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Abstract 

Atypical cortical organization and reduced integrity of the grey-white matter boundary have 

been reported by postmortem studies in individuals with Autism Spectrum Disorder (ASD). 

However, there are no in vivo studies that examine these particular features of cortical 

organization in ASD. Hence we used structural MRI to examine differences in tissue contrast 

between grey and white matter in 98 adults with ASD and 98 typically developing controls, to 

test the hypothesis that individuals with ASD have significantly reduced tissue contrast. More 

specifically, we examined contrast as a percentage between grey and white matter tissue 

signal intensities (GWPC) sampled at the grey-white matter boundary, and across different 

cortical layers. We found that individuals with ASD had significantly reduced GWPC in 

several clusters throughout the cortex (cluster p<.05). As expected, these reductions were 

greatest when tissue intensities were sampled close to grey-white matter interface, which 

indicates a less distinct grey-white matter boundary in ASD. Our in vivo findings of reduced 

GWPC in ASD are therefore consistent with prior postmortem findings of a less well-defined 

grey-white matter boundary in ASD. Taken together, these results indicate that GWPC might 

be utilized as an in vivo proxy measure of atypical cortical microstructural organization in 

future studies. 
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Introduction 

Autism spectrum disorder (ASD) is a lifelong neurodevelopmental condition characterized by 

impaired social communication, deficits in social reciprocity, and repetitive and stereotypic 

behaviors and interests (Wing 1997). These core symptoms typically manifest from early 

childhood, and are accompanied by developmental differences in brain anatomy and 

connectivity (for review, see Amaral et al. 2008; Ecker et al. 2015; Lange et al. 2014). For 

example, prior studies of ASD reported atypical measures of cortical anatomy such as 

folding, thickness, and surface area (Nordahl et al. 2007; Hyde et al. 2010; Ecker et al. 2013a; 

Schaer et al. 2013) as well as intra cortical connectivity (Ecker et al. 2013b). However, the 

causes of these cortical abnormalities in people with ASD are unknown.  

 

There is some evidence to suggest that the cortical differences accompanying ASD may result 

from atypical neuronal proliferation, migration and maturation (Pinto et al. 2014). For 

example, some genetic variants associated with ASD encode for genes that regulate these 

neurodevelopmental processes (Huguet et al. 2013). It has been suggested that these 

variations may explain post-mortem findings such as irregular cortical lamination, the 

presence of super-numerous neurons in some layers of the cortex, and poor differentiation of 

the grey-white matter boundary (for review, see Casanova et al. 2014). For example, 

histological samples from the superior temporal gyrus (approximate Brodmann area [BA] 21), 

dorsolateral frontal lobe (BA9) and dorsal parietal lobe (BA7) have shown the grey-white 

matter boundary to be less distinct in ASD as compared to typically developing (TD) controls 

(Avino and Hutsler 2010). Thus, there is increasing postmortem evidence for abnormal cell 

patterning within the grey-white matter boundary in ASD. However, to date no study has 

investigated differences in the integrity of the grey-white matter boundary in ASD in vivo 

across the whole brain.  

 

Current in vivo neuroimaging methods for investigating cortical abnormalities in ASD focus 

on morphometric features such as cortical thickness (CT), i.e. the closest distance from the 
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grey-white matter boundary to the grey-cerebrospinal fluid (CSF) boundary (Fischl and Dale 

2000). Differences in CT have been reported in children, adolescents and adults with ASD, 

and include regional increases and decreases that may mediate some of the behavioral deficits 

typically observed in the disorder (Hardan et al. 2006; Hyde et al. 2010; Ecker et al. 2013b). 

However, measures of CT rely on the accurate delineation of grey and white matter and 

therefore may be confounded by intrinsic histological abnormalities at the grey-white matter 

boundary in ASD (Avino and Hutsler 2010). 

 

Hence, we investigated between-group differences related to cortical lamination in both adult 

males and females with ASD, and matched typically developing (TD) controls, using a whole 

brain quantitative approach that estimated integrity of the grey-white matter boundary. 

Namely, we examined the percent contrast of grey-to-white matter signal intensities (GWPC), 

sampled across different cortical layers in a continuous fashion. Here, the GWPC calculation 

we employed in the current manuscript is comparable to the grey-white contrast ratio (GWR) 

as originally reported by Salat et al. (2009). We hypothesized the grey-white matter boundary 

to be less defined and therefore GWPC to differ significantly in individuals with ASD. 

 

Materials and Methods 

Participants 

Overall, 98 right-handed adults with ASD (49 males & 49 females) and 98 age, sex, and IQ 

matched TD controls (51 males & 47 females) aged 18-42 years were recruited by 

advertisement and assessed at the Institute of Psychiatry, Psychology and Neuroscience 

(IoPPN), London, and the Autism Research Centre, Cambridge. Approximately equal ratios 

of cases to controls, and males to females, were recruited within sites (Table 1). Exclusion 

criteria included a history of major psychiatric disorder (e.g. psychosis), head injury, genetic 

disorder associated with autism (e.g. fragile-X syndrome, tuberous sclerosis), or any other 

medical condition affecting brain function (e.g. epilepsy), or any participants taking 

antipsychotic medication, mood stabilizers or benzodiazepines. 
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ASD diagnosis was made by a consultant psychiatrist using ICD-10 research diagnostic 

criteria and confirmed using the Autism Diagnostic Interview–Revised (ADI-R; Lord et al. 

1994). ADI-R’s were completed for 94 individuals with ASD (49 males & 45 females). 93 

(49 males & 44 females) reached algorithm cut-offs for autism in all domains of the ADI-R 

(social, communication, restricted/stereotyped), although failure to reach cut-off in one 

domain by one point was permitted. The ADI-R rather than Autism Diagnostic Observation 

Schedule (ADOS; Lord et al. 2000) was employed as inclusion criteria to ensure that all 

participants with ASD met the criteria for childhood autism. We were unable to complete 

ADI-Rs for four females with ASD as their parents/caregivers were not available. However, 

all four reached algorithm cut-offs for “autism spectrum” on the ADOS (communication, 

social) diagnostic algorithm. In all other participants, ADOS scores were used to measure 

current symptoms and not as inclusion criterion. One ASD female scored one point below 

cut-off for autism on the communication and repetitive behavior domains of the ADI-R but 

met ICD-10 criteria for ASD and scored above cut-off for “autism” on the ADOS. Overall 

intellectual ability was assessed using the Wechsler Abbreviated Scale of Intelligence (WASI; 

Wechsler 1999). All participants had a full-scale IQ greater than 80 and gave informed 

written consent in accordance with ethics approval by the National Research Ethics 

Committee, Suffolk, UK. 

