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Significance 

Mitochondria generate the cellular fuel, adenosine triphosphate, or ATP, to sustain complex 

life. Production of ATP depends on the oxidation of energy rich compounds to produce a 

chemical potential difference for hydrogen ions, the proton motive force (pmf), across the inner 

mitochondrial membrane (IMM). Disruption of the IMM, dissipation of the pmf and cell death 

occur if the concentration of calcium ions inside mitochondria is elevated sufficiently to open 

a pore in the IMM. The identity of the pore is disputed. One proposal is that the pore is in the 

enzyme that makes ATP. Here, we show that proteins in the enzyme’s peripheral stalk are not 

involved in the formation or regulation of the pore. (115 words) 

Abstract 

The opening of a non-specific channel, known as the permeability transition pore (PTP), in the 

inner membranes of mitochondria, can be triggered by calcium ions, leading to swelling of the 

organelle, disruption of the inner membrane and ATP synthesis, and cell death. Pore opening 

can be inhibited by cyclosporin A mediated via cyclophilin D. It has been proposed that the 

pore is associated with the dimeric ATP synthase, and that the OSCP (oligomycin sensitivity 

conferral protein), a component of the enzyme’s peripheral stalk, provides the site where 

cyclophilin D interacts. Subunit b contributes a central α-helical structure to the peripheral 

stalk, extending from near the top of the enzyme’s catalytic domain and crossing the membrane 

domain of the enzyme via two α-helices. We investigated the possible involvement of the 

subunit b and the OSCP in the PTP by generating clonal cells, HAP1-Δb and HAP1-ΔOSCP, 

lacking the membrane domain of subunit b or the OSCP, respectively, in which the 

correponding genes ATP5F1 and ATP5O had been disrupted. Both cell lines preserve the 

characteristic properties of the PTP. Therefore, the membrane domain of subunit b does not 

contribute to the PTP, and the OSCP does not provide the site of interaction with cyclophilin 
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D. The membrane subunits ATP6, ATP8 and subunit c have been eliminated previously from 

possible participation in the PTP. Therefore, the only subunits of ATP synthase that could 

participate in pore formation are e, f, g, DAPIT (diabetes associated protein in insulin sensitive 

tissues) and the 6.8 kDa proteolipid. (250 words). 

Introduction 

 In 1976, Hunter, Haworth and Southard (1) demonstrated that bovine heart 

mitochondria respond to the elevation of the concentration of exogenous Ca2+ ions to high 

levels by opening a non-specific channel, now known as the mitochondrial permeability 

transition pore (PTP). In consequence, the mitochondria took up water, their cristae became 

swollen and their membranes were disrupted. Since then, these observations have been 

replicated in mitochondria in situ in many cell types, and, in addition to elevated Ca2+ ion 

concentration, other effectors of opening of the PTP have been identified, including phosphate, 

adenine nucleotide depletion, and thiol oxidants (2). Today, it is well established that the 

opening of the PTP disrupts ion homeostasis and the synthesis of ATP, and the mitochondrial 

membranes lose their integrity, leading to cell-death (3). The PTP in isolated mitochondria can 

be opened experimentally by the introduction of thapsigargin (4), an inhibitor of the Ca2+-

ATPase in the sarcoplasmic and endoplasmic reticula, at high non-specific concentrations. In 

cultured human cells the PTP can be opened by providing a route for ingress of exogenous 

Ca2+ ions by permeablizing the plasma membrane either with ionophores such as ferutinin (5), 

or with the mild detergent digitonin (6). The cytoplasmic Ca2+ ions are taken up into the 

mitochondrial matrix by the Ca2+-uniporter (7, 8), a component of the inner membrane, and 

when the total concentration of Ca2+ ions in the mitochondrial matrix is sufficiently elevated, 

the PTP opens. A characteristic feature of the PTP is that its opening can be inhibited by 

cyclosporin A (9) via the binding of the drug to cyclophilin D (10–13). Cyclophilin D is a 
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prolyl cis-trans isomerase found in the mitochondrial matrix, and it is considered to interact 

with and modulate the PTP rather than being an integral component (14).  

