–3 This unprecedented progress not only makes hybrid perovskites interesting 

candidates for photovoltaic applications, but also illustrates their fascinating opto-electronic 

properties. The outstanding photovoltaic performance of CH3NH3PbI3 is mainly due to (i) the 

high absorption coefficient (ii) high yield of free electrons and holes upon photo-excitation and 

(iii) excellent charge transport properties.4–7 Although substantial progress has been made in 

modeling the dynamics of photo-excited charge carriers in CH3NH3PbI3,8,9 we are yet to fully 

understand what drives the second order electron-hole recombination in this material. 

Currently, the conventional idea is that CH3NH3PbI3 behaves as a direct band gap 

semiconductor, where the absorption and emission of photons occur via allowed transitions. 

This is fundamentally different from indirect band gap semiconductors such as silicon in which 

both absorption and recombination involve not only photons, but also phonons. This results in 

lower absorption coefficients than in direct semiconductors,10 but at the same time 

recombination is much slower.11  

Recent theoretical calculations of the band structure of CH3NH3PbI3 suggest that the conduction 

band minimum (CBM) is slightly shifted in k-space with respect to the valence band maximum 

(VBM), making the fundamental band gap indirect.12–15 Nevertheless, to date, there are no 

reports of experimental evidence for the presence of an indirect band gap in CH3NH3PbI3 or in 

any other metal halide perovskite. Furthermore, it remains controversial to what extent the 

temperature and the crystal phase affects the photo-physics in CH3NH3PbI3.16–18  

Finally, most temperature-dependent spectroscopic studies monitor the charge carrier dynamics 

at relatively high excitation fluences (i.e., in excess of 1 μJ/cm2), whereas most processes 

relevant to solar cell operation happen at much lower illumination intensities.  

In this work, we use temperature-dependent Time-Resolved Photoluminescence (TRPL) and 

Microwave Conductance (TRMC) techniques to study the dynamics of optically-excited charge 

carriers in CH3NH3PbI3 at charge densities comparable to AM 1.5 excitation (see Figure 1). 

Both techniques show that second order electron-hole recombination is a thermally-activated 
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process for T > 160 K.7,19 These results are explained by proposing that photo-excited carriers 

undergo a phonon-assisted recombination pathway. In the orthorhombic phase (T < 160 K), 

fast quenching of mobile charges is observed. Finally, we find that this behavior is general for 

solution-processed perovskite films with a planar or meso-structured morphology, independent 

of the lead precursor used in the fabrication.  

  

Figure 1: Representation of time-resolved photoluminescence (TRPL) and microwave conductance (TRMC) 

measurements on a thin film of CH3NH3PbI3. In both techniques, electrons (closed circles) are excited to the 

conduction band by a short laser pulse, leaving mobile holes (open circles) in the valence band. TRMC is used to 

measure the photo-conductance (G), which scales with the product of the time-dependent concentration and 

mobility of photo-generated free electrons (e) and holes (h). The sinusoidal line represents the magnitude of the 

microwave electric field as it passes through the sample. The radiative recombination of these mobile electrons and 

holes is probed by TRPL, which is a function of the concentrations of electrons (ne(t)) and holes (nh(t)).  

 

Thin (~250 nm), polycrystalline CH3NH3PbI3 films were solution-processed on quartz 

substrates using an acetate-based precursor solution (see Supplementary Figure 1).20 The 

TRMC technique was used to measure the photo-conductance ΔG, i.e. the difference in 

conductance of CH3NH3PbI3 between dark and after pulsed illumination (see Figure 1). Figures 

2a and 2c show ΔG as function of time after excitation of tetragonal (T = 300 K) and 

orthorhombic (T = 120 K, see also Supplementary Figure 2) CH3NH3PbI3, respectively. 

Directly after photo-excitation (t = 0), ΔG increases due to the formation of free mobile charge 

carriers. Since no electrodes are attached to the sample, the decrease of the signal over time can 

only be due to immobilization of charges by trapping or recombination. Hence, these 
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measurements yield information on the decay processes in CH3NH3PbI3 similar to a device 

under open-circuit conditions. Interestingly, in the tetragonal phase at T = 300 K, the signal 

observed on excitation at 1.65 eV is significantly higher than at 2.00 eV, while the opposite is 

true in the orthorhombic phase at T = 120 K.  

