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Abstract Mendelian randomization-Egger (MR-Egger) is

an analysis method for Mendelian randomization using

summarized genetic data. MR-Egger consists of three

parts: (1) a test for directional pleiotropy, (2) a test for a

causal effect, and (3) an estimate of the causal effect.

While conventional analysis methods for Mendelian ran-

domization assume that all genetic variants satisfy the

instrumental variable assumptions, the MR-Egger method

is able to assess whether genetic variants have pleiotropic

effects on the outcome that differ on average from zero

(directional pleiotropy), as well as to provide a consistent

estimate of the causal effect, under a weaker assumption—

the InSIDE (INstrument Strength Independent of Direct

Effect) assumption. In this paper, we provide a critical

assessment of the MR-Egger method with regard to its

implementation and interpretation. While the MR-Egger

method is a worthwhile sensitivity analysis for detecting

violations of the instrumental variable assumptions, there

are several reasons why causal estimates from the MR-

Egger method may be biased and have inflated Type 1 error

rates in practice, including violations of the InSIDE

assumption and the influence of outlying variants. The

issues raised in this paper have potentially serious

consequences for causal inferences from the MR-Egger

approach. We give examples of scenarios in which the

estimates from conventional Mendelian randomization

methods and MR-Egger differ, and discuss how to interpret

findings in such cases.

Keywords Mendelian randomization � Instrumental

variable � Robust methods � MR-Egger � Summarized data

Introduction

The technique of Mendelian randomization has become a

widely-used part of the epidemiologist’s toolkit for inves-

tigating causal relationships between risk factors and out-

comes using observational data [1, 2]. Although in some

cases, the necessary assumption that genetic variants are

valid instrumental variables is credible, in other cases the

instrumental variable assumptions are not plausible [3].

The instrumental variable assumptions state that a genetic

variant used in a Mendelian randomization investigated

must be:

1. associated with the risk factor;

2. not associated with any confounder of the risk factor–

outcome association;

3. not associated with the outcome conditional on the risk

factor and confounders [4, 5].

This implies that there is no alternative causal pathway

from the genetic variant to the outcome except for that via

the risk factor [6]. These assumptions may be reasonable

when the risk factor is a protein biomarker and the genetic

variants are located in or around the coding region for that

protein. In such a case, causal inferences from a straight-

forward application of instrumental variable methods have
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some credibility. However, they are more questionable for

polygenic risk factors, such as body mass index or blood

pressure, as the influence of genetic variants on such a risk

factor is unlikely to be specific [7, 8].

Mendelian randomization-Egger (MR-Egger) is a sta-

tistical method that can be employed when the instrumental

variable assumptions do not hold, but a weaker assumption

is satisfied [9]. The method is being increasingly used in

practice, with applications including analyses of the causal

effects of plasma urate on coronary heart disease risk [10],

of height on income [11], of sleep patterns on type 2 dia-

betes [12], and of pubertal development on prostate cancer

risk [13]. However, critical assessment of the method is

lacking. In this paper, we first discuss implementation of

the MR-Egger method. We then provide guidance to the

applied practitioner in what circumstances the method will

give reasonable estimates, and how to interpret these esti-

mates, particularly for cases where the MR-Egger and

conventional methods for Mendelian randomization give

different results.

Implementation of the MR-Egger method

MR-Egger consists of three parts: (1) a test that indicates

both violations of the instrumental variable assumptions

and bias in conventional instrumental variable analysis

methods; (2) a test for a causal effect; and (3) an estimate

of the causal effect. Software code in R for implementing

all of the analyses in this paper is provided in ‘‘Appendix

A.1’’ in supplementary material.

Assumed framework of data and genetic

associations

We assume that all relationships between variables (in

particular, the genetic associations with the risk factor and

with the outcome, and the causal effect of the risk factor on

the outcome) are linear with no effect modification. We

also assume that all genetic variants are uncorrelated (that

is, not in linkage disequilibrium), although conventional

instrumental variable methods for analysing summarized

data from correlated variants have been developed [14],

and similar extensions to the MR-Egger method are dis-

cussed later in this paper. The association between genetic

variant Gj (j ¼ 1; 2; . . .; J) and the outcome is denoted bYj,
and the association between genetic variant Gj and the risk

factor is denoted bXj.
The genetic association with the outcome can be

decomposed into the sum of a direct (pleiotropic) effect

and an indirect (causal) effect:

bYj ¼ aj þ hbXj ð1Þ

where aj is the effect of the genetic variant on the outcome

that is not mediated via the risk factor of interest, and h is

the causal effect of the risk factor on the outcome [15]; see

Fig. 1. A genetic variant is referred to as pleiotropic if it

has associations with more than one risk factor on different

causal pathways [16]. Any such effect is included in the

parameter aj; a genetic variant is pleiotropic if aj 6¼ 0. A

pleiotropic genetic variant is not a valid instrumental

variable.

