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Abstract

Ensembling is a well-known technique in
neural machine translation (NMT) to im-
prove system performance. Instead of a
single neural net, multiple neural nets with
the same topology are trained separately,
and the decoder generates predictions by
averaging over the individual models. En-
sembling often improves the quality of the
generated translations drastically. How-
ever, it is not suitable for production sys-
tems because it is cumbersome and slow.
This work aims to reduce the runtime to be
on par with a single system without com-
promising the translation quality. First, we
show that the ensemble can be unfolded
into a single large neural network which
imitates the output of the ensemble sys-
tem. We show that unfolding can already
improve the runtime in practice since more
work can be done on the GPU. We pro-
ceed by describing a set of techniques to
shrink the unfolded network by reducing
the dimensionality of layers. On Japanese-
English we report that the resulting net-
work has the size and decoding speed of a
single NMT network but performs on the
level of a 3-ensemble system.

1 Introduction

The top systems in recent machine translation
evaluation campaigns on various language pairs
use ensembles of a number of NMT systems (Bo-
jar et al., 2016; Sennrich et al., 2016a; Chung
et al., 2016; Neubig, 2016; Wu et al., 2016;
Cromieres et al., 2016; Durrani et al., 2017). En-
sembling (Dietterich, 2000; Hansen and Salamon,
1990) of neural networks is a simple yet very ef-
fective technique to improve the accuracy of NMT.

The decoder makes use of K NMT networks
which are either trained independently (Sutskever
et al., 2014; Chung et al., 2016; Neubig, 2016; Wu
et al., 2016) or share some amount of training iter-
ations (Sennrich et al., 2016b,a; Cromieres et al.,
2016; Durrani et al., 2017). The ensemble decoder
computes predictions from each of the individual
models which are then combined using the arith-
metic average (Sutskever et al., 2014) or the geo-
metric average (Cromieres et al., 2016).

Ensembling consistently outperforms single
NMT by a large margin. However, the decod-
ing speed is significantly worse since the decoder
needs to apply K NMT models rather than only
one. Therefore, a recent line of research transfers
the idea of knowledge distillation (Bucilu et al.,
2006; Hinton et al., 2014) to NMT and trains a
smaller network (the student) by minimizing the
cross-entropy to the output of the ensemble system
(the teacher) (Kim and Rush, 2016; Freitag et al.,
2017). This paper presents an alternative to knowl-
edge distillation as we aim to speed up decoding
to be comparable to single NMT while retaining
the boost in translation accuracy from the ensem-
ble. In a first step, we describe how to construct
a single large neural network which imitates the
output of an ensemble of multiple networks with
the same topology. We will refer to this process as
unfolding. GPU-based decoding with the unfolded
network is often much faster than ensemble decod-
ing since more work can be done on the GPU. In a
second step, we explore methods to reduce the size
of the unfolded network. This idea is justified by
the fact that ensembled neural networks are often
over-parameterized and have a large degree of re-
dundancy (LeCun et al., 1989; Hassibi et al., 1993;
Srinivas and Babu, 2015). Shrinking the unfolded
network leads to a smaller model which consumes
less space on the disk and in the memory; a crucial
factor on mobile devices. More importantly, the
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(a) Single network 1. (b) Single network 2. (c) Unfolded network.

Figure 1: Unfolding mimics the output of the ensemble of two single layer feedforward networks.

decoding speed on all platforms benefits greatly
from the reduced number of neurons. We find that
the dimensionality of linear embedding layers in
the NMT network can be reduced heavily by low-
rank matrix approximation based on singular value
decomposition (SVD). This suggest that high di-
mensional embedding layers may be needed for
training, but do not play an important role for de-
coding. The NMT network, however, also consists
of complex layers like gated recurrent units (Cho
et al., 2014, GRUs) and attention (Bahdanau et al.,
2015). Therefore, we introduce a novel algorithm
based on linear combinations of neurons which
can be applied either during training (data-bound)
or directly on the weight matrices without using
training data (data-free). We report that with a
mix of the presented shrinking methods we are
able to reduce the size of the unfolded network to
the size of the single NMT network while keep-
ing the boost in BLEU score from the ensemble.
Depending on the aggressiveness of shrinking, we
report either a gain of 2.2 BLEU at the same de-
coding speed, or a 3.4× CPU decoding speed up
with only a minor drop in BLEU compared to the
original single NMT system. Furthermore, it is
often much easier to stage a single NMT system
than an ensemble in a commercial MT workflow,
and it is crucial to be able to optimize quality at
specific speed and memory constraints. Unfolding
and shrinking address these problems directly.