 

Figure 2. Photo-conductance for a CH3NH3PbI3 thin film. Photo-conductance as function of time after excitation 

at 1.65 eV ( = 7 nm) and 2.00 eV ( = 621 nm) for the tetragonal phase at 300 K for an absorbed photon fluence 

of 8 x 108 cm-2 per pulse (a). Photo-conductance as function of time after excitation at 1.70 eV ( = 7 nm) and 

2.00 eV ( = 621 nm) for the orthorhombic phase at 120 K for an incident photon fluence of 2 x 1010 cm-2 per pulse 

(c). Comparison of maximum photo-conductance (ηΣμ, circles) to fraction of absorbed photons at 300 K (b) and 120 

K (d), where the absorbed photon fluences are 8 x 108 cm-2 per pulse for T = 300 K and on the order of 109 cm-2 per 

pulse for 120 K. For each excitation wavelength, the photo-conductance was averaged over at least 200 laser pulses 

and error bars were calculated based on the error in measuring the laser intensity I0 . 

 

The ratio between the number of light-induced free charge carriers and the number of incident 

photons is defined as the incident yield . The product of  and the summation of the electron 

and hole mobilities, Σμ, can be calculated from the maximum value of the photo-conductance 

ΔGmax according to:21 

 

𝜂∑𝜇 =  
Δ𝐺𝑚𝑎𝑥

𝐼0𝛽𝑒
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Here, I0 is the number of photons per unit area per pulse, β is the ratio of the inner dimensions 

of the microwave cell, e the elementary charge.21 To obtain the quantum yield of free charge 

carrier generation φ with respect to the number of absorbed (instead of incident) photons, η has 

to be corrected by the fraction of absorbed photons FA. Thus, by normalizing ηΣμ to FA, the 

product of φ and Σμ is obtained (i.e. φΣμ). If both φ and Σμ are independent of the excitation 

wavelength, Σμ should be proportional to FA. This can be visualized with a so-called action 

spectrum, in which the wavelength-dependent Σμ is directly compared to the FA spectrum.22,23 

Figures 2b and 2d (dashed lines) show the action spectra for the CH3NH3PbI3 thin film at 300 

K (b) and at 120 K (d), together with the temperature-dependent FA spectra (solid lines). 

Strikingly, for both temperatures the action spectra do not match the FA spectra. For tetragonal 

CH3NH3PbI3 (Figure 2b), ηΣμ reaches a local maximum value at excitation energies close to 

1.7 eV (λ = 730 nm). After correction of ηΣμ for FA, see also Figure 2a, φΣμ at 1.7 eV is close 

to 100 cm2/Vs. Considering that the thermal energy at 300 K (26 meV) is much higher than the 

exciton binding energy of a few milli-electronvolts,24 most of the excitons will dissociate into 

free charges and φ is close to unity.8 Therefore, Σμ amounts to at least 100 cm2/Vs for charges 

excited at 1.7 eV, which is comparable to mobilities reported for single CH3NH3PbI3 crystals 

and thus indicative of the high quality of the polycrystalline films fabricated from the acetate-

based precursors.25 Exciting above 1.8 eV results in φΣμ values of 80 cm2/Vs, indicating that φ 

is approximately 20% lower. Here, we assume that Σμ is independent of excitation wavelength, 

which is reasonable in view of the similar decay kinetics (Figure 2a and Supplementary Figure 

3). This local maximum in the action spectrum around 1.7 eV is also observed at higher 

excitation densities, and becomes even more pronounced at lower excitation densities (see 

Supplementary Figures 4 and 5).  

For orthorhombic CH3NH3PbI3, in contrast with the tetragonal phase, the φΣμ values using 

excitation energies close to 1.7 eV are extremely low (see Figure 2c and Supplementary Figure 

6). To understand this, we note that at 120 K, the FA spectrum is comprised of the band-to-band 
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continuum and a sharp transition peaking at 1.7 eV that has been attributed to an excitonic 

feature.8,26 Hence, we conclude that, for excitation wavelengths that coincide with the excitonic 

transition (1.7 eV), the generation yield of free charges is much lower than for the band-to-band 

continuum (≥ 1.8 eV). This implies that in the orthorhombic phase, excitons are less likely to 

dissociate into free charges than in the tetragonal phase. This observation can be understood 

from the exciton binding energy being ~16 meV in orthorhombic CH3NH3PbI3,24 which is 

higher than the thermal energy of 10 meV at 120 K.  