 The opening of the PTP and the associated effects have been linked to human diseases 

including cardiac ischemia, neurodegeneration, cancer and muscle dystrophy, and thus 

knowledge of the proteins that form the PTP has considerable medical relevance (15). Several 

proposals have been made about possible protein constituents of the PTP including the 

ADP/ATP translocase, which is the predominant transport protein in the inner membranes of 

mitochondria, and the voltage dependent anion channel found in the outer membrane of the 

organelle, but neither of these proposals has withstood scrutiny (16, 17). A further proposition, 

that another component of the inner mitochondrial membrane, the AAA-protease, SPG7, 

participates in formation of the PTP, has been disputed (18, 19) (AAA is ATPase associated 

with diverse cellular activities, and SPG7, paraplegin matrix AAA-peptidase subunit). Yet 

another proposition, investigated here, is that the PTP is associated with the dimeric ATP 

synthase complex (20), another abundant constituent of the inner mitochondrial membrane. 

Each monomer of the dimeric mammalian complex is an assembly of 28 proteins of 18 different 

types organised into two domains (Fig. 1). The F1-catalytic domain sits above the membrane 

domain, and the two domains are linked by the central stalk (subunits γ, δ and ε), and by the 

peripheral stalk (subunits OSCP, or oligomycin sensitivity conferral protein, b, d and F6) (21). 

The OSCP has been proposed to provide the site of interaction of the PTP with cyclophilin D 

(20).  

If the PTP is associated with the ATP synthase complex, it seems likely that it will 

involve one or more of the membrane subunits of the enzyme. One specific proposal, that the 

PTP is provided by a ring of eight c-subunits in the membrane sector of the enzyme’s rotor (22, 

23) has been disproved in a clonal cell line where the three genes encoding the c-subunit have 
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been disrupted (24). Although these cells are incapable of making the c-subunit, the 

characteristic properties of the PTP persist (24). Another possibility that two other membrane 

components of the ATP synthase, subunits a (or ATP6) and A6L (or ATP8) might participate 

in the formation of the PTP has been disproved also; in human ρo-cells, which lack the 

mitochondrial genome, and therefore are devoid of both subunits, the PTP persists (24, 25). 

 Here, we have tested the possible participation of the b-subunit in the PTP. This subunit 

has two transmembrane α-helices that help to hold the a-subunit against the c-ring (Fig. 1) (26–

28). The remainder of the protein is folded into a single α-helix 150 Å long, extending away 

from the inner membrane towards the α3β3-domain, and providing the core of the peripheral 

stalk (29, 30). The associated d- and F6-subunits are largely α-helical also, and form a bundle 

of parallel α-helices with the b-subunit (26–30). We have disrupted the corresponding gene, 

ATP5F1, in a near haploid cell line, and studied whether removal of the b-subunit affects the 

functioning of the PTP. In addition, we have investigated whether the OSCP provides the site 

of binding for cyclophilin D. The OSCP is located at the upper end of the peripheral stalk in 

Fig. 1, and has two domains. The N-terminal α-helical domain is joined to the α3β3-domain via 

interactions with the N-terminal regions of the three α-subunits, and the C-terminal domain 

connects the OSCP with the C-terminal region of the b-subunit (26–28, 30). In experiments 

described below, we have disrupted ATP5O, the gene that encodes the OSCP, and we have 

examined the effect of removing the OSCP on the susceptibility to inhibition of the opening of 

the PTP by cyclosporin A mediated via cyclophilin D. 