2 Unfolding K Networks into a Single
Large Neural Network

The first concept of our approach is called unfold-
ing. Unfolding is an alternative to ensembling of
multiple neural networks with the same topology.
Rather than averaging their predictions, unfolding
constructs a single large neural net out of the indi-

vidual models which has the same number of in-
put and output neurons but larger inner layers. Our
main motivation for unfolding is to obtain a single
network with ensemble level performance which
can be shrunk with the techniques in Sec. 3.

Suppose we ensemble two single layer feed-
forward neural nets as shown in Fig. 1. Nor-
mally, ensembling is implemented by performing
an isolated forward pass through the first network
(Fig. 1(a)), another isolated forward pass through
the second network (Fig. 1(b)), and averaging the
activities in the output layers of both networks.
This can be simulated by merging both networks
into a single large network as shown in Fig. 1(c).
The first neurons in the hidden layer of the com-
bined network correspond to the hidden layer in
the first single network, and the others to the hid-
den layer of the second network. A single pass
through the combined network yields the same
output as the ensemble if the output layer is lin-
ear (up to a factor 2). The weight matrices in the
unfolded network can be constructed by stacking
the corresponding weight matrices (either horizon-
tally or vertically) in network 1 and 2. This kind
of aggregation of multiple networks with the same
topology is not only possible for single-layer feed-
forward architectures but also for complex net-
works consisting of multiple GRU layers and at-
tention.

For a formal description of unfolding we ad-
dress layers with indices d = 0, 1, . . . , D. The
special layer 0 has a single neuron for modelling
bias vectors. Layer 1 holds the input neurons and
layer D is the output layer. We denote the size
of a layer in the individual models as s(d). When
combining K networks, the layer size s′(d) in the
unfolded network is increased by factor K if d is
an inner layer, and equal to s(d) if d is the in-



W ′(d1, d2) =




W1(d1, d2) 0 · · · 0

0 W2(d1, d2)
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0 · · · WK(d1, d2)
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 if d1 ∈ InnerLayers and d2 /∈ InnerLayers

(
W1(d1, d2) · · · WK(d1, d2)

)
if d1 /∈ InnerLayers and d2 ∈ InnerLayers

Figure 2: General formula for unfolding weight matrices. The set InnerLayers := [2, D− 1] includes all
layers except the input, output, and bias layer.

put or output layer. We denote the weight ma-
trix between two layers d1, d2 ∈ [0, D] in the k-th
individual model (k ∈ [1,K]) as Wk(d1, d2) ∈
Rs(d1)×s(d2), and the corresponding weight ma-
trix in the unfolded network as W ′(d1, d2) ∈
Rs′(d1)×s′(d2). We explicitly allow d1 and d2 to be
non-consecutive or reversed to be able to model
recurrent networks. We use the zero-matrix if lay-
ers d1 and d2 are not connected. The construc-
tion of the unfolded weight matrix W ′(d1, d2)
from the individual matrices Wk(d1, d2) depends
on whether the connected layers are inner layers
or not. The complete formula is listed in Fig. 2.

Unfolded NMT networks approximate but do
not exactly match the output of the ensemble due
to two reasons. First, the unfolded network syn-
chronizes the attentions of the individual models.
Each decoding step in the unfolded network com-
putes a single attention weight vector. In contrast,
ensemble decoding would compute one attention
weight vector for each of the K input models.
A second difference is that the ensemble decoder
first applies the softmax at the output layer, and
then averages the prediction probabilities. The un-
folded network averages the neuron activities (i.e.
the logits) first, and then applies the softmax func-
tion. Interestingly, as shown in Sec. 4, these differ-
ences do not have any impact on the BLEU score
but yield potential speed advantages of unfolding
since the computationally expensive softmax layer
is only applied once.

3 Shrinking the Unfolded Network

After constructing the weight matrices of the un-
folded network we reduce the size of it by iter-
atively shrinking layer sizes. In this section we
denote the incoming weight matrix of the layer to

shrink as U ∈ Rmin×m and the outgoing weight
matrix as V ∈ Rm×mout . Our procedure is in-
spired by the method of Srinivas and Babu (2015).
They propose a criterion for removing neurons in
inner layers of the network based on two intu-
itions. First, similarly to Hebb’s learning rule,
they detect redundancy by the principle neurons
which fire together, wire together. If the incom-
ing weight vectors U:,i and U:,j are exactly the
same for two neurons i and j, we can remove the
neuron j and add its outgoing connections to neu-
ron i (Vi,: ← Vi,: + Vj,:) without changing the
output.1 This holds since the activity in neuron
j will always be equal to the activity in neuron
i. In practice, Srinivas and Babu use a distance
measure based on the difference of the incoming
weight vectors to search for similar neurons as ex-
act matches are very rare.