To further investigate the generation and recombination pathways of free charges in the 

different crystal phases, we measured φΣμ for temperatures ranging from 80 to 340 K using an 

excitation energy of 2.0 eV, which corresponds to band-to-band excitations in both phases. In 

the tetragonal () phase down to 150 K, φΣμ is enhanced upon cooling (Figure 3). In contrast, 

if the temperature is further reduced to 90 K and the crystal structure changes from tetragonal 

to orthorhombic (), φΣμ decreases substantially.  

 

 

Figure 3. Product of generation yield φ (≤1) and mobility Σμ as a function of temperature in a CH3NH3PbI3 

thin film. The film is photo-excited at 2.0 eV (1010 absorbed photons/cm2) and the results are shown for cooling 

(green) and heating (orange) the film. The time-dependent photo-conductance at 140 K is shown in the inset. 

 

These changes in φΣμ could be due to a variation of φ and/or Σμ with temperature. To unravel 

this, we performed complementary temperature-dependent pulse-radiolysis TRMC 

experiments, where free electrons and holes are generated by a high-energy electron pulse using 
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samples prepared in the same way as for the photoconductivity experiments.27 Similar to the 

photon-induced TRMC experiments, the initial pulse-induced change in conductivity is 

determined by the concentration and mobility of the charge carriers. The concentration is tuned 

by the duration of the accelerator pulse and, therefore, this technique can be used to determine 

the temperature-dependent mobility.28 Similar to previous studies,16,19,28 these measurements 

confirm that in our CH3NH3PbI3 thin films, the mobility increases when the temperature is 

lowered (Supplementary Figure 7). For these samples Σμ is proportional to T-1.5 down to the 

phase transition and,16,19,28 apart from small deviations, no abrupt decrease in the mobility is 

observed below the phase transition. In other words, the increasing φΣμ values upon cooling 

the CH3NH3PbI3 thin film down to 150 K are due to an analogous rise in Σμ, whereas the 

reduced φΣμ values found for temperatures below 150 K can thus only be attributed to a 

substantial reduction in φ.  

Interestingly, different trends in φΣμ are found for cooling and heating over the orthorhombic-

tetragonal phase transition (see also inset in Figure 3), suggesting the co-existence of tetragonal 

and orthorhombic phases (see Supplementary Figure 8). For instance, at 140 K (Figure 3), the 

higher photo-conductance observed upon cooling may be associated with a larger concentration 

of tetragonal CH3NH3PbI3 domains than upon heating. Altogether, these results not only show 

that the phase transition itself is different for cooling and heating,29 but also indicate that the 

low φ is characteristic of the orthorhombic phase. In order to understand the drastic reduction 

in φ, it is important to note that the exciton binding energy in the orthorhombic phase is only 

16 meV.18,24 According to the Saha equation (Supplementary Figure 9), this results in an exciton 

population of less than 10% of the photo-excited species for an excitation density of 1015 cm-3 

as used in Figure 3.6 Although higher values for the exciton binding energy in the orthorhombic 

phase have been reported,30 recent temperature-dependent THz spectroscopy studies have 

confirmed that the majority of excitations results in Drude-like free charges down to 77 K.16,31 

Therefore, given that φ is at least an order of magnitude lower in the orthorhombic phase, this 

can only to a small extent be attributed to the presence of excitons. Instead, the low value of φ 

might be due to the occurrence of (sub)-nanosecond decay of mobile electrons and holes, which 
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is below the temporal resolution of our photon-induced TRMC measurements (see 

Supplementary Figure 10).  