 

Structural MRI Data Acquisition 

Scanning was performed at the IoPPN, London, and the Addenbrooke’s Hospital, Cambridge, 

using a 3T GE Signa System (General-Electric, Milwaukee, USA). A specialized acquisition 

protocol using quantitative T1-mapping was used to ensure standardization of structural MRI 

scans across scanner platforms. This protocol has previously been validated and extensively 

described elsewhere (Deoni et al. 2008; Ecker et al. 2012), resulting in high-resolution 

structural T1-weighted inversion-recovery images, with 1x1x1mm resolution, a 256x256x176 

matrix, TR=1800ms, TI=50ms, FA=20”, and FOV=5cm. 
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Cortical Reconstruction using FreeSurfer 

Previous histological studies have largely relied upon manual identification to define the 

boundary between grey and white matter. For example, Avino and Hutsler (2010) used a 

sigmoid function to quantify the distinctiveness of the transition between grey and white 

matter in Nissl stained histological images. In the current study, however, we employed an 

automated analytical pipeline using Freesurfer v5.3.0 software 

(http://surfer.nmr.mgh.harvard.edu/) to identify the grey-white matter boundary by deriving 

models of the cortical surface for each T1-weighted image. These well-validated and fully 

automated procedures have been detailed elsewhere (Fischl and Dale 2000; Dale et al. 1999; 

Fischl et al. 1999; Ségonne et al. 2004; Jovicich 2006). In brief, a single filled white-matter 

volume was generated for each hemisphere after intensity normalization, extra-cerebral tissue 

was cropped, and image segmentation performed using a connected components algorithm. A 

triangular tessellated surface was then generated for each white-matter volume. Deformation 

of this tessellated white matter surface resulted in a cortical mesh for the surfaces that define 

the boundary between grey and white matter (i.e. white matter surface), and grey matter and 

cerebral spinal fluid (CSF) (i.e. pial surface). This surface deformation is the result of the 

minimization of an energy functional that utilizes intensity gradients in order to place these 

surfaces where the greatest shift in intensity defines the transition between tissue classes 

(Dale et al. 1999, Supplementary Materials). The use of intensity gradients across tissue 

classes assures that boundary placement is not reliant solely on absolute signal intensity and 

allows for sub voxel resolution in the placement of these boundary surfaces (Dale et al. 1999; 

Dale and Sereno 1993; Fischl and Dale 2000). These automated methods have previously 

been validated against histological analyses and have shown a high degree of accuracy in 

placing the grey-white matter boundary (Rosas et al. 2002). The resulting surface models 

were visually inspected for reconstruction errors. Participant’s surface reconstructions with 

visible inaccuracies were excluded and are not described in this study. Dropout rates due to 
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surface reconstruction errors were equal between groups and represented <10% of the total 

sample.  

 

Grey to White Matter Percent Contrast (GWPC) and Grey Matter Signal Intensity Measures 

Grey matter tissue intensities (GMI) were sampled continuously across different cortical 

layers from the grey-white matter boundary (i.e. white matter surface) to the pial surface. 

These signal intensities were sampled at different percentile fractions of the total orthogonal 

distance projected from the white matter to pial surfaces (i.e. projection fractions). Starting at 

the white matter surface, sampling continued at projection fraction intervals of 10% up to 

60% of the distance from the white matter to the pial surface, thus yielding a set of six GMI 

measures (i.e. from 10 to 60%; Figure 1). The outer 40% (i.e. 70-100%) of the cortical sheet 

was not sampled in order to assure that sampling was performed within the cortical grey 

matter, and not confounded by voxels composed of cerebrospinal fluid (CSF). White matter 

signal intensity (WMI) was measured at 1.0mm into the white matter from the white matter 

surface (Figure 1). Previously reported measures of tissue contrast have used a ratio 

calculation (i.e. GMI/WMI; Salat et al. 2009), where larger values indicate a reduced contrast. 

Here, however, we utilized the formula provided by Freesurfer to calculate tissue contrast as 

the percentage of GMI at projection fraction (i) to WMI at each cerebral vertex (j), 

GWPCij = 100 * (WMIi,1.0mm - GMIi ,j)/ 0.5 * (WMIi,1.0mm + GMIi ,j) 

Thus, by definition, a decrease in GWPC is commensurate with a decrease in contrast 

between the grey matter tissue intensity measured at projection fraction i, and the white 

matter tissue intensity measured at 1.0mm subjacent to the white matter surface. We also 

examined the tissue contrast when sampling GMI at the grey-white matter boundary (i.e. at 

the white matter surface, projection fraction=0%). The resulting GWPC, GMI, and WMI 

measures were subsequently smoothed using a 10mm FWHM surface based Gaussian kernel 

prior to statistical analyses. We also examine between-group comparisons using a 5mm 

FWHM smoothing kernel, which are shown in Supplementary Figure 3 and Table 3. 
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Statistical Analyses 

Vertex-wise statistical analysis of GWPC, GMI, and WMI measures (Y) were estimated by 

regression of a general linear model (GLM) with (1) diagnostic group, sex, and acquisition 

site as categorical fixed-effects factors, (2) a group by sex interaction term, and (3) age and 

full scale IQ as continuous covariates: 

Yi = β0 + β1 Group + β2 Sex + β3[Group x Sex] + β4Site + β5 Age + β6FSIQ + εi 

where εi is the residual error at vertex i. Between-group differences were estimated from the 

corresponding coefficient β1, normalized by the corresponding standard error. Our model was 

selected a priori in order to be comparable to previously published research findings based on 

our sample (Ecker et al. 2013b). Corrections for multiple comparisons across the whole brain 

were performed using ‘random field theory’ (RFT)-based cluster analysis for non-isotropic 

images using a cluster based significance threshold of p<0.05 (2-tailed; Worsley et al. 1999). 