Results 

Human Cells Devoid of Subunit b and the OSCP. HAP1 cells have a haploid karyotype, but 

a fragment of chromosome 15 is located in chromosome 19, and there is a reciprocal 

translocation between chromosomes 9 and 22 (31, 32). Neither of these features affects 
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ATP5F1 and ATP5O encoding subunit b and the OSCP, respectively, as ATP5F1 gene is on 

chromosome 1 and AT5PO is on chromosome 21. Pairs of guide RNA molecules characteristic 

of exons I and introns A in ATP5F1 and ATP5O genes were selected (see Fig. S1 and Table 

S1). Each pair was introduced independently into HAP1-WT (wild-type) cells, and clones 

arising from single cells, identified as having expressed Cas9, were screened for the absence 

of either subunit b or the OSCP. In this way, HAP1-Δb and HAP1-ΔOSCP cells, lacking 

subunit b or the OSCP, respectively, were identified (Fig. 2). Analysis of the DNA sequences 

in the regions of the human genome where ATP5F1 is found in HAP1-Δb, and ATP5O in 

HAP1-ΔOSCP (Table S2 and Fig. S1), showed that 62 and 214 base pairs had been deleted, 

respectively. In addition, a single base had been inserted at the deletion site in ATP5O. Each 

deletion had arisen from two gRNAs and non-homologous end-joining of the deleted genomic 

DNA. Human cells encode a precursor of the b-subunit where the mature protein is preceded 

by a mitochondrial import sequence of 42 residues (33). The deletion in ATP5F1 removed the 

translational initiator codon of the precursor, 20 bases upstream, codons 2-13 plus the first base 

of codon 14, and extended 2 bases into intron A. The OSCP has an N-terminal mitochondrial 

import sequence of 23 amino acids (34), and the deletion in ATP5O also removed the 

translational initiator codon plus 88 bases upstream, and codons 2-12, and extended 90 bases 

into intron A.  

Characteristics of HAP1-Δb and HAP1-ΔOSCP Cells. The HAP1-Δb and HAP1-ΔOSCP 

cells grew more slowly than the HAP1-WT cells (Fig. S2A), and the copy number of 

mitochondrial DNA was reduced by 8% in the former and by 30% in the latter (Fig. S2B). 

Relative to HAP1-WT cells, the levels of complexes I, III and IV, but not of complex II, were 

reduced in both derivative cell lines (Fig. S2C), and hence they have a lower respiratory 

capacity (Fig. S2D and S2E).  
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Pore Opening in HAP1-Δb and HAP1-ΔOSCP Cells. Under the optimum conditions 

established before (24), the opening of the PTP in intact HAP1-WT cells was demonstrated in 

the presence of both thapsigargin and the calcium ionophore ferutinin, and with both reagents, 

opening of the PTP was prevented by addition of cyclosporin A. Similar results were obtained 

with HAP1-Δb and HAP1-ΔOSCP cells (Fig. 3). Other experiments on PTP opening were 

conducted with HAP1-WT, HAP1-Δb and HAP1-ΔOSCP cells where their plasma membranes 

had been permeabilized with digitonin. In one set of experiments, the responses of the cells to 

successive pulses of Ca2+ were monitored with Calcium-green-5N in the absence and presence 

of cyclosporin A (Fig. 4, and Tables S3, S4 and S5). On average, the ratios of the number of 

calcium pulses required to induce the PTP in the presence and absence of cyclosporin A were 

similar; the values were 2.63±0.48 (n=8) in HAP1-WT cells, 2.48±0.42 (n=4) in HAP1-Δb 

cells, and 2.22±0.36 (n=6) in HAP1-ΔOSCP cells. Thus, in response to pulses of exogenous 

Ca2+, there was no significant difference in PTP opening in the presence and in the absence of 

either subunit b or the OSCP. As expected, in HAP1-WT and HAP1-Δb cells, inhibition of the 

mitochondrial calcium uniporter with Ru360 immediately after a single calcium injection 

prevented any further uptake of Ca2+ by mitochondria (Fig. S3). In a second set of experiments 

with HAP1-WT, HAP1-Δb and HAP1-ΔOSCP cells, with their plasma membranes 

permeablized with digitonin, the decrease in absorbance at 540 nm following the addition of 

exogenous Ca2+, was consistent with the opening of the PTP and the swelling of the 

mitochondria in all three cell types. In each case, in the presence of cyclosporin A, the addition 

of exogenous Ca2+ was not accompanied by a decrease in absorption at 540 nm (Fig. 5).   