Inverse-variance weighted method

With a single genetic variant Gj that satisfies the instru-

mental variable assumptions, the causal effect of the risk

factor on the outcome can be consistently estimated as a

simple ratio of association estimates: ĥj ¼
b̂Yj
b̂Xj

[16], where

b̂Yj is the estimated coefficient from univariable regression

of the outcome on the jth genetic variant, and likewise b̂Xj
from univariable regression of the risk factor on the jth

genetic variant. With multiple genetic variants, the ratio

estimates from each genetic variant can be averaged using

an inverse-variance weighted formula taken from the meta-

analysis literature to provide an overall causal estimate

known as the inverse-variance weighted (IVW) estimate

[17]. This assumes that the ratio estimates all provide

independent evidence on the causal effect; this occurs

when the genetic variants are uncorrelated. If the variance

terms are taken as
seðb̂YjÞ2

b̂2
Xj

(this is the first term from a delta

method expansion for the ratio estimate [18]), then the

pooled estimate (assuming a fixed-effect model) is [19]:

ĥIVW ¼
P

j b̂Yjb̂Xjseðb̂YjÞ�2

P
j b̂

2
Xjseðb̂YjÞ�2

: ð2Þ

This same estimate is obtained from the two-stage least

squares analysis method for individual-level data when the

genetic variants are uncorrelated [20]. The same estimate

can also be obtained from a weighted linear regression of

the genetic associations with the outcome (b̂Yj) on the

Genetic
variant Gj

Risk
factor

X

Outcome
Y

causal effect of risk 
factor on outcome ( )

association of genetic
variant with risk factor ( Xj)

pleiotropic / direct effect of
genetic variant on outcome ( j)

Fig. 1 Decomposing association for genetic variant Gj with the

outcome into a indirect (causal) effect via the risk factor and an direct

(pleiotropic) effect (see Eq. 1)
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genetic associations with the risk factor (b̂Xj) using inverse-

variance weights (seðb̂YjÞ
�2

) when there is no intercept

term in the regression model [14]:

b̂Yj ¼ hIVW b̂Xj þ �Ij; �Ij �Nð0; r2seðb̂YjÞ2Þ ð3Þ

where b̂Yj and b̂Xj are the data in the model, hIVW is the

parameter, and �Ij is the residual term. To obtain the same

standard error for the causal estimate from the regression

analysis as from the fixed-effect meta-analysis, the residual

standard error in the regression (r) must be set to equal one

[21].

If the pleiotropic effects of the genetic variants are all

zero (aj ¼ 0 for all j; in other words, if all genetic variants

are valid instrumental variables), then each of the ĥj will be

a consistent estimate of the causal effect, and the overall

estimate ĥIVW (a weighted mean of the ĥj) will be a con-

sistent estimate of the causal effect.

MR-Egger method

MR-Egger is performed by a simple modification to the

weighted linear regression described above. Rather than

setting the intercept term to be zero, the term is estimated

as part of the analysis [9]:

b̂Yj ¼ h0E þ h1Eb̂Xj þ �Ej; �Ej �Nð0; r02seðb̂YjÞ2Þ ð4Þ

where the parameter h0E is the intercept, h1E is the slope

(MR-Egger estimate), and �Ej is the residual term. If the

intercept term is exactly equal to zero, then the MR-Egger

estimate will equal the IVW estimate. Alternatively, if the

pleiotropic effects aj are independently distributed from the

genetic associations with the risk factor bXj [22] – this is

referred to as the InSIDE assumption (INstrument Strength

Independent of Direct Effect) – then the MR-Egger esti-

mate will be a consistent estimate of the causal effect as the

sample size and number of genetic variants both increase

[9]. For a fixed number of genetic variants, the MR-Egger

estimate is a consistent estimate as the sample size

increases if the weighted covariance between the aj and the

bXj parameters using the inverse-variance weights

seðb̂YjÞ�2
is exactly zero (see ‘‘Appendix A.2’’ in supple-

mentary material). The test of whether the MR-Egger

estimate differs from zero is referred to as the MR-Egger

causal test.

Under the InSIDE assumption, the intercept from the

MR-Egger analysis can be interpreted as the average

pleiotropic effect of a genetic variant included in the

analysis (the weighted mean of the aj using the inverse-

variance weights seðb̂YjÞ�2
). If the average pleiotropic

effect is zero (known as balanced pleiotropy), then the

IVW method gives a consistent estimate of the causal

effect (under the InSIDE assumption). Conversely, if the

intercept from the MR-Egger analysis is not equal to zero,

then either the average pleiotropic effect differs from zero

(known as directional pleiotropy) or the InSIDE assump-

tion is violated (or both). Hence, testing the intercept from

the MR-Egger analysis provides an assessment of the

validity of the instrumental variable assumptions, with a

non-zero intercept indicating that the IVW estimate is

biased. The test of whether the intercept differs from zero

is referred to as the MR-Egger intercept test.

Intuitive motivation for MR-Egger analysis

Figure 2 provides two examples where the estimates from

the IVW and MR-Egger methods differ substantially. The

left panel of Fig. 2 is a simulated illustration, whereas the

right panel is a real-data example where the risk factor is

plasma urate and the outcome is coronary heart disease

(CHD) risk [10] (the choice of genetic variants and the

associations with plasma urate are taken from White et al.