Initially, we investigated between-group differences in GWPC at different grey-matter 

projection fractions. Subsequently, we also investigated between-group differences in grey 

and white matter tissue intensities, which allowed us to determine whether the between-group 

differences in GWPC were driven by differences within the cortical grey or white matter. 

Last, between-group differences in CT were examined using the same GLM as described 

above in order to determine how differences in GWPC might affect variability in CT in ASD. 

 

Results 

Participant demographics and global brain measures 

There were no significant differences between individuals (males and females) with ASD and 

TD controls in age (t(194)=-0.53, p=0.598), full-scale IQ (t(194)=-1.72, p=0.086), or total 

GM volume (t(194) = -0.20, p=0.839). There were also no significant differences between 

males and females in age (t(194)=-0.93, p=0.356) or full-scale IQ (t(194)=-1.87, p=0.063). As 

expected, total grey matter volume in males was significantly larger than in females 
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(t(194)=9.11, p<0.001). However, there were no significant differences in any of these 

measures between males with ASD and male controls, or females with ASD and female 

controls (p<0.05, 2-tailed). 

 

Between-group difference in GWPC across the cortex 

We initially examined vertex-wise between-group differences in GWPC at different 

projection fractions into the cortical sheet. At all sampling depths, we found that individuals 

with ASD had a significantly decreased GWPC in several clusters across the cortex, which is 

consistent with a reduced tissue contrast between grey and white matter (Figure 2). In 

accordance with our hypothesis, the reductions in GWPC were most extensive when GMI 

was sampled at grey-white matter boundary (i.e. the white matter surface, projection 

fraction=0%), and gradually decreased in both statistical effect and spatial extent with 

increasing projection fractions into cortex and away from the grey-white matter boundary. 

Regions where ASD individuals had reduced GWPC as compared to TD controls included 

the; 1) bilateral posterior cingulate (BA 23/30), medial frontal (BA10) fusiform/entorhinal 

(BA 34/37) and the inferior and superior temporal cortices (BA20/21/22); 2) left orbitofrontal 

cortex (BA 11/25) and temporo-parietal junction (BA 39/40); and (3) right dorsolateral 

prefrontal cortex (BA11/45). Statistical details for all clusters are listed in Table 2. There 

were no brain regions where individuals with ASD had a significantly increased GWPC 

relative to controls. The pattern of reduced GWPC among individuals with ASD remained 

significant when total brain volume or mean cortical thickness were included as covariates. 

Furthermore, there was minimal spatial overlap between the pattern of differences in GWPC 

and CT (see supplementary Figure 1 and Table 1). 

 

Between-group differences in grey and white matter tissue intensities 

To identify whether the observed differences in GWPC were driven by differences in grey or 

white matter, or a combination of both, we subsequently examined between-group differences 
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in both GMI and WMI. Individuals with ASD had significantly increased GMI across all six 

different GMI sampling depths relative to controls in regions where we also observed 

decreases in GWPC (Figure 3). These included (1) the bilateral anterior temporal lobes (BA 

38/30) and the left middle temporal gyrus (BA 21), (2) the right temporo-parietal junction 

(BA39/40), and (3) the bilateral fusiform and entorhinal cortex (BA 36). Statistical details for 

these clusters are listed in Table 1. We did not observe any significant between-group 

differences in GMI at the grey-white matter boundary (i.e. the white matter surface), or in 

WMI at 1.0mm within the white matter (Figure 3). There were no brain regions where 

individuals with ASD had significantly decreased GMI relative to controls. Hence GWPC 

reductions in ASD were driven predominantly by increased (i.e. brighter) tissue intensities 

within the cortical grey matter. 

 

Main Effects of Sex and Group by Sex Interactions 

Last, we investigated whether biological sex significantly modulates differences in GWPC in 

ASD by examining group-by-sex interactions. Overall, regardless of diagnosis males had a 

significantly greater GWPC than females (supplementary Figure 2). This occurred across all 

sampling depths, and was predominantly in fronto-parietal regions of the left hemisphere, and 

in bilateral inferior temporal regions (see supplementary Table 2 for statistical details of these 

clusters). However, there were no brain regions where we observed significant group-by-sex 

interactions for GWPC. Thus, while males tended to have a significant increase in contrast 

between grey and white matter tissue intensities, and hence a better defined grey-white matter 

boundary, the reductions in GWPC that we observed in the brain in individuals with ASD 

were not explained by biological sex. 

 

Discussion 

Our aim was to determine if previous postmortem reports of poor definition of the grey-white 

matter boundary in ASD could be detected using a whole brain in vivo MRI approach. As 

hypothesized, we determined that individuals with ASD had a significantly less well-defined 
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tissue contrast (i.e. GWPC) between grey and white matter at (and around) the grey-white 

matter boundary. The affected brain regions included the superior temporal gyrus (BA21), the 

dorsolateral frontal lobe (BA9), and the dorsal parietal lobe (BA7) where histological 

abnormalities in the transition from grey to white matter have also been reported (Avino and 

Hutsler 2010). The concordance between the regional pattern and direction of the GWPC 

differences in our sample with previous histological investigations in post mortem brain tissue 

supports the biological plausibility of our results. Thus, our findings agree with previous 

postmortem histological studies and indicate that tissue contrasts across the grey-white matter 

interface may serve as a potential in vivo proxy measure for atypical organization of the 

cortical sheet in ASD. 