The second intuition of the criterion used by
Srinivas and Babu (2015) is that neurons with
small outgoing weights contribute very little over-
all. Therefore, they search for a pair of neurons
i, j ∈ [1,m] according the following term and re-
move the j-th neuron.2

argmin
i,j∈[1,m]

||U:,i − U:,j ||22||Vj,:||22 (1)

Neuron j is selected for removal if (1) there is
another neuron i which has a very similar set of
incoming weights and if (2) j has a small outgoing
weight vector. Their criterion is data-free since

1We denote the i-th row vector of a matrix A with Ai,:

and the i-th column vector as A:,i.
2Note that the criterion in Eq. 1 generalizes the criterion of

Srinivas and Babu (2015) to multiple outgoing weights. Also
note that Srinivas and Babu (2015) propose some heuristic
improvements to this criterion. However, these heuristics did
not work well in our NMT experiments.



it does not require any training data. For further
details we refer to Srinivas and Babu (2015).

3.1 Data-Free Neuron Removal

Srinivas and Babu (2015) propose to add the out-
going weights of j to the weights of a similar neu-
ron i to compensate for the removal of j. However,
we have found that this approach does not work
well on NMT networks. We propose instead to
compensate for the removal of a neuron by a lin-
ear combination of the remaining neurons in the
layer. Data-free shrinking assumes for the sake of
deriving the update rule that the neuron activation
function is linear. We now ask the following ques-
tion: How can we compensate as well as possible
for the loss of neuron j such that the impact on the
output of the whole network is minimized? Data-
free shrinking represents the incoming weight vec-
tor of neuron j (U:,j) as linear combination of the
incoming weight vectors of the other neurons. The
linear factors can be found by satisfying the fol-
lowing linear system:

U:,¬jλ = U:,j (2)

where U:,¬j is matrix U without the j-th col-
umn. In practice, we use the method of ordi-
nary least squares to find λ because the system
may be overdetermined. The idea is that if we
mix the outputs of all neurons in the layer by the
λ-weights, we get the output of the j-th neuron.
The row vector Vj,: contains the contributions of
the j-th neuron to each of the neurons in the next
layer. Rather than using these connections, we
approximate their effect by adding some weight
to the outgoing connections of the other neurons.
How much weight depends on λ and the outgoing
weights Vj,:. The factor Dk,l which we need to
add to the outgoing connection of the k-th neuron
to compensate for the loss of the j-th neuron on
the l-th neuron in the next layer is:

Dk,l = λkVj,l (3)

Therefore, the update rule for V is:

V ← V +D (4)

In the remainder we will refer to this method
as data-free shrinking. Note that we recover the
update rule of Srinivas and Babu (2015) by setting
λ to the i-th unit vector. Also note that the error
introduced by our shrinking method is due to the

fact that we ignore the non-linearity, and that the
solution for λ may not be exact. The method is
error-free on linear layers as long as the residuals
of the least-squares analysis in Eq. 2 are zero.

GRU layers The terminology of neurons needs
some further elaboration for GRU layers which
rather consist of update and reset gates and
states (Cho et al., 2014). On GRU layers, we treat
the states as neurons, i.e. the j-th neuron refers to
the j-th entry in the GRU state vector. Input con-
nections to the gates are included in the incoming
weight matrix U for estimating λ in Eq. 2. Re-
moving neuron j in a GRU layer means deleting
the j-th entry in the states and both gate vectors.