[10]; associations with CHD risk are taken from the

CARDIoGRAMplusC4D consortium 2015 data release

[23], see Web Table A1 in supplementary material). The

horizontal axis of the graph displays the estimated genetic

associations with the risk factor (b̂Xj); the vertical axis

displays estimated genetic associations with the outcome

(b̂Yj). Each point on the graph represents a single genetic

variant; lines represent 95% confidence intervals for the

genetic associations. For any individual genetic variant, the

ratio estimate ĥj is the gradient of the line connecting the

relevant datapoint to the origin. The IVW estimate (solid

line) is a weighted mean of these ratio estimates.

Although all five of the genetic variants in Fig. 2 (left

panel) individually suggest a positive causal effect of the

risk factor on the outcome, a dose–response relationship in

the associations is absent. Genetic variants that have a

greater magnitude of association with the risk factor do not

also have a greater magnitude of association with the

outcome. This is contrary to what would be expected if the

associations of the genetic variants with the outcome were

entirely mediated via the risk factor, and hence it is unli-

kely that all of the genetic variants are valid instrumental

variables. While the individual ratio estimates are all pos-

itive (as is the IVW estimate), the regression model from

MR-Egger (dashed line) tells a different story. The inter-

cept term from MR-Egger regression differs from zero, and

the causal estimate from MR-Egger is compatible with the

null. This suggests that the set of genetic variants suffers

from directional pleiotropy and, once this pleiotropy is

accounted for, there is no residual evidence for a causal

effect. A similar situation applies to the example of plasma
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urate and CHD risk in Fig. 2 (right panel) [24]. In contrast,

the simple and weighted median methods of Bowden et al.

[25] would give similar estimates to the IVW method in

Fig. 2 (left panel). In Fig. 2 (right panel), estimates from

the different methods (odds ratio per 1 standard deviation

increase in plasma urate with 95% confidence interval) are

1.11 (1.03, 1.20) for the IVW method, 1.00 (0.90, 1.10) for

the MR-Egger method, 1.05 (0.99, 1.11) for the weighted

median method, and 1.20 (1.07, 1.34) for the simple

median method.

A conventional Mendelian randomization analysis—

defined as an analysis in which the instrumental variable

assumptions are assumed to hold for all of the genetic

variants—assesses whether genetic variants that are asso-

ciated with the risk factor also associate with the outcome.

Median-based methods assess whether the majority (or

weighted majority) of genetic variants are associated with

the outcome. In comparison, MR-Egger assesses whether

there is a dose–response relationship between the genetic

associations with the risk factor and those with the

outcome.

Orientation of the genetic variants

Genetic associations are usually the per allele associations

of the genetic variants with the risk factor and with the

outcome. Associations of genetic variants (assumed here to

be single nucleotide polymorphisms, SNPs, although other

polymorphisms could also be considered) can be quoted

with respect to either the major or the minor allele. For

example, if a genetic variant has a C allele and a T allele,

the association could equivalently be given as (say) 0.243

units per additional copy of the C allele, or as �0:243 units

per additional copy of the T allele. There is no prior reason

why one orientation should be preferred over the other.

Figure 3 displays associations for the same variants as

in Fig. 2 (left panel), except that three of the variants are

positively orientated (orientated with respect to the risk

factor-increasing allele), and two are negatively orien-

tated. For the IVW estimate (solid line), the lack of

intercept in the regression model means that a genetic

variant provides exactly the same contribution to the

analysis when orientated with respect to the either allele.
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Fig. 2 Graph showing simulated (left panel) and real-data (right

panel) examples in which inverse-variance weighted estimate (solid

line) and MR-Egger estimate (dashed line) differ substantially. Each

point represents the per allele associations of a single genetic variant

(lines from each point are 95% confidence intervals for the

associations). In both cases, the inverse-variance weighted estimate

is positive, whereas the MR-Egger causal estimate is null with

intercept term differing from zero
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Fig. 3 Graph showing same simulated example as in Fig. 2 (left

panel), except that three variants are positively orientated and two

negatively. The inverse-variance weighted estimate (solid line) is

unaffected by the orientation of variants, whereas the MR-Egger

estimate (dashed line) is affected by the choice of orientation, with

the intercept term attenuating and the MR-Egger estimate approach-

ing the inverse-variance weighted estimate
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However, in the MR-Egger analysis (dashed line),

changing the orientation of any one genetic variant will

change the definition of the pleiotropic effect aj (Eq. 1),

and also the assessment of directional pleiotropy and

the InSIDE assumption itself.

To address this issue, we orientate the genetic variants

so that the associations with the risk factor all have the

same sign. This means that directional pleiotropy is defined

with respect to the risk factor-increasing allele (or equiv-

alently, the risk factor-decreasing allele). Orientating the

genetic variants in this way means that the MR-Egger

analysis does not depend on the original coding of the

genetic variants, and directional pleiotropy is perhaps more

likely to be detected. It will be detected if pleiotropic

effects tend to act in a consistent direction that corresponds

to increases (or decreases) in the risk factor (particularly if

the InSIDE assumption is additionally violated and genetic

variants having greater associations with the risk factor

also have larger pleiotropic effects).