To further investigate the phase-specific recombination pathways, we carried out temperature-

dependent TRPL measurements at the maximum emission wavelength (Supplementary Figure 

11), which depends both on temperature and the crystal structure, as reported previously.7,29,32 

Figures 4a and 4b show TRPL intensities and TRMC traces for tetragonal CH3NH3PbI3 

recorded between 260 K and 180 K. Most interestingly, both TRPL and TRMC show the same 

trends; the lifetime is extended on lowering the temperature.7,19 Furthermore, at 180 K, both φ 

and the PL quantum efficiency (PLQE) are close to 1.7 This means that at this temperature, the 

radiative recombination (PL) originates primarily from recombination between free mobile 

electrons and holes. Previously, we have shown that TRPL and TRMC lifetimes in CH3NH3PbI3 

can be modeled using the same set of kinetic parameters.33,34 In other words, even at room 

temperature where the PLQE is typically less than 0.1,7 second order band-to-band 

recombination of mobile charges partially leads to PL. The same kinetic model was used to 

describe the temperature-dependent measurements displayed in Figure 4b (see Supplementary 

Figure 12). We find that the initial decay is characterized by second order recombination, while 

recombination between trapped charges and their mobile countercharge dominates at longer 

timescales (i.e. lower concentrations).33 Figure 4c shows the temperature-dependent mobility 

and the rate constant k2, for second order band-to-band electron-hole recombination, obtained 

from fitting the TRMC traces (see Supplementary Figure 12). Interestingly, the temperature 

dependence of k2 indicates that electron-hole recombination is retarded when the temperature 

is lowered, which we observed to be general for solution-processed perovskite thin films, 

although we note that the absolute values of k2 differ for each processing route (see 

Supplementary Figures 13 to 15). Thus, the second-order band-to-band recombination in 

tetragonal CH3NH3PbI3 is a thermally-activated process under illumination intensities 

equivalent to 1 sun AM 1.5, implying that there is an energetic barrier for decay.7,19 This is in 

contrast with other bulk semiconductors such as GaAs,35 where recombination becomes faster 

at lower temperature.  
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Figure 4. Temperature-dependent PL and TRMC kinetics. a) PL lifetimes recorded at 180 < T < 260 K and 120 

K (orthorhombic phase, 742 nm, inset) for λ = 3.0 eV, I0 = 4 x 1012 photons/cm2 per pulse: excitation density of 1017 

cm-3. b) Temperature-dependent photo-conductance in the tetragonal phase for 180 < T < 260 K and the 

orthorhombic phase (inset) for λ = 2.0 eV, I0 = 9 x 1010 photons/cm2 per pulse: excitation density of 3 x 1015 cm-3. 

c) Mobility (circles, left axis) and rate constant k2 (squares, right axis) for second order electron-hole recombination, 

obtained from fitting the temperature-dependent TRMC traces as detailed in Supplementary Figure 13. 

 

The inset in Figure 4a shows the PL decay for CH3NH3PbI3 at 120 K, for the emission peak 

centered at 740 nm (see Supplementary Figure 16). The PL decay of the tetragonal phase (T = 

150 K) is plotted in the same graph to enable direct comparison, which allows us to visualize 

that the PL lifetime at 120 K is much shorter than at 150 K. The same trend was observed with 
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the pulse-radiolysis TRMC experiments, where at least half of the free charges is immobilized 

within 6 ns (see Supplementary Figure 17). Clearly, the majority of photo-physical products in 

the orthorhombic phase decay much faster than those in the tetragonal phase. Furthermore, the 

emission spectra recorded at 90 K and 120 K comprise multiple peaks with different lifetimes 

(see Supplementary Figure 16), indicating the presence of additional recombination pathways 

specific for the orthorhombic phase. Additionally, the total integrated intensity of emitted 

photons at 90 K is lower than at 150 K (see Supplementary Figure 16), which suggests that 

non-radiative recombination is in competition with radiative events.  

Altogether, the above TRPL results show that in the orthorhombic phase, electron-hole 

recombination occurs on the (sub-)nanosecond timescale, explaining the extremely low yields 

of mobile charges detected with TRMC.  

 

Discussion 

To briefly summarize our results: at 300 K, the generation yield of free charge carriers in 

CH3NH3PbI3 is 20% higher for excitation just above the band-gap (at 1.7 eV) than further above 

the band gap (> 1.8 eV). Furthermore, in the tetragonal phase, an energetic barrier exists for 

second-order band-to-band recombination between mobile CB electrons and VB holes. In the 

orthorhombic phase, both excitons and free charges decay via fast non-radiative recombination 

pathways, which competes effectively with charge carrier generation. 

In order to explain all of these findings, we propose that in the tetragonal phase additional dark 

states are present, which are located below the optically-accessible conduction band edge. 