 

Prior postmortem studies reported abnormalities in the cortical microstructure of individuals 

with ASD. For example, the boundary between cortical layer VI and underlying white matter 

has been shown to be significantly less well defined due to increased dispersion of neuronal 

cells across this interface (Avino and Hutsler 2010). It has been suggested that this may be 

caused by the presence of supernumerary neurons beneath the cortical plate that arise from 

disrupted migratory processes or improper resolution of the cortical subplate (Chun and Shatz 

1989; Kemper 2010; Hutsler and Avino 2015). The cortical subplate is a transient 

neurodevelopmental zone that is instrumental in establishing early proper cortical 

connectivity. Specifically, subplate neurons pioneer the corticothalamic axon pathway, serve 

as a ‘signpost’ for cortical afferents, drive endogenous oscillatory activity in the cortex, and 

act as a transient synaptic hub for thalamocortical axons before they directly innervate the 

cortical plate (McConnell et al., 1994; Ghosh et al., 1990; Luhmann et al., 2009; Shatz & 

Luskin, 1986). The maximal volume of the subplate is reached around 30 gestational weeks in 

the human coinciding with the growth of long-range cortico-cortico projections (Vasung et 

al., 2016). After their early neurodevelopmental role is complete, a large number of these 

subplate neurons undergo apoptosis. However, a small percentage of these neurons persist 
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and retain their connections with the overlying cortical plate acting as modulators of cortical 

afferents (Chun and Shatz 1989; Dupont et al., 2006; Kostovic et al., 2011).  

 

Therefore, perturbations to early subplate development may disrupt the establishment of 

structural and functional brain connectivity, which is abnormal in individuals with ASD (Just 

et al., 2004; Belmonte et al. 2004; Courchesne and Pierce 2005; Balardin et al., 2015). In 

addition, the abnormal persistence of these neurons after the large wave of programmed cell 

death could cause disruptions to cortical communication through their modulatory role of the 

overlying cortex. In this way, the abnormal persistence of subplate neurons into adulthood has 

been demonstrated in schizophrenia and seizure disorder and is hypothesized to contribute to 

the pathophysiology of these conditions (Eastwood & Harrison, 2003, 2005; Yang et al., 

2011; Andres et al., 2004; Hildebrandt et al., 2005; Kostovic et al. 2011). Furthermore, a 

recent genetic study reported a set of subplate-specific genes that are associated with ASD 

(Hoerder-Suabedissen et al. 2013). Thus, there is converging evidence to suggest that neurons 

of the cortical subplate contribute to the aberrant neuropathology of ASD and that atypical 

laminar organization, particularly around the grey-white matter boundary, may be a defining 

characteristic of the condition. However this has never previously been examined in vivo. 

  

Thus, in this in vivo study we sought to examine differences in cortical lamination and grey-

white matter boundary integrity in ASD. To achieve this we measured contrasts between grey 

and white matter tissue intensities (GWPC; Salat 2009). These MRI measures were taken at 

the interface of grey and white matter and across cortical layers at six different depths into the 

cortical sheet from the grey-white matter boundary (i.e. white matter surface). In our ASD 

cases many regions with reduced GWPC also showed significantly increased GMI but no 

differences in WMI as compared to TD controls. This suggests (in agreement with prior in 

vivo work by our group; Ecker 2016) that ASD may be primarily associated with disruptions 

to cortical grey matter as opposed to white matter. This increased GMI in ASD may result 

from atypical myelination (Sowell et al. 2004) and/or atypical cytoarchitectural organization 
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such as greater numbers of more densely packed cortical minicolumns (Casanova et al. 2006) 

and reductions in grey level amplitude in these structures (Casanova et al. 2002). 

 

The regional specificity of our findings of decreased tissue contrast may be related to the 

differential expansion of the subplate between cortical areas. Evolutionarily, the size and 

complexity of the subplate is most prominent in humans as it accommodates the increased 

connectivity with cortical and subcortical areas relative to non-human primates and rodents 

(Kostovic & Rakic, 1990; Judas et al., 2013). Within humans, the subplate zone is larger in 

cortical association areas as a consequence of the increased number of axons invading these 

regions. These incoming axons displace subplate neurons deeper into the white matter, which 

occurs to a greater degree in these association areas (Duque et al., 2016). Atypicalities at the 

grey-white matter interface may therefore impact on MRI intensity values, and may explain 

the regional specificity observed in our pattern of results. Moreover, the regional pattern of 

GWPC seems to be linked to the functional deficits that are characteristic for ASD. For 

example, we observed deficits in GWPC in several regions mediating social processing and 

wider socio-cognitive functioning, including the insula, fusiform gyrus, cingulate cortex, 

middle temporal gyrus, superior temporal sulcus, and prefrontal cortical regions (see Just et 

al. 2012 for review). Thus, while future studies are required to establish the functional 

relevance of our results directly, it is likely that atypical GWPC contributes to the cluster of 

clinical symptoms typically observed in ASD. 

 

Findings from this and other studies detailing poor delineation of the grey-white boundary in 

ASD may be taken by some to call into question the accuracy of in vivo MRI measures such 

as CT that rely on the placement of a discrete boundary between grey and white matter. 

However, the spatially distributed patterns of group-differences in CT we detected did not 

significantly overlap with the pattern of differences in GWPC (see supplementary Figure 1). 

Also, including individual’s global mean CT as a covariate did not significantly alter the 

pattern of differences in GWPC. Therefore, while we were able to detect subtle differences in 
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tissue contrast in ASD, at the level of spatial resolution neuroimaging techniques currently 

offer, these do not appear to be large enough to significantly affect estimates of CT within our 

sample of adults with ASD. This finding is also in agreement with a recent twin study 

showing that while both GWPC and CT are highly heritable, they have little shared genetic 

variance (Panizzon et al. 2012). Taken together, these findings suggest that GWPC 

characterizes additional cortical structural properties that are distinct to CT. Nevertheless, 

inter-individual differences in the ability to delineate the grey-white matter boundary should 

be considered in the future when interpreting neuroanatomical features that are based on 

clearly delineating grey and white matter.  