The Vestigial ATP Synthase Complexes in HAP1-Δb and HAP1-ΔOSCP Cells. Despite the 

significant effect of the removal of either subunit b or the OSCP on cellular respiration, the 

mitochondria of both HAP1-Δb and HAP1-ΔOSCP cells still retain an assembled vestigial 
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ATP synthase complex. Analysis of this complex by SDS-PAGE analysis and mass 

spectrometric analysis of the bands showed that it contained a complete complement of the 

subunits that form the F1-catalytic domain (subunits α, β γ, δ and ε) plus subunit c; these are 

the components of the F1-c8 ring subcomplex (Fig. 6A). In HAP1-ΔOSCP cells, an elevated 

amount of one mature form of IF1, IF1-M1, was associated with the complex. Examination of 

the vestigial complexes by quantitative mass spectrometry confirmed their subunit 

compositions (Figs. 6B, 6C and S4; Datasets S1 and S2). Also detected were elevated levels of 

mature IF1 in the complex from both HAP1-Δb and HAP1-ΔOSCP cells, and of the import 

precursor of IF1, IF1-P in the complex from HAP1-ΔOSCP cells. There was a small amount of 

OSCP in the complex from HAP1-Δb cells, but peripheral stalk subunits d and F6, 

supernumerary subunits e, f, g, DAPIT and 6.8PL and the mitochondrial encoded subunits 

ATP6 and ATP8 were not detected at significant levels. Relative to the levels of intact ATP 

synthase present in HAP1-WT cells, the level of the vestigial complex was reduced to 

approximately 30% in HAP1-Δb cells and 65% in HAP1-ΔOSCP cells. The quantitative 

analysis of samples of mitoplasts from HAP1-Δb and HAP1-ΔOSCP cells (Figs. S4 and S5; 

Datasets S3 and S4) confirmed the findings with the purified vestigial complexes, but also in 

the mitoplasts from both cells, significant but low levels of peripheral stalk subunits (F6 and 

OSCP in HAP1-Δb, and F6 in HAP1-ΔOSCP cells) remain. In addition, supernumerary 

subunits (e, f, g, DAPIT and 6.8PL) and ATP8 were present at low levels in HAP1-ΔOSCP 

cells.   

The most surprising aspect of these quantitative mass spectrometry analyses was that 

they provided evidence for the presence at low levels (0.6%, based on peptide intensities) in 

the HAP1-Δb cells of five tryptic peptides representing residues 74-89, 90-97, 98-112, 122-

129 and 130-141 of the membrane extrinsic region of the mature b-subunit. These peptides are 
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derived from a region of the SDS-PAGE gel corresponding to a truncated b-subunit (apparent 

molecular weight 17.5 kDa). However, there was no evidence for peptides originating from the 

N-terminal region of the b-protein. In order to understand the origin of these peptides, RNA 

transcripts covering the region that could code for these peptides in HAP1-Δb cells were 

amplified by PCR and sequenced. These analyses showed that transcription had occurred in 

HAP1-Δb cells by use of an alternative splice site in intron A (see Fig. S6), allowing translation 

to begin from the ATG codon encoding methionine-67 in the wild-type b-subunit, thereby 

producing a truncated b-subunit (residues 67-214) lacking the membrane intrinsic region of the 

mature b-subunit. There was no evidence in the quantitative mass spectrometry experiments 

for production of a truncated OSCP subunit by a similar mechanism.  

Oligomeric State of Vestigial ATP Synthases. The PTP has been proposed to be associated 

with dimers, and not monomers of the ATP synthase complex. Therefore, the oligomeric 

state(s) of the vestigial complexes in HAP1-Δb and HAP1-ΔOSCP cells, which are identical 

in their subunit compositions, were investigated by native gel electrophoresis of digitonin 

extracts of mitoplasts (Fig. 7). These analyses, made at several concentrations of digitonin, 

showed that the vestigial ATP synthase complexes from both HAP1-Δb and HAP1-ΔOSCP 

cells, ran to a position on the gels corresponding to a monomeric F1-c8 sub-complex of ATP 

synthase (Fig. 7A). There was no evidence for a dimeric form of the sub-complex. Moreover, 

when the gels were probed with antibodies against supernumerary subunit g (Fig. 7B) and 

peripheral stalk subunits d and F6, there was no evidence for any separate sub-complex 

containing these subunits.  