As genetic variants included in a Mendelian random-

ization analysis are usually chosen as those having statis-

tically robust associations with the risk factor, it is unlikely

that the identity of the risk factor-increasing allele for a

genetic variant is uncertain. However, if a genetic variant

has a weak association with the risk factor, then a small

change in its association with the risk factor from positive

to negative will change its orientation in the MR-Egger

analysis, thus potentially having a large impact on the MR-

Egger causal estimate and intercept terms. This situation

may arise if the genetic variants are chosen with respect to

one variable, but associations are estimated with respect to

a related variable (for example, genetic variants are chosen

on the basis of their association with body mass index, but

the risk factor of interest is a site-specific measure of adi-

posity) or are estimated in another population (for example,

genetic variants are chosen on the basis of their association

in European-descent individuals, but the associations used

in the analysis are estimated in African-descent individu-

als). It may be prudent in such a situation to orientate

variants according to their associations in the larger

dataset.

Interpretation of results from the MR-Egger
method

In this section, we present issues relating to the inter-

pretation of results from the MR-Egger method, includ-

ing the precision of estimates, influence of outlying

variants, violations of the InSIDE assumption, and situ-

ations where the MR-Egger and conventional methods

give differing results.

Precision of the MR-Egger estimate

In the IVW method, the estimated variance of the causal

estimate from the regression analysis is proportional to the

weighted sum of the squares of the b̂Xj estimates:

Variance of the IVW estimate ¼ r̂2

P
j b̂

2
Xjseðb̂YjÞ�2

ð5Þ

where r̂ is the estimated residual standard error from

Eq. (3); this is 1 when using a fixed-effect meta-analysis

model for combining the ratio estimates, corresponding to

the assumption of no heterogeneity in the causal estimates

from the individual genetic variants [26]. A random-effects

model that allows for multiplicative overdispersion in these

causal estimates should be preferred if there is suspicion of

potential pleiotropy. This can be achieved by estimating

the residual standard error as part of the analysis (a mul-

tiplicative random-effects model); an estimate of the

residual standard error above 1 corresponds to overdis-

persion of the genetic associations [21]. However, if the

estimate of the residual standard error is less than 1, then

this is not plausible (for uncorrelated variants), as there is

no biological mechanism that would lead to underdisper-

sion of the genetic associations. Therefore standard errors

of the regression coefficients should be corrected by

dividing by the minimum of the residual standard error

estimate and one, so that a random-effects model can never

give more precise estimates than a fixed-effect model.

Underdispersion may be a sign that the genetic variants

may have been chosen inappropriately in a way that pref-

erentially selects similar variants. However, it may simply

be a chance finding.

In the MR-Egger method, the variance of the causal

estimate is inversely proportional to the weighted variance

of the b̂Xj estimates:

Variance of the MR-Egger estimate

¼ r̂02
P

jðb̂Xj � �bXÞ2
seðb̂YjÞ�2

:
ð6Þ

where r̂0 is the estimated residual standard error from

Eq. (4), and �bX is the weighted average association with

the risk factor amongst the genetic variants (using the

inverse-variance weights seðb̂YjÞ�2
) [27]. As pleiotropic

effects of genetic variants will lead to overdispersion in the

MR-Egger regression model, heterogeneity between the

causal estimates is expected, and so a random-effects

analysis should always be preferred when using MR-Egger.

If heterogeneity is absent, then a random-effects analysis is

equivalent to a fixed-effect analysis.
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While the precision of the IVW estimate depends on the

proportion of variance in the risk factor explained by the

genetic variants (typically measured by the R2 statistic) [28],

the precision of the MR-Egger estimate additionally

depends on the variability between the genetic associations

with the risk factor [29]. In a hypothetical case where several

genetic variants have almost equal associations with the risk

factor, the IVW estimate may be very precise, particularly if

the associations with the outcome are similar to each other

(Fig. 4; left panel—grey area represents 95% confidence

interval for the IVW estimate). However, in the MR-Egger

analysis, the precisions of the intercept and causal estimates

will be low (Fig. 4; right panel—grey area represents 95%

confidence interval for the MR-Egger intercept and causal

estimate). This behaviour can be diagnosed using the I2

statistic from the meta-analysis literature as proposed by

Bowden et al. [29]. The Bowden I2 statistic is a measure of

instrument strength for the MR-Egger method; values close

to one indicate that the MR-Egger estimate does not suffer

from ‘weak instrument bias’. In fact, if the genetic associ-

ations with the risk factor are exactly equal, then neither

parameter in the MR-Egger regression model is formally

identified, and the I2 statistic is zero.

As an illustration of this, despite broad consistency of

the causal estimates across the genetic variants in Fig. 4

(right panel), the MR-Egger analysis is not able to reliably

detect a dose–response relationship in the genetic associ-

ations with the risk factor and with the outcome, and hence

cannot distinguish between pleiotropy and a causal effect.