 

Our study is not without limitations. For instance we examined neuroanatomical differences 

associated with ASD in adulthood. This, and the cross-sectional nature of our study, 

inherently limits our ability to draw conclusions on the aetiological and neurodevelopmental 

basis of the atypical neural structure we observed. However, within our sample, all but four 

females with ASD met ADI-R criteria for childhood autism. It is therefore likely that the 

observed pattern of neuroanatomical differences in GWPC may have evolved as a 

consequence of meeting ASD criteria during early childhood and might therefore be causally 

related to the condition. Further longitudinal studies will, however, be required to disentangle 

GWPC differences associated with primary neuropathology from atypical 

neurodevelopmental trajectories or secondary compensatory mechanisms. Recent work has 

quantified the volume of transient neurodevelopmental zones in the postmortem human fetal 

brain using MRI as they relate to major neurogenic events (Vasung et al. 2016). Such 

information provides a reference for studying early prenatal deviations from typically 

developing brain growth and could be used in the future to inform in vivo imaging. We are 

further limited by the current resolution of structural MRI images (1mm isotropic voxels). At 

this resolution it is not possible for us to distinguish between different aspects of cortical 

cytoarchitecture or accurately delineate particular layers of the cortical sheet as defined by 

histological staining. Rather, our sampling approach was based on the geometric criteria of 
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projection fraction percentages into the cortical sheet from the white matter surface (Salat et 

al. 2009). Furthermore, additional research will be required to elucidate the functional 

relationship between deficits in GWPC and autistic symptoms and traits.  

 

Taken together, our findings suggest that measures of GWPC sampled across cortical layers 

may serve as an in vivo proxy measure for irregular microstructural organization of the cortex 

in ASD (and other disorders). Such novel in vivo measures that are indicative of atypical 

cortical organization might in the future be used to stratify the condition, and/or to examine 

the neuropathology of ASD in particular genetic subgroups known to be linked to specific 

neurodevelopmental deficits. 
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Table 1. Participant Demographics 

 ASD (n=98, [49♂, 49♀]) Control (n=98, [51♂, 47♀]) 

London n= 45, ( 24♂, 21♀) n= 44, (25♂, 19♀) 

Cambridge n=53, (25♂, 28♀)  n= 54, (26♂, 28♀) 

Age, years 26 ± 7 (18-48) 27 ± 6 (18-52) 

Full-scale IQ, WASI 113 ± 12 (84-136) 116 ± 9 (93 - 137) 

ADI-R sociala 17 ± 5 (10-28) * 

ADI-R communicationa 13 ± 4 (2-24) * 

ADI-R repetitive behaviora 5 ± 2 (1-10) * 

ADOS social+communicationb 9 ± 5 (0-21) * 
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Table 2. Clusters of Significant Reductions in Grey White Matter Percent Contrast and Increases in Grey Matter Intensity in ASD 

      Talairach   

Measure Cluster Region Labels Hemisphere BA(tmax) Vertices x y z tmax pcluster 

Grey-White Matter 
Percent Contrast 

          

 1 superior temporal gyrus, insula, lateral orbital 
frontal cortex, pars orbitalis, pars triangularis, 
postcentral gyrus, precentral gyrus, rostral middle 
frontal gyrus, superior frontal gyrus 

L 21 10204 47 -4 -14 -3.95 4.38 x 10-6 

 2 posterior-cingulate cortex, isthmus-cingulate 
cortex, lingual gyrus, precuneus cortex 

R 31 5760 7 -30 39 -3.77 2.05 x 10-5 

 3 middle temporal gyrus, banks superior temporal 
sulcus, inferior temporal gyrus, superior temporal 
gyrus 

R 21 4994 54 -11 -18 -3.87 4.48 x 10-5 

 4 middle temporal gyrus, banks superior temporal 
sulcus, inferior temporal gyrus, superior temporal 
gyrus 

L 21 4837 -53 -20 -3 -3.59 1.46 x 10-5 

 5 insula, lateral orbital frontal cortex, pars 
opercularis, postcentral gyrus, precentral gyrus 

L 13 4168 -27 24 -1 -3.64 1.68 x 10-3 

 6 parahippocampal gyrus, fusiform gyrus, lingual 
gyrus 

R 19 4053 25 -53 -2 -3.34 7.63 x 10-4 

 7 medial orbital frontal cortex, rostral anterior 
cingulate cortex, superior frontal gyrus 

L 11 3520 -8 25 -14 -4.13 2.14 x 10-3 

 8 fusiform gyrus, lingual gyrus, parahippocampal 
gyrus 

L 37 3443 -36 -42 -8 -3.26 6.62 x 10-3 

 9 posterior-cingulate cortex, isthmus-cingulate 
cortex, lingual gyrus, precuneus cortex 

L 23 3432 -8 -56 16 -3.33 3.92 x 10-3 

 10 supramarginal gyrus L 40 2466 -56 -32 27 -3.15 3.26 x 10-3 

Grey Matter Signal Intensity           
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 1 superior temporal gyrus, banks superior temporal 
sulcus, fusiform gyrus, inferior parietal cortex, 
inferior temporal gyrus, insula, isthmus-cingulate 
cortex, lateral orbital frontal cortex, lingual gyrus, 
middle temporal gyrus, parahippocampal gyrus, 
pars triangularis, supramarginal gyrus, temporal 
pole 

R 38 17938 35 5 -10 4.02 1.69 x 10-6 

 2 superior temporal gyrus, banks superior temporal 
sulcus, inferior parietal cortex, inferior temporal 
gyrus, middle temporal gyrus  

L 21 10279 -51 -26 -2 3.31 2.86 x 10-5 

 3 fusiform gyrus, inferior temporal gyrus, isthmus-
cingulate cotex, lingual gyrus, precuneus cortex 

L 37 6295 -44 -40 -14 3.27 2.70 x 10-3 
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Table and Figure Captions 

 

Table 1, Participant Demographics: Data expressed as mean ± standard deviation 

(range). There were no significant between-group differences in age or IQ, p<0.05 

(two tailed). All participants were diagnosed using ICD-10 criteria. The (a) Autism 

Diagnostic Interview revised (ADI-R) was used to confirm Autism Spectrum 

Disorder (ASD) diagnosis. ADI-R scores were unavailable for four participants. Each 

of these cases reached (b) Autism Diagnostic Observation Schedule (ADOS) cut offs 

for “autism spectrum”, for all other participants the ADOS was not used as diagnostic 

criteria.  

 

Figure 1, Grey and white matter signal intensity sampling procedure: (A) Grey and white 

matter signal intensity sampling points are shown for one 2D coronal slice. (B) White matter 

intensities (WMI, red line) were sampled at an absolute distance of 1mm subjacent to the 

white matter surface (i.e. grey-white matter boundary). Grey matter signal intensities (GMI, 

blue to yellow lines) were measured at projection fractions representing a percentage of the 

total orthogonal distance from the white matter surface to the outer pial surface starting at the 

white matter surface up to 60% into the cortical sheet at 10% intervals. 