Discussion 

The experiments described above with HAP1-Δb and HAP1-ΔOSCP cells demonstrate 

conclusively by four independent assays of the PTP that, even when the membrane region of 
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the b-subunit or the entire OSCP subunit is absent from their mitochondria, the cells retain a 

functional PTP. In intact HAP1-Δb and HAP1-ΔOSCP cells, the PTP opens characteristically 

in response to treatment with either thapsigargin or ferutinin (Fig. 3). Likewise, in 

permeabilized HAP1-Δb and HAP1-ΔOSCP cells, the PTP opens in response to several pulses 

of extramitochondrial Ca2+, and a single bolus of 200 µM calcium chloride causes the 

mitochondria in the permeabilized cells to swell (Figs. 4 and 5). In all of these assays, opening 

of the PTP could be inhibited by cyclosporin A. Therefore, the two transmembrane α-helices 

of subunit b are not an essential component of the PTP, as the pore remains functional in their 

absence. Moreover, the OSCP does not provide the site of interaction of cyclophilin D with the 

PTP, as the opening of the pore remains sensitive to inhibition by cyclosporin A in the absence 

of the OSCP.  

The mitochondria of both HAP1-Δb and HAP1-ΔOSCP cells contain a vestigial 

ATPase complex with the subunit composition of the F1-domain plus the c-subunit, presumably 

representing the F1-c8 component of the intact ATP synthase. The closely related F1-c8 complex 

from bovine mitochondria has been isolated and characterized (35). It is capable of hydrolyzing 

ATP, but it is unable to carry out the synthetic reaction. However, the human vestigial 

complexes in HAP1-Δb and HAP1-ΔOSCP cells are associated with IF1-M1, one of two 

observed mature forms of IF1, where residues 1-24 have been removed from the mitochondrial 

import precursor, IF1-P (24). The mature inhibitor protein acts by forming a 1:1 inhibited 

complex with F1-ATPase (36). The relative molar quantities of IF1-M1 and the vestigial 

complex have not been measured in either HAP1-Δb and HAP1-ΔOSCP cells, but it is 

reasonable to assume that at least some of the hydrolytic activity of the vestigial complexes 

will be inhibited by this protein. In addition, in HAP1-ΔOSCP cells, IF1-P itself is also 

associated with the vestigial complex (Fig. 6). Previously, this mitochondrial import precursor 
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protein has been observed intact in association with another related but distinct vestigial 

ATPase complex inside the mitochondria derived from human ρ0-cells (24, 37). It is not known 

whether IF1-P follows the same pathway of entry into the mitochondria of these cells as IF1-

M1, or whether indeed IF1-P is capable of inhibiting ATP hydrolysis. In the bovine inhibited 

complex, the inhibitory region of mature IF1 from residues 21-50 forms an α-helix that occupies 

a deep groove in the catalytic interface between the αDP- and βDP-subunits; residues 14-18 

interact with the coiled-coil region of the γ-subunit via a short α-helix; residues 8-13 form an 

extended structure; residues 1-7 are disordered and they extend into the central aqueous cavity 

of F1-ATPase (38, 39). The mode of binding of IF1-P to the sub-complex is not known, but it 

seems possible that the presence in IF1-P of the additional twenty-four N-terminal residues 

might impede binding of the protein to the site occupied by mature IF1 in the inhibited complex. 

The removal of either subunit b or the OSCP destabilises the peripheral stalk, and none 

of its four constituent subunits (OSCP, b, F6, and d) nor the associated ATP8 subunit, is present 

in the vestigial sub-complex from HAP1-ΔOSCP cells, and also in HAP1-Δb, except that traces 

of the OSCP were detected. In the absence of the peripheral stalk and ATP8, ATP6 no longer 

has any support to maintain it in contact with the c8-ring (26–28). Therefore, ATP6, and the 

supernumerary subunits (e, f, g, DAPIT and 6.8PL) associated with ATP6 and the membrane 

domain of subunit b, are also absent from the sub-complex (Fig. 6). As depicted in Fig. 1, 

subunit f is probably associated with subunits ATP6 and ATP8 (27), and in the dimeric 

complex, subunits e and g probably form the interface between monomers, with subunits 

DAPIT and 6.8PL together in a more peripheral position, relative to the dimer interface. 