3.2 Data-Bound Neuron Removal
Although we find our data-free approach to be
a substantial improvement over the methods of
Srinivas and Babu (2015) on NMT networks, it
still leads to a non-negligible decline in BLEU
score when applied to recurrent GRU layers. Our
data-free method uses the incoming weights to
identify similar neurons, i.e. neurons expected to
have similar activities. This works well enough
for simple layers, but the interdependencies be-
tween the states and the gates inside gated layers
like GRUs or LSTMs are complex enough that re-
dundancies cannot be found simply by looking for
similar weights. In the spirit of Babaeizadeh et
al. (2016), our data-bound version records neuron
activities during training to estimate λ. We com-
pensate for the removal of the j-th neuron by us-
ing a linear combination of the output of remain-
ing neurons with similar activity patterns. In each
layer, we prune 40 neurons each 450 training it-
erations until the target layer size is reached. Let
A be the matrix which holds the records of neu-
ron activities in the layer since the last removal.
For example, for the decoder GRU layer, a batch
size of 80, and target sentence lengths of 20,A has
20 · 80 · 450 = 720K rows and m (the number of
neurons in the layer) columns.3 Similarly to Eq. 2
we find interpolation weights λ using the method
of least squares on the following linear system.

A:,¬jλ = A:,j (5)

The update rule for the outgoing weight matrix
is the same as for our data-free method (Eq. 4).

3In practice, we use a random sample of 50K rows rather
than the full matrix to keep the complexity of the least-
squares analysis under control.



The key difference between data-free and data-
bound shrinking is the way λ is estimated. Data-
free shrinking uses the similarities between in-
coming weights, and data-bound shrinking uses
neuron activities recorded during training. Once
we select a neuron to remove, we estimate λ,
compensate for the removal, and proceed with the
shrunk network. Both methods are prior to any de-
coding and result in shrunk parameter files which
are then loaded to the decoder. Both methods re-
move neurons rather than single weights.

The data-bound algorithm runs gradient-based
optimization on the unfolded network. We use the
AdaGrad (Duchi et al., 2011) step rule, a small
learning rate of 0.0001, and aggressive step clip-
ping at 0.05 to avoid destroying useful weights
which were learned in the individual networks
prior to the construction of the unfolded network.

Our data-bound algorithm uses a data-bound
version of the neuron selection criterion in Eq. 1
which operates on the activity matrix A. We
search for the pair i, j ∈ [1,m] according the fol-
lowing term and remove neuron j.

argmin
i,j∈[1,m]

||A:,i −A:,j ||22||A:,j ||22 (6)

3.3 Shrinking Embedding Layers with SVD
The standard attention-based NMT network archi-
tecture (Bahdanau et al., 2015) includes three lin-
ear layers: the embedding layer in the encoder, and
the output and feedback embedding layers in the
decoder. We have found that linear layers are par-
ticularly easy to shrink using low-rank matrix ap-
proximation. As before we denote the incoming
weight matrix as U ∈ Rmin×m and the outgoing
weight matrix as V ∈ Rm×mout . Since the layer
is linear, we could directly connect the previous
layer with the next layer using the product of both
weight matrices X = U · V . However, X may
be very large. Therefore, we approximate X as a
product of two low rank matrices Y ∈ Rmin×m′

and Z ∈ Rm′×mout (X ≈ Y Z) where m′ � m
is the desired layer size. A very common way to
find such a matrix factorization is using truncated
singular value decomposition (SVD). The layer is
eventually shrunk by replacing U with Y and V
with Z.

4 Results

The individual NMT systems we use as source for
constructing the unfolded networks are trained us-

ing AdaDelta (Zeiler, 2012) on the Blocks/Theano
implementation (van Merriënboer et al., 2015;
Bastien et al., 2012) of the standard attention-
based NMT model (Bahdanau et al., 2015) with:
1000 dimensional GRU layers (Cho et al., 2014)
in both the decoder and bidrectional encoder; a
single maxout output layer (Goodfellow et al.,
2013); and 620 dimensional embedding layers.
We follow Sennrich et al. (2016b) and use sub-
word units based on byte pair encoding rather
than words as modelling units. Our SGNMT de-
coder (Stahlberg et al., 2017)4 with a beam size of
12 is used in all experiments. Our primary cor-
pus is the Japanese-English (Ja-En) ASPEC data
set (Nakazawa et al., 2016). We select a sub-
set of 500K sentence pairs to train our models
as suggested by Neubig et al. (2015). We re-
port cased BLEU scores calculated with Moses’
multi-bleu.pl to be strictly comparable to
the evaluation done in the Workshop of Asian
Translation (WAT). We also apply our method to
the WMT data set for English-German (En-De),
using the news-test2014 as a development set, and
keeping news-test2015 and news-test2016 as test
sets. En-De BLEU scores are computed using
mteval-v13a.pl as in the WMT evaluation.
We set the vocabulary sizes to 30K for Ja-En and
50K for En-De. We also report the size factor for
each model which is the total number of model
parameters (sum of all weight matrix sizes) di-
vided by the number of parameters in the original
NMT network (86M for Ja-En and 120M for En-
De). We choose a widely used, simple ensembling
method (prediction averaging) as our baseline. We
feel that the prevalence of this method makes it a
reasonable baseline for our experiments.