These states are different from shallow traps. That is, if for instance electrons were immobilized 

in shallow traps, the generation yield of free mobile CB electrons should be enhanced with (i) 

increasing temperature and (ii) increasing charge carrier concentration. This should lead to a 

higher φΣμ with enhanced temperatures (i) and with increasing photon flux (ii). However, as 

shown in Figure 3 and Supplementary Figures 5, 7 and 15, the opposite trends are observed. 

Finally, previous TRMC experiments using electron- and hole-selective contacts have shown 

that both electrons and holes are separately mobile under excitation conditions similar to the 
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present work.5,36 Hence, although we do not rule out the presence of shallow trap states, these 

alone cannot explain the observations reported here. Instead, we propose that these dark states 

form band-like structures. Excited electrons thermally relax into these bands, yielding highly 

mobile carriers. Recombination of these electrons back to the ground-state is forbidden, 

resulting in long charge carrier lifetimes. This model is reminiscent of a semiconductor with an 

indirect band-gap, where the conduction band minimum (CBM) is shifted in k-space with 

respect to the valence band maximum (VBM) so that recombination is momentum-forbidden. 

This explanation is corroborated by theoretical work claiming that the fundamental band gap 

in CH3NH3PbI3 is indirect.12–15 This has been attributed to collective orientations of the organic 

cations, which is possible in the tetragonal and cubic crystal phases due to the rotational 

freedom of the organic cations.12 However, recent calculations of the band structure of 

CH3NH3PbI3 have shown that Pb spin-orbit coupling results in an indirect band gap, which is 

therefore also present in systems with random orientations of the organic cation.15  

To further investigate these indirect transitions and to elucidate whether their origin is related 

to the Pb spin-orbit coupling15 or the dipole moment of the organic cation,12 it will be important 

both theoretically and experimentally to replace methylammonium with, for example, Cs+, 

which does not have a dipole moment. Although there are reports of colloidal systems of Cs-

based perovskites37 and perovskite thin films with low levels of the organic cation substituted 

with Cs+,38 bulk semiconductors based on pure CsPbI3 are not yet of high enough quality in 

their current form to allow for a fair comparison of their photophysics.39 It is likely that more 

stabilized and higher quality embodiments will emerge in the near future to allow for further 

investigation. 

In any case, in both theoretical scenarios, the band diagrams suggest that the CBM is only 

slightly shifted in k-space, resulting in a manifold of momentum-allowed (direct) transitions 

for excitation energies close to the absorption onset. Due to the limited density of states (DOS) 

at the CBM,15 direct transitions might dominate over indirect transitions at excitation densities 

higher than used in the present work (> 1017 cm-3).16  To investigate whether direct or 

momentum-forbidden transitions dominate the absorption onset, rigorous analysis of 



 12 

absorption spectra, accounting for reflections and excitonic contributions,40 should be 

performed. 

The direct-indirect nature of the band gap is schematically depicted in Figure 5a. Here, the local 

minimum in the CB corresponding to a direct transition is denoted by CBD. We recall here that 

φΣμ is larger at 1.7 eV than at 2.0 eV (Figure 2b). We propose that, at an excitation energy of 

1.7 eV, thermal relaxation of electrons (direct excitation) into the CBM, which forms an indirect 

band gap with the VBM, is optimized with respect to relaxation in CBD. We expect that a 

fraction of the electrons in CBD (>1.8 eV) recombines rapidly with VBM holes via direct 

(radiative) or trap-assisted recombination, resulting in a smaller φ than at 1.7 eV.  However, a 

substantial fraction of electrons excited at >1.8 eV still relaxes into the CBM.  

The direct-indirect nature of the band gap in tetragonal CH3NH3PbI3 explains why the 

recombination is enhanced with increasing temperature. This is in contrast with e.g. GaAs with 

a direct band gap,35 where the second order recombination rate is proportional to T-1.7. 