Clearly, this dimer interface is not present in the vestigial complexes from HAP1-Δb and 

HAP1-ΔOSCP cells. However, subunits e, f and g (and other supernumerary subunits) are still 

present in the mitoplasts of HAP1-Δb and HAP1-ΔOSCP cells, albeit at reduced levels relative 
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to HAP1-WT cells (Fig. S5). In native gels of digitonin extracts of mitoplasts (Fig. 7), although 

there was no evidence for a separate sub-complex, monomeric or dimeric, involving subunit g, 

it remains possible that such a sub-complex was present in the mitoplast membranes, and that 

it was disrupted by the conditions of extraction with digitonin. As noted before, dimers of the 

integral dimeric ATP synthase itself can become disrupted artefactually by this process (24, 

40). Therefore, in order to eliminate any possibility of the participation of subunits e and g (and 

subunits f, DAPIT and 6.8PL) in forming the PTP, it will be necessary to remove each of them 

by gene disruption experiments and to examine the consequences of doing so. 

Materials and Methods 

Human HAP1 and mutant cells derived from them were grown under standard conditions. 

Oxygen consumption rates were measured in a Seahorse XF24 instrument. ATP5F1 and 

ATP5O were disrupted in HAP1 cells by CRISPR-Cas9 technology (41). ATP synthase and 

sub-complexes of it were purified from mitoplasts by immuno-capture. Proteins were subject 

to stable isotope labelling in cell culture (SILAC). Labelled proteins were quantitated by mass 

spectrometry. Opening of the PTP was assayed by four methods. In intact HAP1 cells, pore 

opening was induced by thapsigargin (4), or ferutinin (5), and, in HAP1 cells where the plasma 

membrane had been permeabilized with digitonin, by examination of the capacity of the 

mitochondria to retain Ca2+ introduced exogenously (42), and by monitoring the swelling of 

mitochondria in response to a pulse of 200 µM calcium chloride (43) in the absence and 

presence of cyclosporin A. 

For full details of these processes, see Supplementary Information. 
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Figures 

 

Fig. 1. Organization of subunits in one of the monomers of the dimeric ATP synthase complex 

in mammalian mitochondria. Black horizontal lines represent the limits of the inner membrane 

between the matrix and the IMS (inter-membrane space). The F1 catalytic domain (subunit 

composition α3β3γδε) is above; one of the α-subunits (red) has been removed to expose the γ-

subunit (dark blue), lying approximately along the central axis of the spherical α3β3 domain. 
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The γ-, δ- and ε-subunits are bound to the c8-ring (grey), and together these subunits constitute 

the rotor. Rotation is generated by the translocation of protons through the interface between 

the c8-ring and ATP6 (or subunit a; light blue). The peripheral stalk (subunits OSCP, b, d and 

F6) is on the right; b has two N-terminal transmembrane α-helices. The membrane domain also 

contains subunits ATP8 (or A6L), e, f, g, DAPIT (diabetes associated protein in insulin 

sensitive tissue) and a 6.8 kDa proteolipid (6.8 kDa, or 6.8PL), each with a predicted 

transmembrane α-helix. The C-terminal region of ATP8, extends into the peripheral stalk; 

subunits ATP8 and b help keep the a-subunit in contact with the rotating c8-ring. Subunits e, f, 

g, DAPIT and 6.8PL are “supernumerary” with no known roles in the generation or hydrolysis 

of ATP. In the dimeric complex, subunits e and g probably form the interface between 

monomers.  