Shrinking the Unfolded Network First, we in-
vestigate which shrinking methods are effective
for which layers. Tab. 1 summarizes our results
on a 2-unfold network for Ja-En, i.e. two separate
NMT networks are combined in a single large net-
work as described in Sec. 2. The layers in the com-
bined network are shrunk to the size of the original
networks using the methods discussed in Sec. 3.

Shrinking the linear embedding layers with
SVD (Sec. 3.3) is very effective. The unfolded
model with shrunk embedding layers performs at
the same level as the ensemble (compare rows
(b) and (c)). In our initial experiments, we ap-
plied the method of Srinivas and Babu (2015) to

4‘vanilla’ decoding strategy



Shrinking Methods
Base Encoder Attention Decoder Size BLEU

Embed. GRUs Match GRU Maxout Embeds. Factor dev test
(a) Single - - - - - - 1.00 20.8 23.5
(b) 2-Ens. - - - - - - 2×1.00 22.7 25.2
(c) 2-Unfold SVD - - - - SVD 1.85 22.7 25.1
(d) 2-Unfold SVD - Data-Free - - SVD 1.77 22.7 25.1
(e) 2-Unfold SVD Data-Free Data-Free Data-Free - SVD 1.05 21.6 24.2
(f) 2-Unfold SVD Data-Bound Data-Free Data-Bound - SVD 1.05 22.4 25.3
(g) 2-Unfold SVD Data-Bound Data-Free Data-Bound Data-Free SVD 1.00 16.9 19.3
(h) 2-Unfold SVD Data-Bound Data-Free Data-Bound Data-Bound SVD 1.00 21.9 24.6

Table 1: Shrinking layers of the unfolded network on Ja-En to their original size.

shrink the other layers, but their approach per-
formed very poorly on this kind of network: the
BLEU score dropped down to 15.5 on the devel-
opment set when shrinking all layers except the
decoder maxout and embedding layers, and to 9.9
BLEU when applying their method only to em-
bedding layers.5 Row (e) in Tab. 1 shows that our
data-free algorithm from Sec. 3.1 is better suited
for shrinking the GRU and attention layers, lead-
ing to a drop of only 1 BLEU point compared to
the ensemble (b) (i.e. 0.8 BLEU better than the
single system (a)). However, using the data-bound
version of our shrinking algorithm (Sec. 3.2) for
the GRU layers performs best.6 The shrunk model
yields about the same BLEU score as the ensemble
on the test set (25.2 in (b) and 25.3 in (f)). Shrink-
ing the maxout layer remains more of a challenge
(rows (g) and (h)), but the number of parameters in
this layer is small. Therefore, shrinking all layers
except the maxout layer leads to almost the same
number of parameters (factor 1.05 in row (f)) as
the original NMT network (a), and thus to a sim-
ilar storage size, memory consumption, and de-
coding speed, but with a 1.8 BLEU gain. Based
on these results we fix the shrinking method used
for each layer for all remaining experiments as fol-
lows: We shrink linear embedding layers with our
SVD-based method, GRU layers with our data-
bound method, the attention layer with our data-
free method, and do not shrink the maxout layer.

Our data-bound algorithm from Sec. 3.2 has two
mechanisms to compensate for the removal of a
neuron. First, we use a linear combination of the
remaining neurons to update the outgoing weight
matrix by imitating its activations (Eq. 4). Second,
stochastic gradient descent (SGD) fine-tunes all

5Results with the original method of Srinivas and
Babu (2015) are not included in Tab. 1.

6If we apply different methods to different layers of the
same network, we first apply SVD-based shrinking, then the
data-free method, and finally the data-bound method.

Compensation Method BLEU
Linear Combination SGD dev test

(a) 16.3 18.0
(b) X 22.1 24.3
(c) X 21.7 24.4
(d) X X 22.4 25.3

Table 2: Compensating for neuron removal in
the data-bound algorithm. Row (d) corresponds
to row (f) in Tab. 1.

weights during this process. Tab. 2 demonstrates
that both mechanisms are crucial for minimizing
the effect of shrinking on the BLEU score.