 

Figure 2, Regions of decreased grey-to-white matter signal intensity percent contrast 

(GWPC) in Autism Spectrum Disorder (ASD): Individuals with ASD showed significantly 

decreased GWPC (RFT p<0.5), indicating less definition between grey and white matter, in 

several regions highlighted in blue including (1) the posterior cingulate cortex, (2) fronto-

temporal and fronto-parietal regions, as well as (3) the bilateral fusiform and entorhinal 

cortex. The spatial and statistical extent of these differences was greatest when tissue 

intensities were sampled at the grey-white matter boundary and decreased along with 

increasing projection fractions (a) into the cortical sheet. See Table 2 for statistical details. 
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Table 2, Clusters of significant reductions in grey-white matter signal intensity percent 

contrast (GWPC) and increases in grey matter intensity (GMI) in Autism Spectrum 

Disorder (ASD): Broadmann area (BA), left (L), right (R), Vertices indicates the number of 

vertices within the cluster, tmax represents the maximum t-statistic within the cluster located at 

the x y z Talairach coordinates listed, pcluster is the cluster corrected p value. 

 

Figure 3, Regional differences in grey (GMI) and white matter (WMI) signal intensities 

in Autism Spectrum Disorder (ASD): Individuals with ASD showed no significant 

differences in WMI (RFT p<0.5) measured at 1 mm subjacent to the grey-white matter 

boundary (a) nor tissue intensities measured at the boundary. Significantly increased GMI 

(RFT p<0.5) was observed across all projection fractions (b) within the cortical sheet in ASD 

participants. The statistical and spatial extent of these increases in GMI were most evident at 

the 30% projection fraction and incorporated (1) the bilateral anterior temporal lobes and the 

left middle temporal gyrus, (2) the right temporo-parietal junction, and (3) the bilateral 

fusiform and entorhinal cortex. See Table 2 for statistical details. 
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Figure 1, Grey and white matter signal intensity sampling procedure: (A) Grey and white matter signal 
intensity sampling points are shown for one 2D coronal slice. (B) White matter intensities (WMI, red line) 

were sampled at an absolute distance of 1mm subjacent to the white matter surface (i.e. grey-white matter 

boundary). Grey matter signal intensities (GMI, blue to yellow lines) were measured at projection fractions 
representing a percentage of the total orthogonal distance from the white matter surface to the outer pial 

surface starting at the white matter surface up to 60% into the cortical sheet at 10% intervals.  
Figure 1  

254x190mm (300 x 300 DPI)  
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Figure 2, Regions of decreased grey-to-white matter signal intensity percent contrast (GWPC) in Autism 
Spectrum Disorder (ASD): Individuals with ASD showed significantly decreased GWPC (RFT p<0.5), 

indicating less definition between grey and white matter, in several regions highlighted in blue including (1) 

the posterior cingulate cortex, (2) fronto-temporal and fronto-parietal regions, as well as (3) the bilateral 
fusiform and entorhinal cortex. The spatial and statistical extent of these differences was greatest when 
tissue intensities were sampled at the grey-white matter boundary and decreased along with increasing 

projection fractions (a) into the cortical sheet. See Table 2 for statistical details.  
Figure 2  

190x254mm (300 x 300 DPI)  

 

 

Page 33 of 43 Cerebral Cortex

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Figure 3, Regional differences in grey (GMI) and white matter (WMI) signal intensities in Autism Spectrum 
Disorder (ASD): Individuals with ASD showed no significant differences in WMI (RFT p<0.5) measured at 1 
mm subjacent to the grey-white matter boundary (a) nor tissue intensities measured at the boundary. 

Significantly increased GMI (RFT p<0.5) was observed across all projection fractions (b) within the cortical 
sheet in ASD participants. The statistical and spatial extent of these increases in GMI were most evident at 
the 30% projection fraction and incorporated (1) the bilateral anterior temporal lobes and the left middle 

temporal gyrus, (2) the right temporo-parietal junction, and (3) the bilateral fusiform and entorhinal cortex. 
See Table 2 for statistical details.  

Figure 3  
190x254mm (300 x 300 DPI)  
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Supplementary Figure 1, Regions of decreased cortical thickness (CT) in autism spectrum disorder (ASD): 
A.) Between group differences in CT (uncorrected). B.) Individuals with ASD showed significantly decreased 

CT (RFT p<0.5) bilaterally in the parahippocampal, fusiform, and lingual gyri (highlighted in blue). See 

supplementary Table 1 for statistical details of these clusters.  
supplementary Figure 1  

254x190mm (300 x 300 DPI)  
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Supplementary Figure 2, Sex differences in grey-white matter signal intensity percent contrast (GWPC): 
Regardless of diagnosis males showed significantly greater GWPC (RFT p<0.5) compared to females across 

all grey matter sampling depths (a). These increases are highlighted in red and include predominantly 

fronto-parietal regions of the left hemisphere, and bilateral inferior temporal regions (see supplementary 
Table 2 for statistical details of these clusters).  

supplementary Figure 2  
190x254mm (300 x 300 DPI)  
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Supplementary Figure 3, Regional differences in grey-white matter signal intensity percent contrast (GWPC) 
and grey matter intensities (GMI) in Autism Spectrum Disorder (ASD) (5mm FWHM smoothing kernel): 

Between group differences in (A) GWPC and (B) GMI intensities are shown when GMI was sampled at the 
grey-white matter boundary (i.e. white matter surface, projection fraction 10%) and a projection fraction of 
30% into the cortical sheet. Individuals with ASD showed (A) significantly decreased GWPC (RFT p<0.5), 

indicating less definition between grey and white matter, in several regions highlighted in blue. In several of 
these regions (B) increases in GMI, highlighted in red were also observed. These results using a 5mm FWHM 

smoothing kernel were largely similar to those using a 10mm FWHM smoothing kernel (Figures 2 and 3, 

Table 2). For statistical details of these clusters see supplementary Table 3.  
Supplementary Figure 3  

175x177mm (300 x 300 DPI)  
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Supplementary Materials 

 

Surface deformation procedure to place the grey-white matter boundary (i.e. white matter 

surface) 

Within this study we refer to the white matter surface (i.e. the surface that defines the 

transition from grey to white matter) as the grey-white matter boundary. The surface 

deformation procedure that places the white matter surface has previously been described by 

Dale et al. (1999) and is detailed bellow.  