The standard error of the causal estimate from the MR-

Egger method will typically be larger than that from the

IVW method; this will always be the case for fixed-effect

analyses. A precise MR-Egger estimate requires genetic

variants having a wide range of associations with the risk

factor. However, as we discuss next, if one genetic variant

has a much stronger association with the risk factor than

others, then this variant will have a large influence on the

coefficients in the MR-Egger regression.

Influence of outlying variants on MR-Egger

estimates

In any regression model, an individual datapoint can have a

large influence on the regression coefficients. In Fig. 5 (left

and right panels), we see how the addition of a single

genetic variant can reverse the sign of the MR-Egger

estimate, and lead to rejection of the MR-Egger intercept

test. The influence on the IVW estimate is less severe. This

scenario is particularly likely for a risk factor such as body

mass index, where the lead variant in one gene region (the

FTO gene region) has a much stronger association with the

risk factor than other variants [30]. Influential points can be

detected by standard regression diagnostic tools, such as

calculating Cook’s distances and/or Studentized residuals

for all the datapoints [31], and performing a leave-one-out

analysis [32]. Cook’s distance is a measure of leverage,

indicating the influence of a datapoint on the regression

estimates (larger values indicate greater influence). A

Studentized residual is a residual from the regression

model divided by an estimate of its standard error, indi-

cating the goodness-of-fit in the regression model for that

point (larger values indicate more outlying points). A

leave-one-out analysis is conducted by leaving each

genetic variant out of the Mendelian randomization anal-

ysis in turn, conducting J analyses each with J � 1

datapoints.
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Fig. 4 Graph showing hypothetical example in which genetic

associations with the risk factor and with the outcome are similar

for all variants. Left panel inverse-variance weighted estimate (solid

line) and 95% confidence interval (grey area) suggest strong evidence

for a positive causal effect. Right panel MR-Egger estimate (dashed

line) and 95% confidence interval (grey area) suggest no evidence

against the instrumental variable assumptions (intercept test), but also

no evidence for a causal effect (causal test)
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We calculated Cook’s distances and Studentized resid-

uals for all the variants included in the MR-Egger analysis

of plasma urate and CHD risk presented in Fig. 2 (right

panel). The genetic variant with both the largest Cook’s

distance and Studentized residual was not one of the two

variants having the greatest association with plasma urate,

but the variant having the strongest association with CHD

risk (rs653178, nearest gene ATXN2). However, the omis-

sion of this variant did not substantially affect the MR-

Egger analysis (neither the rejection of the intercept test,

nor the failure to detect a causal effect).

Plausibility and violations of the InSIDE assumption

While the MR-Egger intercept test does not require the

InSIDE assumption to be satisfied to detect violations of

the instrumental variable assumptions, the interpretation of

the intercept as an average pleiotropic effect, as well as the

assessment and estimation of a causal effect using MR-

Egger, do rely on the InSIDE assumption. Equally,

although the primary assumption for the IVW method is

that all variants are valid instruments, it also provides

consistent estimates when the average pleiotropic effect is

zero and the InSIDE assumption is satisfied. Although the

initial presentation of the MR-Egger method [9] gave

biased estimates with inflated Type 1 error rates when the

InSIDE assumption was not satisfied, the bias and Type 1

error inflation were both less than those for the IVW

method. However, subsequent simulations have shown that

estimates from the MR-Egger method can be more biased

and have greater Type 1 error rates compared with the IVW

method in settings when pleiotropic effects of multiple

genetic variants act through the same confounder [25].

Hence, the InSIDE assumption is crucial to the interpre-

tation of causal inferences from the MR-Egger method in

the case of pleiotropy.

Some general plausibility of the InSIDE assumption can

be inferred from the observation that genetic associations

with different measured variables tend to be uncorrelated

with each other, as demonstrated in empirical studies [33].

If all the genetic variants in a Mendelian randomization

analysis have pleiotropic effects, but the pleiotropic effects

act via unrelated variables that are not confounders of the

risk factor–outcome associations, then the InSIDE

assumption seems likely to hold. However, if the pleio-

tropic effects of several variants all act via the same con-

founder, the pleiotropic effects and instrument strengths

will be strongly correlated, as both depend on the magni-

tude of the associations of the genetic variants with the

confounder. Similarly, if a genetic variant has a pleiotropic

effect via a confounder, then this will lead to an association

with the risk factor (contributing to the instrument strength)

and an association with the outcome (contributing to the

pleiotropic effect). Crucially, if the effect of the genetic

variant on the confounder increases, then its association

with both the risk factor and with the outcome will

increase. This means that genetic variants with larger

effects on confounders will tend to have both larger

instrument strengths and larger pleiotropic effects—leading

to violation of the InSIDE assumption. It is difficult to

imagine how the InSIDE assumption could be satisfied if

several genetic variants have pleiotropic effects acting via

confounders.

Some general plausibility of the InSIDE assumption can

be inferred from the observation that genetic associations

with different measured variables tend to be uncorrelated

with each other, as demonstrated in empirical studies [33].