Decoding Speed Our testing environment is an
Ubuntu 16.04 with Linux 4.4.0 kernel, 32 GB
RAM, an Intel R© Core i7-6700 CPU at 3.40 GHz
and an Nvidia GeForce GTX Titan X GPU. CPU
decoding uses a single thread. We used the first
500 sentences of the Ja-En WAT development set
for the time measurements.

Our results in Tab. 3 show that decoding with
ensembles (rows (b) and (e)) is slow: combin-
ing the predictions of the individual models on
the CPU is computationally expensive, and en-
semble decoding requires K passes through the
softmax layer which is also computationally ex-
pensive. Unfolding the ensemble into a single net-
work and shrinking the embedding and attention
layers improves the runtimes on the GPU signifi-
cantly without noticeable impact on BLEU (rows
(c) and (f)). This can be attributed to the fact that
unfolding can reduce the communication overhead
between CPU and GPU. Comparing rows (d) and
(g) with row (a) reveals that shrinking the un-
folded networks even further speeds up CPU and
GPU decoding almost to the level of single sys-
tem decoding. However, more aggressive shrink-
ing yields a BLEU score of 25.3 when combining
three systems (row (g)) – 1.8 BLEU better than
the single system, but 0.6 BLEU worse than the 3-



System Words/Min. Size BLEU
CPU GPU Factor dev test

(a) Single 323.4 2993.6 1.00 20.8 23.5
(b) 2-Ensemble 163.7 1641.1 2 × 1.00 22.7 25.2
(c) 2-Unfold, shrunk embed.& attention 157.2 2592.2 1.77 22.7 25.1
(d) 2-Unfold, shrunk all except maxout 308.3 2961.4 1.05 22.4 25.3
(e) 3-Ensemble 110.9 1158.2 3 × 1.00 23.4 25.9
(f) 3-Unfold, shrunk embed.& attention 95.4 2182.1 2.99 23.2 25.9
(g) 3-Unfold, shrunk all except maxout 301.6 3024.4 1.09 22.2 25.3

Table 3: Time measurements on Ja-En. Layers are shrunk to their size in the original NMT model.
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Figure 3: Impact of shrinking on the BLEU score.

Single 3-Unfold
Normal Small Tiny

Enc. Embed. 620 410 310 170
Enc. GRUs 1000 1300 580 580
Attention 1000 100 100 100
Dec. GRU 1000 1350 590 590
Dec. Maxout 500 1500 1500 1500
Dec. Embeds. 620 430 320 170
Size Factor 1.00 1.00 0.50 0.33

Table 4: Layer sizes of our setups for Ja-En.

ensemble. Therefore, we will investigate the im-
pact of shrinking on the different layers in the next
sections more thoroughly.

Degrees of Redundancy in Different Layers
We applied our shrinking methods to isolated lay-
ers in the 2-Unfold network of Tab. 1 (f). Fig. 3
plots the BLEU score when isolated layers are
shrunk even below their size in the original NMT
network. The attention layer is very robust against
shrinking and can be reduced to 100 neurons (10%
of the original size) without impacting the BLEU
score. The embedding layers can be reduced to
60% but are sensitive to more aggressive pruning.
Shrinking the GRU layers affects the BLEU score
the most but still outperforms the single system
when the GRU layers are shrunk to 30%.

Adjusting the Target Sizes of Layers Based on
our previous experiments we revise our approach
to shrink the 3-Unfold system in Tab. 3. Instead

System Words/Min. BLEU
CPU GPU dev test

(a) Single 323.4 2993.6 20.8 23.5
(b) 3-Ensemble 110.9 1158.2 23.4 25.9
(c) 3-Unfold-Normal 445.2 3071.1 22.9 25.7
(d) 3-Unfold-Small 946.1 3572.0 21.7 23.9
(e) 3-Unfold-Tiny 1102.5 3483.7 20.6 23.2

Table 5: Our best models on Ja-En.

of shrinking all layers except the maxout layer to
the same degree, we adjust the aggressiveness of
shrinking for each layer. We suggest three dif-
ferent setups (Normal, Small, and Tiny) with the
layer sizes specified in Tab. 4. 3-Unfold-Normal
has the same number of parameters as the orig-
inal NMT networks (size factor: 1.0), 3-Unfold-
Small is only half their size (size factor: 0.5), and
3-Unfold-Tiny reduces the size by two thirds (size
factor: 0.33). When comparing rows (a) and (c) in
Tab. 5 we observe that 3-Unfold-Normal yields a
gain of 2.2 BLEU with respect to the original sin-
gle system and a slight improvement in decoding
speed at the same time.7 Networks with the size
factor 1.0 like 3-Unfold-Normal are very likely to
yield about the same decoding speed as the Sin-
gle network regardless of the decoder implementa-
tion, machine learning framework, and hardware.
Therefore, we think that similar results are possi-
ble on other platforms as well.