 

First white matter voxels are labeled through a segmentation procedure. Contiguous white 

matter voxels are identified through a connected components algorithm resulting in a filled 

white matter labeled volume. This volume is then tessellated using two triangles to define 

each voxel composing the surface of the white matter volume. Deformation of this “jagged” 

white matter tessellation to the grey-white matter boundary is accomplished by a 

minimization of an energy functional. The first two terms of this energy functional act to 

smooth the surface and regularize the tessellation by introducing a spring like property to the 

surface. This spring property is decomposed into two terms given as, 

 

J� = 12V�� � (
(i) ∙ (�� − ��))��∈���
�

��� � 
 

J� = 12V�� � (��(i) ∙ ��� − ���)� + (��(i) ∙ ��� − ���)��∈���
�
��� � 

 

where N1(i) denotes the set of nearest neighbors of the i
th vertex, V is the total number of 

vertices in the tessellation, n(i) is the unit normal vector to the surface at the i
th 
vertex, 

[e0(i),e1(i)] is an orthonormal basis for the tangent plane at the i
th retex, and xk regers to the 

(x,y,z) position of the k
th
 vertex in the tessellation. The term Ji results in the redistribution of 

vertices to regions where they are needed, encouraging a uniform spacing of vertices without 

requiring prohibitive numbers of elements. The term Jn imposes a smoothness constraint on 

the surface deformation by penalizing nodes that distance themselves from the direction 

normal to surface from its neighboring nodes. The third term of the energy functional is based 

on intensity values. The volume intensity at position xi can be written as I(xi) and this term 

given as, 
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J = 12V��(T�
��� (i) − I(x�))�� 

 

where T(i) is the mean white matter value of border voxels within a 5mm neighborhood of 

each vertex, within the segmented white matter volume. The value of I(x) is computed on a 

subvoxel basis using trilinear interpolation. The placement of the grey-white matter boundary 

is achieved by minimizing an energy function that is a weighted sum of the three terms 

presented above, 

 J = J� +	λ�J� +	λ J  
 

where the coefficients λ� and λ  specify the strength of the smoothness and regularization 
constraints in relation to the intensity term. The gradient of this functional defines the 

movement of the surface tessellation such as the movement of the k
th
 vertex is given by the 

negative of the directional derivative with respect to xk,, 

 

− ∂J∂�' = λ �T(k) − I()')�∇I(�') + � (λ��
(k) ∙ ��� + ��(k) ∙ �� + ��(k) ∙ ��)�∈��(')  

 

where the volume gradient ∇I(�') is computed using a Gaussian blurred (σ = 1) version of 
the MRI volume.  

 

These automated methods for determining the grey-white matter boundary have been 

previously validated using scans of postmortem brains and have found FreeSurfer based 

measures of cortical thickness to be on average only 0.077mm different than manual 

measures performed on dissected tissue samples (Rosas et al. 2002). Within group systematic 

errors in the placement of the grey-white matter boundary using these methods would result 

in whole brain differences in cortical thickness that are not observed in our study. These 

findings thus indicate a high degree of accuracy for FreeSurfer in placing the white matter 

surface (i.e. the grey-white matter boundary). 
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Supplementary Figure Captions 

 

Supplementary Figure 1, Regions of decreased cortical thickness (CT) in autism 

spectrum disorder (ASD): A.) Between group differences in CT (uncorrected). B.) 

Individuals with ASD showed significantly decreased CT (RFT p<0.5) bilaterally in the 

parahippocampal, fusiform, and lingual gyri (highlighted in blue). See supplementary Table 1 

for statistical details of these clusters. 

 

Supplementary Figure 2, Sex differences in grey-white matter signal intensity percent 

contrast (GWPC): Regardless of diagnosis males showed significantly greater GWPC (RFT 

p<0.5) compared to females across all grey matter sampling depths (a). These increases are 

highlighted in red and include predominantly fronto-parietal regions of the left hemisphere, 

and bilateral inferior temporal regions (see supplementary Table 2 for statistical details of 

these clusters). 

 

Supplementary Figure 3, Regional differences in grey-white matter signal intensity 

percent contrast (GWPC) and grey matter intensities (GMI) in Autism Spectrum 

Disorder (ASD) (5mm FWHM smoothing kernel): Between group differences in (A) 

GWPC and (B) GMI intensities are shown when GMI was sampled at the grey-white matter 

boundary (i.e. white matter surface, projection fraction 10%) and a projection fraction of 30% 

into the cortical sheet. Individuals with ASD showed (A) significantly decreased GWPC 

(RFT p<0.5), indicating less definition between grey and white matter, in several regions 

highlighted in blue. In several of these regions (B) increases in GMI, highlighted in red were 

also observed. These results using a 5mm FWHM smoothing kernel were largely similar to 

those using a 10mm FWHM smoothing kernel (Figures 2 and 3, Table 2). For statistical 

details of these clusters see supplementary Table 3.  
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Supplementary Table 1 

      Talairach   

Cluster Region Labels Hemisphere BA(tmax) No vertices x y z tmax pcluster 

 

1 parahippocampal gyrus, 

entorhinal cortex, 

fusiform gyrus, inferior 

temporal gyrus, lingual 

gyrus  

L 19 6191 -17 -48 -3 -4.46 4.89 x 10-6 

2 parahippocampal gyrus, 

fusiform gyrus, lingual 

gyrus 

R 36 3728 21 -42 -5 -3.35 1.73 x 10-4 

 

 

Supplementary Table 1, Clusters of Decreased Cortical Thickness in Autism Spectrum 

Disorder (ASD): Broadmann area (BA), left (L), right (R), Vertices indicates the number of 

vertices within the cluster, tmax represents the maximum t-statistic within the cluster located at 

the x y z Talairach coordinates listed, pcluster is the cluster corrected p value. 
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Supplementary Table 2, Clusters of Increased Grey-White Matter Signal Intensity Percent Contrast (GWPC) in Males: Broadmann area (BA), left 

(L), right (R), Vertices indicates the number of vertices within the cluster, tmax represents the maximum t-statistic within the cluster located at the x y z 

Talairach coordinates listed, pcluster is the cluster corrected p value. 