If all the genetic variants in a Mendelian randomization

analysis have pleiotropic effects, but the pleiotropic effects

act via unrelated variables that are not confounders of the

risk factor–outcome associations, then the InSIDE

assumption seems likely to hold (Scenarios 2 and 3 of

Bowden et al. [9, 25], Fig. 6 top panel). However, if
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Fig. 5 Graph showing same

hypothetical example as Fig. 4

(left panel) except for the

addition of a single extra genetic

variant (right panel). Left panel

inverse-variance weighted

estimate (solid line) and MR-

Egger estimate (dashed line) are

similar. Right panel inverse-

variance weighted estimate

(solid line) and MR-Egger

estimate (dashed line) are

markedly different, as the

influential genetic variant

changes the sign of the MR-

Egger estimate
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genetic variants have pleiotropic effects on the outcome

that all act via the same confounder, the pleiotropic effects

and instrument strengths will be strongly correlated, as

both depend on the magnitude of the associations of the

genetic variants with the confounder (Scenario 4 of Bow-

den et al. [9, 25], Fig. 6 middle panel). Further to this, if

genetic variants have pleiotropic effects on the outcome

that act via different confounders, then the InSIDE

assumption will still be violated (Fig. 6 bottom panel). This

occurs because, if the effect of the genetic variant on the

confounder increases, then its association with both the risk

factor (contributing to the instrument strength) and with the

outcome (contributing to the pleiotropic effect) will

increase. This means that genetic variants with larger

effects on confounders will tend to have both larger

instrument strengths and larger pleiotropic effects ?—

leading to violation of the InSIDE assumption. It is

therefore difficult to imagine how the InSIDE assumption

could be satisfied if several genetic variants have pleio-

tropic effects acting via confounders.

It has been claimed that the InSIDE assumption can be

empirically tested by assessing the correlation between the

ratio estimates for the individual variants and their asso-

ciations with the risk factor [34]. However, the ratio esti-

mate includes the association with the risk factor as its

denominator, so a correlation between the ratio estimates

and the associations with the risk factor would be expected

even if all genetic variants were valid instruments.

Comparing results between MR-Egger

and conventional Mendelian randomization analyses

An important practical issue for the MR-Egger method is

the interpretation of a discordant result from a conventional

Mendelian randomization analysis. We have already seen

examples in which this can occur: Fig. 2 (left and right

panels; positive conventional estimate, null MR-Egger

estimate) and Fig. 5 (right panel; positive conventional

estimate, negative MR-Egger estimate). Another example

is the effect of high-density lipoprotein (HDL) cholesterol

on CHD risk using all genome-wide significant variants

associated with HDL-cholesterol (including variants

known to have pleiotropic effects): the IVW method sug-

gests a protective effect of HDL-cholesterol on CHD risk,

whereas the MR-Egger method detects directional pleio-

tropy and suggests a null causal effect (Fig. 7, details of the

analysis are given in the ‘‘Appendix A.3’’ in supplementary

material) [25]. Estimates from the different methods (odds

ratio per 1 standard deviation increase in HDL-cholesterol

with 95% confidence interval) are 0.78 (0.68, 0.89) for the

IVW method, 0.99 (0.79, 1.24) for the MR-Egger method,

0.93 (0.92, 1.07) for the weighted median method, and 0.77

(0.64, 0.91) for the simple median method. These examples

illustrate the correlation between the intercept term and

slope term in MR-Egger regression: if the intercept term is

close to zero, then the MR-Egger estimate will be close to

the IVW estimate. However, even if the estimates are

similar, inferences from the two methods can differ if the

MR-Egger estimate is imprecise, as in the example of

height on income [11]. In such a case, the MR-Egger

analysis does not provide additional evidence for a causal

effect, but it does not contradict evidence for a causal effect

from a conventional Mendelian randomization analysis

either.

Additionally, if the MR-Egger intercept is larger than

the association of any of the individual genetic variants (as

Fig. 6 Potential violations of the InSIDE assumption. Top panel

pleiotropic effects act directly on the outcome (InSIDE satisfied);

middle panel pleiotropic effects act on the outcome via single

confounder (InSIDE violated); bottom panel pleiotropic effects act on

the outcome via different confounders (InSIDE still violated). Arrows

from the genetic variants to the risk factor may not be present for all

variants; some variants may affect the confounder directly and not the

risk factor. Notation: G1, G2, . . ., GJ , genetic variants; X, risk factor;

Y, outcome; U, confounder. Pleiotropic effects are signified by curved

arrows
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in Fig. 5, right panel), then this implies (under the InSIDE

assumption) that the average pleiotropic effect on the

outcome of a genetic variant is larger in magnitude than the

observed association with the outcome of all of the indi-

vidual genetic variants. This seems implausible, and sug-

gests that the InSIDE assumption is likely to be violated.

The test for directional pleiotropy indicates that the genetic

variants are not all valid instruments, but the negative MR-

Egger estimate is highly dubious as the causal estimates

from each variant in turn are all positive.

Finally, if a conventional Mendelian randomization

analysis suggests no causal effect, then we would be

reluctant to consider evidence from the MR-Egger method,

as the method was proposed as a sensitivity analysis for a

conventional Mendelian randomization analysis. Although

it is possible for pleiotropic effects to bias the conventional

Mendelian randomization estimate towards the null, it

would seem at least as likely for the MR-Egger estimate to

be biased due to violations of the InSIDE assumption or

due to the influence of strong variants.