Recombination via an indirect transition, however, is assisted by phonons. As a consequence, 

given that there are more phonons when the temperature is raised, indirect recombination is 

enhanced by increasing the temperature. For direct band gap semiconductors, the second order 

recombination rate B (T) is proportional to Eg
2/(kBT3/2).41 To further investigate the thermal 

activation barrier for second order recombination in CH3NH3PbI3, we constructed an Arrhenius 

plot of the pre-factor  (T),42 which is defined as the ratio between k2 (T) and B (T). The results 

are shown in Figure 5b. From the linear slope of ln((T)) versus reciprocal temperature, an 

activation energy of 47.0 ± 1.2 meV for second order electron-hole recombination was 

obtained. Interestingly, this is on the same order of magnitude as the 20 meV12 to 75 meV15 

difference between the direct and indirect band gaps predicted from theoretical calculations of 

the band structure. Therefore, thermal energy might assist the release of electrons back into the 

CBD where they undergo rapid recombination with holes in the VBM. We note that the low 

room-temperature PLQE and its enhancement by surface-treatments suggests that at least a 

fraction of charges decays via non-radiative pathways.7 The precise influence of shallow or 
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deep intra-band traps, and their relative competition or synergy with the direct-indirect bandgap 

character, will be the subject of important future work within the community. 

Finally, considering the fast decay of mobile charges in the orthorhombic phase, it is clear that 

the dominant recombination pathways are different from the tetragonal phase. A plausible 

scenario for explaining the rapid immobilization of charges is the presence of domains that 

remain in the tetragonal phase even at low temperature, which could act as efficient 

recombination centers due to the smaller band gap.43 A detailed structural study on the phase 

transition will be published elsewhere. Finally, it is also possible that the orthorhombic lattice 

does not allow for the formation of an indirect band gap, if the latter is related to orientational 

freedom of the organic cations.12   

 

Figure 5. Proposed band diagrams and activation energy for second order recombination in the CH3NH3PbI3 

thin film. a) Proposed band diagram and for the tetragonal phase. Here, the conduction band minimum (CBM) is 

slightly shifted in k-space with respect to the valence band maximum (VBM), making the fundamental band gap 

indirect. The local minimum in the CB corresponding to a direct transition is denoted by CBD. b) Arrhenius plot of 

the pre-factor ,42 defined as the ratio between the k2 (T), obtained from fitting the experimental TRMC traces 

for 160 K < T < 300 K (see Supplementary Figure 12), and the theoretical second order recombination rate B (T).41 

The slope of the linear fit (dotted line) indicates that the activation energy for second order recombination is 47 ± 

1.2 meV. Therefore, thermal energy (kBT) might assist in the release of electrons from CBM to CBD, which is 

schematically depicted in (a).  

 

Conclusions 

In this work, we used TRMC and PL to investigate the charge carrier dynamics in tetragonal 

and orthorhombic CH3NH3PbI3. Most importantly, we find that in the tetragonal phase, second-
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order recombination of mobile electrons and holes occurs via a non-allowed transition, 

reminiscent of a semiconductor with an indirect band gap. An activation energy of 47.0 ± 1.2 

meV was found, which is on the same order of magnitude as the difference between the direct 

and indirect band gaps predicted from theoretical calculations of the band structure. 

Additionally, we find that the photo-conductance, reaches maximum values upon excitation at 

1.7 eV. This is attributed to direct excitation from the VB into the CBM, which forms an indirect 

band gap with the VBM. This model also explains why second-order recombination is 

enhanced with temperature, which is in contrast with other bulk semiconductors such as 

GaAs.35. These effects are not observed in the orthorhombic phase of CH3NH3PbI3, in which 

the major part of the carriers decays rapidly. These insights provide a new framework to 

understand the optoelectronic properties of metal halide perovskites, rationalize their unique 

suitability for low-cost photovoltaic and light-emitting devices, and analyze spectroscopic data. 
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Film preparation 

Glass substrates were washed sequentially with soap, de-ionized water, isopropanol, acetone 

and finally treated under oxygen plasma for 10 minutes. Thin films of CH3NH3PbI3 were 

solution-processed by employing a methylammonium iodide (CH3NH3I) and lead acetate 

Pb(Ac)2·3H2O precursor mixture. CH3NH3I (Dyesol) and Pb(Ac)2·3H2O (Sigma-Aldrich) 

were dissolved in anhydrous N,N-dimethylformamide at a 3:1 molar ratio with final 

concentration of 37 wt%. The precursor solution was spin-coated at 2000 rpm for 45 seconds 

in a nitrogen-filled glovebox, and the substrates were then dried at room temperature for 10 

minutes before annealing at 100°C for 5 minutes. For the meso-structured samples, mesoporous 

alumina layers of ∼400 nm were formed by spin-coating a solution of ∼20 nm alumina 

nanoparticles in propan-2-ol on glass and drying at 150 °C. A diluted version (30 wt%) of the 
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same acetate precursor solution was then spin-coated onto the mesoporous film at 2000 rpm for 