CPU decoding speed directly benefits even
more from smaller setups – 3-Unfold-Tiny is only
0.3 BLEU worse than Single but decoding on a
single CPU is 3.4 times faster (row (a) vs. row (e)
in Tab. 5). This is of great practical use: batch de-
coding with only two CPU threads surpasses pro-
duction speed which is often set to 2000 words per
minute (Beck et al., 2016). Our initial experiments
in Tab. 6 suggest that the Normal setup is appli-
cable to En-De as well, with substantial improve-

7To validate that the gains come from ensembling and un-
folding and not from the layer sizes in 3-Unfold-Normal we
trained a network from scratch with the same dimensions.
This network performed similarly to our Single system.



System Wrds/Min. BLEU on news-test*
(GPU) 2014 2015 2016

Single 2128.7 19.6 21.9 24.6
2-Ensemble 1135.3 20.5 22.9 26.1
2-Unfold-Norm. 2099.1 20.7 23.1 25.8

Table 6: Our best models on En-De.

ments in BLEU compared to Single with about the
same decoding speed.

5 Related Work

The idea of pruning neural networks to improve
the compactness of the models dates back more
than 25 years (LeCun et al., 1989). The literature
is therefore vast (Augasta and Kathirvalavakumar,
2013). One line of research aims to remove unim-
portant network connections. The connections
can be selected for deletion based on the second-
derivative of the training error with respect to the
weight (LeCun et al., 1989; Hassibi et al., 1993),
or by a threshold criterion on its magnitude (Han
et al., 2015). See et al. (2016) confirmed a high
degree of weight redundancy in NMT networks.

In this work we are interested in removing neu-
rons rather than single connections since we strive
to shrink the unfolded network such that it resem-
bles the layout of an individual model. We ar-
gued in Sec. 4 that removing neurons rather than
connections does not only improve the model size
but also the memory footprint and decoding speed.
As explained in Sec. 3.1, our data-free method
is an extension of the approach by Srinivas and
Babu (2015); our extension performs significantly
better on NMT networks. Our data-bound method
(Sec. 3.2) is inspired by Babaeizadeh et al. (2016)
as we combine neurons with similar activities dur-
ing training, but we use linear combinations of
multiple neurons to compensate for the loss of a
neuron rather than merging pairs of neurons.

Using low rank matrices for neural net-
work compression, particularly approximations
via SVD, has been studied widely in the litera-
ture (Denil et al., 2013; Denton et al., 2014; Xue
et al., 2013; Prabhavalkar et al., 2016; Lu et al.,
2016). These approaches often use low rank matri-
ces to approximate a full rank weight matrix in the
original network. In contrast, we shrink an entire
linear layer by applying SVD on the product of the
incoming and outgoing weight matrices (Sec. 3.3).

In this paper we mimicked the output of the high
performing but cumbersome ensemble by con-
structing a large unfolded network, and shrank this

network afterwards. Another approach, known as
knowledge distillation, uses the large model (the
teacher) to generate soft training labels for the
smaller student network (Bucilu et al., 2006; Hin-
ton et al., 2014). The student network is trained by
minimizing the cross-entropy to the teacher. This
idea has been applied to sequence modelling tasks
such as machine translation and speech recogni-
tion (Wong and Gales, 2016; Kim and Rush, 2016;
Freitag et al., 2017). Our approach can be compu-
tationally more efficient as the training set does not
have to be decoded by the large teacher network.

Junczys-Dowmunt et al. (2016a; 2016b) re-
ported gains from averaging the weight matrices
of multiple checkpoints of the same training run.
However, our attempts to replicate their approach
were not successful. Averaging might work well
when the behaviour of corresponding units is sim-
ilar across networks, but that cannot be guaranteed
when networks are trained independently.

6 Conclusion

We have described a generic method for improv-
ing the decoding speed and BLEU score of single
system NMT. Our approach involves unfolding an
ensemble of multiple systems into a single large
neural network and shrinking this network by re-
moving redundant neurons. Our best results on
Japanese-English either yield a gain of 2.2 BLEU
compared to the original single NMT network at
about the same decoding speed, or a 3.4×CPU de-
coding speed up with only a minor drop in BLEU.