Discussion

In this paper, we have described the problem of pleiotropy

in Mendelian randomization, and the potential solution to

this problem represented by the MR-Egger method. We

have described how to implement the method, its

assumptions, and various issues that may bias estimates.

Finally, we have discussed how to interpret discordancies

between results from the MR-Egger method and those from

conventional Mendelian randomization methods.

While the MR-Egger method is a worthwhile sensitivity

analysis for Mendelian randomization, it is by no means a

panacea for all violations of the instrumental variable

assumptions. Several of the issues raised in this paper have

potentially serious consequences for MR-Egger estimates.

These include violations of the InSIDE assumption—the

assumption that the pleiotropic effects of the genetic

variants in the analysis are uncorrelated with the associa-

tions of the variants with the risk factor. Violations of this

assumption have been shown to lead to increased bias and

Type 1 error rate inflation in the MR-Egger method com-

pared with conventional methods in realistic simulations

[25]. Another serious issue is that of the influence of out-

lying variants on MR-Egger estimates. We have shown

how even a single genetic variant can have a substantial

influence on a MR-Egger analysis, leading to rejection of

the MR-Egger intercept test and reversal of the sign of the

MR-Egger estimate (Fig. 5). A corollary of this is that

Mendelian randomization analyses using the MR-Egger

method should still seek to use genetic variants that are

valid instrumental variables as far as possible.

Alternative approaches for sensitivity analysis

in Mendelian randomization

MR-Egger is far from the only method for sensitivity

analysis in Mendelian randomization. Several reviews of

such methods exist in the literature [8, 32, 35]. Approaches

divide into those for assessing the validity of the instru-

mental variable assumptions, and robust methods that give

consistent estimates of a causal effect under weaker

assumptions than those of a conventional Mendelian ran-

domization analysis (such as the MR-Egger method) [32].

Robust methods generally fall into two categories: (1)

methods such as MR-Egger, that replace the instrumental

variable assumptions with an alternative assumption or

assumptions that are assumed to hold for the set of genetic

variants (a similar approach for individual-level data was

proposed by Kolesár et al. [22]); and (2) overidentification

methods that assume the instrumental variable assumptions

hold for some of the genetic variants, but not necessarily

for all genetic variants. Individual-level data methods

based on this approach have been proposed by Kang et al.

[36], and Windmeijer et al. [37].

A simple summarized data robust method that falls into

the second category is the weighted median method pro-

posed by Bowden et al. [25]. An unweighted median-based

analysis proceeds by calculating the causal estimate from

each genetic variant individually (ĥj ¼
b̂Yj
b̂Xj

), and then
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Fig. 7 Graph showing further real example in which inverse-variance

weighted estimate (solid line) and MR-Egger estimate (dashed line)

differ substantially. Each point represents the per allele associations

of a single genetic variant (lines from each point are 95% confidence

intervals for the associations). Associations with HDL-cholesterol are

in standard deviation units and associations with CHD risk are log

odds ratios

Interpreting findings from Mendelian randomization using the MR-Egger method 385

123



calculating the median of these causal estimates. This esti-

mate is consistent for the causal effect provided that at least

50% of the genetic variants are valid instrumental variables,

and is unaffected by a few genetic variants with outlying

causal estimates. As the sample size increases, the causal

estimates from all valid instrumental variables will tend

towards the same value, which will equal the median esti-

mate provided that at least 50% of the genetic variants are

valid instrumental variables [38]. A weighted median

method has also been proposed, in which genetic variants

with more precise causal estimates contribute more weight to

the analysis [25]. The median-based methods may be more

appropriate than the MR-Egger method in scenarios like

those in Figs. 4 and 5 if the majority of variants are valid

instruments. However, in the scenario in Fig. 2 (left panel),

the median-based methods would still suggest a positive

causal effect despite evidence for directional pleiotropy.

Another summarized data method that has robustness to

outlying variants may be a simple variation of the IVW

method using robust regression rather than standard linear

regression. For example, regression using MM-estimation

with Tukey’s bisquare objective function limits the con-

tribution to the analysis from any single genetic variant

[39–41].

No single method should be relied on for causal infer-

ence. A causal finding is more reliable if it is corroborated

by multiple methods, particularly if the methods make

different assumptions [32]. Methods such as MR-Egger are

desirable as sensitivity analyses as they allow all genetic

variants to violate the instrumental variable assumptions;

however they require all genetic variants to satisfy an

alternative assumption. In contrast, overidentification

methods such as the median-based method allow some

genetic variants to violate the instrumental variable

assumptions in an arbitrary way, although the majority of

variants are assumed to satisfy the assumptions. As such, in

applied practice a range of sensitivity analysis should

ideally be presented, as well as assessments as to whether

the instrumental variable assumptions are satisfied for the

genetic variants in the analysis.