45 seconds in a nitrogen-filled glovebox and the film dried at room temperature for 10 minutes 

before annealing at 100°C for 5 minutes. For the PbI2-based samples, the ‘dripping’ technique 

was employed. Here, an equimolar (0.75 M, total 45 wt%) solution of CH3NH3I (Dyesol) and 

PbI2 (Alfa Aesar) was prepared in DMF and spin-cast at 5000 rpm for 35 s. After 6 s, 150 μL 

chlorobenzene was deposited on the spinning sample in order to induce rapid crystallization. 

After spinning, the samples were immediately heated at 100 °C for 10 minutes. All samples 

were then stored in a nitrogen-filled glovebox until used. 

 

X-Ray Diffraction  

X-Ray Diffractograms were collected from CH3NH3PbI3 thin films on boron-doped Si(100) 

substrates using PANalytical X’Pert Pro Multi-Purpose Diffractometer operated at 40 kV and 

40 mA (Cu K-alpha radiation- 1.5418 Å) in Bragg-Brentango geometry. An Oxford 

Cryosystems PheniX Cryostat was employed for low temperature measurements. Data analysis 

was carried out using the Panalytical X’pert Highscore Plus program and corrections for stage 

and substrate thermal expansion were made. 

 

Optical Characterization 

Absorption and transmission spectra were recorded with a Perkin-Elmer Lambda 1050 

spectrophotometer equipped with an integrated sphere. The thin films were placed in front of 

the sphere to measure the fraction of transmitted light (FT) and under an angle of 10° inside the 

sphere to detect the total fraction of reflected and transmitted photons (FR+T). From here, we 

calculated the fraction of absorbed light (FA): 

 

𝐹𝐴 = 1 − 𝐹𝑇+𝑅                (1) 

 

The fraction of reflected light (FR) was determined from: 
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𝐹𝑅 = 1 − 𝐹𝐴 − 𝐹𝑇           (2) 

 

The absorption coefficient α is often calculated from the transmission spectrum using: 

 

𝐼𝐿

𝐼0
=  𝑒−𝛼𝐿            (3) 

 

Where IL/I0 equals FT for a sample of thickness L with negligible reflection. However, since 

CH3NH3PbI3 films are highly reflective, α was obtained from: 

 

𝐹𝑇

1−𝐹𝑅
=  𝑒−𝛼𝐿             (4) 

 

The low-temperature transmission spectrum was measured under nitrogen using a Cary 500i 

UV-Vis-NIR Dual-Beam Spectrophotometer with a liquid-nitrogen-cooled Linkum Scientific 

FTIR 600 Freezing stage for temperature control. FA was calculated from (2), thereby 

neglecting possible temperature dependence of FR. For the temperature-dependent TRPL 

measurements the samples were placed in a nitrogen-filled cryostat. The PL emission spectra 

and PL lifetimes at the maximum emission wavelength were recorded using an Edinburgh 

LifeSpec spectrometer equipped with a single photon counter. The CH3NH3PbI3 films were 

excited at 405 nm with a picosecond pulsed diode laser (Hamamatsu, M8903-01, I0 = 4 x 1012 

photons/cm2, repetition rate 0.1 MHz).   

 

Photo-conductance measurements 

The CH3NH3PbI3 films on quartz substrates were placed in a sealed resonance cavity inside a 

nitrogen-filled glovebox. The photon-induced Time Resolved Microwave Conductivity 

(TRMC) technique was used to measure the change in microwave (8-9 GHz) power after pulsed 

excitation (repetition rate 10 Hz).21 The excitation wavelength of the LASER was varied from 

518 nm (2.4 eV) to 828 nm (1.5 eV); the incident photon flux was adjusted by using different 
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filters. For each excitation wavelength, the photo-conductance was averaged over at least 200 

laser pulses. The laser intensity, I0, was determined using a Coherent power meter with an 

adjustable detection range. The inaccuracy of determination of I0 due to fluctuations of the laser 

is approximately ± 0.1 mJ, which is taken into account in the error analysis of the data. The 

illuminated sample area is ~2.5 cm2. The time-resolved change in conductance ΔG(t) was 

obtained from the photo-excitation-induced change in microwave power ΔP(t), which are 

related by a sensitivity factor K: 