The current formulation of unfolding works for
networks of the same topology as the concatena-
tion of layers is only possible for analogous layers
in different networks. Unfolding and shrinking di-
verse networks could be possible, for example by
applying the technique only to the input and out-
put layers or by some other scheme of finding as-
sociations between units in different models, but
we leave this investigation to future work as mod-
els in NMT ensembles in current research usually
have the same topology (Bojar et al., 2016; Sen-
nrich et al., 2016a; Chung et al., 2016; Neubig,
2016; Wu et al., 2016; Durrani et al., 2017).
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Appendix: Probabilistic Interpretation of
Data-Free and Data-Bound Shrinking

Data-free and data-bound shrinking can be inter-
preted as setting the expected difference between
network outputs before and after a removal opera-
tion to zero under different assumptions.

For simplicity, we focus our probabilistic treat-
ment of shrinking on single layer feedforward net-
works. Such a network maps an input x ∈ Rmin

to an output y ∈ Rmout . The l-th output yl is com-
puted according the following equation

yl =
∑

k∈[1,m]

σ(xuTk )Vk,l (7)

where uk ∈ Rmin is the incoming weight vec-
tor of the k-th hidden neuron (denoted as U:,k in
the main paper) and V ∈ Rm×mout the outgoing
weight matrix of the m-dimensional hidden layer.
We now remove the j-th neuron in the hidden layer
and modify the outgoing weights to compensate
for the removal:

y′l =
∑

k∈[1,m]\{j}

σ(xuTk )V
′
k,l (8)

where y′l is the output after the removal operation
and V ′ ∈ Rm×mout are the modified outgoing
weights. Our goal is to choose V ′ such that the
expected error introduced by removing neuron j
is zero:

Ex(yl − y′l) = 0 (9)

Data-free shrinking Data-free shrinking makes
two assumptions to satisfy Eq. 9. First, we assume
that the incoming weight vector uj can be repre-
sented as linear combination of the other weight
vectors.

uj =
∑

k∈[1,m]\{j}

λkuk (10)

Second, it assumes that the neuron activation
function σ(·) is linear. Starting with Eqs. 7 and 8
we can write Ex(yl − y′l) as

Ex

(
σ(xuTj )Vj,l +

∑
k∈[1,m]\{j}

σ(xuTk )(Vk,l − V ′k,l)︸ ︷︷ ︸
:=R

)

Eq. 10
= Ex

(
σ(x(

∑
k∈[1,m]\{j}

λkuk)
T )Vj,l +R

)
σ(·) lin.
= Ex

( ∑
k∈[1,m]\{j}

σ(xuTk )λkVj,l +R
)

=
∑

k∈[1,m]\{j}

Ex

(
σ(xuTk )

)
(Vk,l − V ′k,l + λkVj,l)

We set this term to zero (and thus satisfy Eq. 9)
by setting each component of the sum to zero.

∀k ∈ [1,m] \ {j} : V ′k,l = Vk,l + λkVj,l (11)

This condition is directly implemented by the up-
date rule in our shrinking algorithm (Eq. 3 and 4).

Data-bound shrinking Data-bound shrinking
does not require linearity in σ(·). It rather assumes
that the expected value of the neuron activity j is
a linear combination of the expected values of the
other activities:

Ex(σ(xu
T
j )) =

∑
k∈[1,m]\{j}

λkEx(σ(xu
T
k )) (12)

Ex(·) is estimated using importance sampling:

Êx(σ(xu
T
k );X ) =

1

|X |
∑
x′∈X

σ(x′uTk ) (13)

In practice, the samples inX are collected in the
activity matrix A from Sec. 3.2. We can satisfy
Eq. 9 by using the λ-values from Eq. 12, so that
Ex(yl − y′l) becomes

Eqs. 7,8
= Ex

(
σ(xuTj )Vj,l

+
∑

k∈[1,m]\{j}

σ(xuTk )(Vk,l − V ′k,l)
)

= Ex(σ(xu
T
j )Vj,l)

+
∑

k∈[1,m]\{j}

Ex(σ(xu
T
k ))(Vk,l − V ′k,l)

Eq. 12
=

∑
k∈[1,m]\{j}

Ex(σ(xu
T
k ))(Vk,l − V ′k,l + λkVj,l)

Again, we set this to zero using Eq. 11.
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