  

Supplementary Table 2 

          Talairach     

  Cluster Region Labels Hemisphere BA(tmax) No. vertices x y z tmax pcluster 

          1 precentral gyrus, frontal pole, pars opercularis, pars orbitalis, pars triangularis, 

rostral middle frontal gyrus, superior frontal gyrus 

L 44 11867 -49 10 6 5.35 4.38 x 10-6 

2 inferior parietal cortex, lateral occipital cortex, lingual gyrus, middle temporal 

gyrus, superior parietal cortex 

R 7 10199 39 -63 44 4.82 4.38 x 10
-6
 

3 middle temporal gyrus, inferior parietal cortex, lateral occipital cortex, 

postcentral gyrus, superior parietal cortex, supramarginal gyrus 

L 19 9991 -38 -78 25 4.49 4.38 x 10
-6
 

4 precuneus, inferior temporal gyrus, isthmus-cingulate cortex, lateral occipital 

cortex, lingual gyrus, pericalcarine cortex, superior parietal cortex 

L 7 9359 -6 -67 41 4.53 4.38 x 10
-6
 

5 postcentral gyrus, paracentral lobule, precentral gyrus, precuneus cortex, 

superior parietal cortex 

R 3 7611 36 -30 61 4.54 4.38 x 10
-6
 

6 parahippocampal gyrus, entorhinal cortex, fusiform gyrus, inferior temporal 

gyrus  

R 36 4001 34 -27 -15 3.42 1.16 x 10
-3
 

7 lateral orbital frontal cortex, medial orbital frontal cortex, rostral anterior 

cingulate cortex 

L 47 3563 -24 12 -16 5.71 1.14 x 10
-3
 

8 superior frontal gyrus R 6 3139 9 20 54 4.59 8.45 x 10
-4
 

9 lateral orbital frontal cortex, medial orbital frontal cortex R 47 2824 26 10 -14 5.29 1.06 x 10-2 

10 middle frontal gyrus, precentral gyrus L 9 2246 -37 32 25 4.31 1.81 x 10
-3
 

11 paracentral lobule, precentral gyrus, superior parietal cortex L 6 1988 -9 -25 67 3.79 2.20 x 10-2 
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Supplementary Table 3 

      Talairach   

Measure Cluster Region Labels Hemisphere BA(tmax) Vertices x y z tmax pcluster 

Grey-White Matter 

Percent Contrast 

          

 1 fusiform gyrus, lingual gyrus, parahippocampal gyrus L 36 4027 -27 -39 -7 -3.66 1.33 x 10-5 

 2 parahippocampal gyrus, fusiform gyrus, lingual gyrus R 20 3447 33 -35 -18 -3.8 1.33 x 10-5 

 3 medial orbital frontal cortex, rostral anterior cingulate cortex, 

superior frontal gyrus 

L 10 2342 -10 39 -4 -3.68 1.45 x 10-5 

 4 insula, lateral orbital frontal cortex R 47 1671 26 18 -14 -4.02 1.76 x 10-4 

 5 posterior-cingulate cortex, isthmus-cingulate cortex, lingual 

gyrus, precuneus cortex 

L 30 1348 -19 -53 9 -3.72 3.52 x 10-4 

 6 insula, lateral orbital frontal cortex L 13 1267 -30 19 -2 -3.58 1.05 x 10-3 

 7 middle temporal gyrus, superior temporal gyrus R 21 1068 55 -13 -17 -3.74 1.01 x 10-2 

 8 insula L 13 1132 -38 -4 16 -2.97 4.43 x 10-2 

 9 supramarginal gyrus R 13 926 -45 -32 23 -4.13 1.24 x 10-2 

Grey Matter Signal 

Intensity 

          

 1 insula, lateral orbital frontal cortex, superior temporal gyrus R 38 4370 37 0 -12 4.01 7.28 x 10-6 

 2 banks superior temporal sulcus, inferior parietal cortex, middle 

and superior temporal gyrus 

L 21 4021 -50 -26 -2 3.64 7.89 x 10-6 

 3 banks superior temporal sulcus, inferior parietal cortex, inferior, 

middle, and superior temporal gyri 

R 41 3735 46 -36 7 2.95 1.05 x 10-5 

 4 fusiform gyrus, lingual gyrus, parahippocampal gyrus  R 30 3522 18 -38 -6 3.90 7.40 x 10-6 

 5 isthmus-cingulate cortex, precuneus cortex L 29 2694 -14 -49 7 3.38 3.39 x 10-5 

 6 fusiform gyrus, inferior temporal gyrus, lingual gyrus L 19 2410 -29 -56 -3 3.56 2.22 x 10-4 

 7 medial orbital frontal cortex, rostral anterior cingulate cortex, 

superior frontal gyrus 

L 32 2165 -11 42 2 3.40 2.96 x 10-4 

 8 postcentral gyrus, superior parietal cortex L 2 1868 -46 -23 43 3.56 1.66 x 10-2 

 9 insula, lateral orbital frontal cortex L 13 1654 -30 18 -2 3.79 4.09 x 10-3 

 10 paracentral lobule, superior parietal cortex,  L 5 1458 -16 -35 50 3.11 4.85 x 10-2 

 11 superior temporal gyrus L 21 1228 -45 -9 -13 2.78 2.73 x 10-2 

Page 43 of 43 Cerebral Cortex

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

 

Supplementary Table 3, Significant Reductions in Grey-White Matter Signal Intensity Percent Contrast (GWPC) and Increases in Grey Matter 

Intensity (GMI) in ASD (FWHM 5mm): Broadmann area (BA), left (L), right (R), Vertices indicates the number of vertices within the cluster, tmax 

represents the maximum t-statistic within the cluster located at the x y z Talairach coordinates listed, pcluster is the cluster corrected p value. 

 

 12 inferior temporal gyrus L 20 1085 -48 -10 -23 3.47 3.34 x 10-2 
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