Other violations of the instrumental variable

assumptions

Violations of the instrumental variable assumptions in the

MR-Egger method are expressed here as pleiotropic

effects. However, while all violations of the exclusion

restriction assumption (the assumption that the effect of a

genetic variant on the outcome only operates via the risk

factor; this is equivalent to the third instrumental variable

assumption as stated in this paper [6]) can be expressed in

terms of pleiotropy [15], other violations cannot be. For

example, population stratification is the presence of

multiple subpopulations within the sample population [3].

If genetic associations with the risk factor, with the out-

come, or the frequency of genetic variants differ between

these subpopulations, then there may be a spurious asso-

ciation between the genetic variant and the outcome in the

overall population. Such population effects, as well as

selection effects (for example, the sample under analysis

was ascertained conditional on the risk factor, or else the

sample somehow is not representative of the population as

a whole), are likely to lead to all genetic variants violating

the instrumental variable assumptions, and hence consis-

tency conditions for the robust methods presented above

would be unlikely to hold.

Linearity and homogeneity assumptions

Two assumptions that we have made in the specification of

the analysis models for both conventional and MR-Egger

methods are those of linearity and homogeneity of the

causal effect. These assumptions are not necessary to

estimate a causal effect; weaker assumptions (such as

monotonicity [42] or a weaker version of the homogeneity

assumption [43, 44]) can be made [45]. However, the

assumptions of linearity and homogeneity ensure that the

same causal effect is identified by all genetic variants that

are valid instrumental variables. If the linearity and

homogeneity assumptions are violated, then the causal

estimate from a single variant still provides a valid test of

the causal null hypothesis that the risk factor has no causal

effect on the outcome [4]; as does the causal estimate from

the IVW method, as this is a linear combination of the

causal estimates from the individual variants [14].

We view violations of assumptions that lead to inap-

propriate inferences (inflated Type 1 error rate of the null

hypothesis of no causal effect) as first-order concerns,

while violations of assumptions that lead only to inappro-

priate causal estimates (but appropriate causal inferences

both with a null and a non-null causal effect) are viewed as

second-order concerns (and questions about the causal

estimand, such as those arising due to non-collapsibility

with a binary outcome [46], as third-order concerns).

Violations of the assumptions of linearity and homogeneity

of the causal effect are important, as they affect the inter-

pretation of results from MR-Egger and conventional

Mendelian randomization methods, and the applicability of

causal estimates in practice. However, they will not lead to

inappropriate inferences, and as such are less troublesome

than violations of the three core instrumental variable

assumptions. There are many reasons why Mendelian

randomization estimates may differ from the result of

intervening on the risk factor in practice (for example, the

mechanism of the intervention, the duration of the inter-

vention, and the timing of the intervening) [47], and so an
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overly literal interpretation of Mendelian randomization

estimates is rarely justified, even when the instrumental

variable assumptions are satisfied. An important situation

under which the assumptions of linearity and homogeneity

are satisfied for the risk factor–outcome relationship is

when the causal effect is null.

Extension to correlated variants

The IVW estimate has previously been extended to account

for correlated variants, by fitting the regression model of

Eq. (3) using generalized weighted linear regression [14].

Rather than the simple weights seðb̂YjÞ�2
, we use a

weighting matrix X�1, where X has elements Xj1;j2 ¼
seðb̂Yj1Þseðb̂Yj2Þqj1;j2 and qj1;j2 is the correlation between

the j1th and j2th genetic variants. The IVW estimate

accounting for correlation can be calculated either by

matrix algebra using the weighting matrix, or by multi-

plying the genetic associations with the risk factor and

outcome by the Cholesky decomposition of the weighting

matrix, and then implementing a standard linear regression

model with no weighting. A natural extension of the MR-

Egger method with correlated variants can be constructed

by allowing an intercept term in the generalized weighted

linear regression.

With a fixed number of uncorrelated variants, the MR-

Egger estimate is consistent when the weighted covariance

between the genetic associations with the risk factor and

the pleiotropic effects is zero. The analogous result for

consistency in the MR-Egger method with correlated

variants is provided in ‘‘Appendix A.4’’ in supplementary

material. It is unlikely this criterion will be satisfied if all

variants are mutually correlated, as correlations between

the variants are likely to lead to correlations between the

associations with the risk factor and the pleiotropic effects.

However, including more than one variant in each gene

region can improve precision of the causal estimate [48].

Conclusion

A typical frustration for statisticians is that their method-

ological developments are ignored by the applied field. In

the case of the MR-Egger method, the opposite situation is

true – MR-Egger has been taken up by the field perhaps too

rapidly, and often without understanding of the intricacies

of the method and its interpretation. While some of the

cautions expressed in this paper are also present in the

original paper on MR-Egger, others have only come to

light following the application of the method, and trying to

understand its results. Similar concerns have been raised

elsewhere [25, 29, 31, 49].

While we welcome the widespread adoption of MR-

Egger, we hope that this paper aids practitioners in its

appropriate use and interpretation, and that the method

becomes seen rightly as a sensitivity analysis (and a fallible

one) for Mendelian randomization, and one of many sen-

sitivity analyses that can (and should) be used to assess the

plausibility of any finding from an applied Mendelian

randomization investigation.
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