 

Δ𝑃(𝑡)

𝑃
=  −𝐾Δ𝐺(𝑡)            (5) 

           

The rise of ΔG is limited by the width of the laser pulse (3.5 ns FWHM) and the response time 

of our microwave system (18 ns). The slow repetition rate of the laser of 10 Hz ensures full 

relaxation of all photo-induced charges to the ground state before the next laser pulse hits the 

sample. A detailed description of this technique can be found in Ref. 21.  

 

Pulse-radiolysis TRMC measurements 

Four substrates each covered with ~75 cm2 CH3NH3PbI3 (thickness ~ 250 nm) were used to 

scratch off 35 mg of material, which was placed in a polyether ether ketone (PEEK) holder. To 

protect the CH3NH3PbI3 from moisture and air, it was covered with poly-methyl-methacrylate 

(PMMA), drop-casted from a 10 mg/mL PMMA/chlorobenzene solution. Pulse-radiolysis 

TRMC (PR-TRMC) measurements involve the generation of charge carriers through irradiation 

by a short pulse of high-energy electrons (3 MeV) and the monitoring of the changes in 

conductivity due to mobile charge carriers using high frequency microwaves (28-38 GHz).27,44 

The conductivity transients shown were obtained at 32 GHz. Similar to the photon-induced 

TRMC, the change of conductivity is proportional to the absorbed microwave power:  

∆𝑃

𝑃
= 𝐴∆𝜎                                                                            (6) 
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The experimental frequency dependence of P/P can be fitted with an analytical expression to 

determine the dielectric constant, ε, and change in conductivity, Δσ.44 

The mobility is then calculated by: 

 

∆𝜎 = 𝑒 ∑ 𝑁𝑝(0) 𝜇                                                                   (9) 

 

Where 𝑁𝑝(0) is the initial concentration of charge carriers at the end of the pulse and 𝜇 the sum 

of the mobilities for electrons and holes. 𝑁𝑝(0) is a function of the mass of material (m), 

volume of the sample holder (Vsh), irradiation energy deposited in the sample (D) and of the 

radiation-ionization energy required for the generation of an electron-hole pair (Ep): 

 

𝑁𝑝(0) =  
𝐷

𝐸𝑝∗1.6∗10−19 𝐽

𝑒𝑉

 
𝑚

𝑉𝑠ℎ
                                                                            (7) 

 

D is proportional to the electron density of the material and for perovskites has been determined 

to be ~1 J/Kg/nC.28 The latter is derived from previous radiation dosimetry experiments. Ep has 

been determined according to Klein’s theoretical model45 and Alig’s equation46 for 

semiconductor materials, which relates it to the band gap of the material, phonon losses and the 

residual kinetic energy:  

E𝑝  = 2.73 𝐸𝑔 + 0.55 [𝑒𝑉]                                                       (8) 

In the PR-TRMC set up, the cell is contained in a cryostat in which the temperature can be 

varied between -150°C and 200°C. The temperature was maintained for ~15 min before doing 

the actual measurement in order to assure the equilibrium of the system. The overall time 

response of the set-up is limited by the rise time of the detector diode and the length of the 

excitation pulse (~1 ns). The frequency scans (28-38 GHz) were measured at a pulse length of 

200 ps, corresponding to an initial charge carrier concentration of 4.7x1014 cm-3.  

44. Warman, J. M. et al. Charge Mobilities in Organic Semiconducting Materials 

Determined by Pulse-Radiolysis Time-Resolved Microwave Conductivity: π-Bond-
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Conjugated Polymers versus π−π-Stacked Discotics. Chem. Mater. 16, 4600–4609 

(2004). 

45. Klein, C. A. Bandgap Dependence and Related Features of Radiation Ionization 

Energies in Semiconductors. J. Appl. Phys. 39, 2029–2038 (1968). 

46. Alig, R. C. & Bloom, S. Electron-hole-pair creation energies in semiconductors. Phys. 

Rev. Lett. 35, 1522–1525 (1975). 
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