 

Fig. 2. Expression of the b and OSCP subunits of human ATP synthase in HAP1-WT and 

mutated clonal cells. (A) and (B), mitoplasts from HAP1-WT cells and from HAP1-Δb and 

HAP1-ΔOSCP cells, respectively, extracted with dodecylmaltoside (DDM), fractionated by 

SDS-PAGE and western blotted with antibodies against the corresponding subunits b and 

OSCP. Citrate synthase (CS) provided a loading control. 
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Fig. 3. The opening of the PTP in HAP1 cells. (A) PTP opening induced with 40 µM 

thapsigargin, or (B) with 25 µM ferutinin. HAP1-WT cells, HAP1-Δb cells and HAP1-ΔOSCP 

cells were stained with calcein and tetramethylrhodamine methyl ester (TMRM), and then 

incubated for 1 h in the presence of either thapsigargin or ferutinin. Duplicate samples were 

incubated first in the presence of 5 µM cyclosporin A (CsA), and then treated with either 

thapsigargin or ferutinin. Grey and white columns correspond to the retention ratios for calcein 

and TMRM, respectively, compared with cells treated with the vehicle dimethylsulfoxide only. 

The data are mean values ±SDs (n=4). 



 
 
 
 

 20 

 

Fig. 4. Calcium induced opening of the PTP in permeabilized HAP1 cells. (A) and (B), HAP1-

WT cells; (C) and (D), HAP1-Δb cells; (E) and (F), HAP1-ΔOSCP cells. The calcium retention 

capacity of mitochondria in digitonin permeabilized cells (20 x 106 cells/ml) was examined in 

response to pulses of 10 µM CaCl2. Extra-mitochondrial Ca2+ was measured with Calcium 

green-5N fluorescence (a.u., arbitrary unit). (A), (C) and (E) and (B), (D) and (F), the calcium 

retention capacity in the absence and presence of cyclosporin A (1 µM), respectively. 
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Fig. 5. Swelling of mitochondria in permeabilized HAP1 cells associated with the opening of 

the PTP. Swelling of 30 x 106 digitonin permeablized cells/ml was induced by addition of 200 

µM CaCl2, and monitored by the decrease in absorbance at 540 nm measured in the presence 

or absence of 1 µM cyclosporin A (CsA). (A), HAP1-WT cells; (B), HAP1-Δb cells; (C), 

HAP1-ΔOSCP cells. 
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Fig. 6. Effects of the separate deletion of the b-subunit and the OSCP in HAP1 cells on the 

human ATP synthase complex. (A), Impact of removal of the b-subunit and the OSCP on the 

subunit compositions of the vestigial ATP synthase complexes. The complexes were purified 

from mitoplasts derived from HAP1-WT, HAP1-Δb and HAP1-ΔOSCP cells, and fractionated 
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by SDS-PAGE. Proteins were stained with Coomassie blue dye and identified by mass 

spectrometric analysis of tryptic digests of gel bands. In the ΔOSCP track, band X contained 

peptides from α- and γ-subunits, and from TMED9, PRDX3 and Rab-7a. (B) and (C), Relative 

abundances of subunits of ATP synthase and of forms of the ATPase inhibitor protein, IF1 (24). 

The intact ATP synthase and the vestigial complexes were purified from 1:1 mixtures of 

SILAC-labelled cells; (B), HAP1-WT and HAP1-Δb cells, and (C), HAP1-WT and HAP1-

ΔOSCP cells. Tryptic peptides were analyzed by quantitative mass spectrometry. The 

experiment was performed twice with reciprocal protein labelling. The bars represent median 

values of both relative abundance ratios determined for proteins identified in the 

complementary SILAC labelling experiments. Error bars show the range of the two values. In 

(B), for subunit b, peptide data assigned to the truncated form detected in HAP1-Δb cells were 

excluded from the calculation of the abundance ratio. In (C), the OSCP protein ratio for the 

control light/ΔOSCP heavy mixture was calculated with all available peptide values (n=174), 

rather than by the standard procedure, which limits the calculation to four values assigned for 

peptide pairs with an identified control sequence and an isotopic cluster for the ΔOSCP partner. 

The relative abundance of the c-subunit in HAP1-ΔOSCP samples was unchanged, with error 

bars smaller than the abscissa line. The histograms are derived from Fig. S4 and Datasets S1 

and S2. 
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Fig. 7. Oligomeric state of ATP synthase in HAP1-WT cells, and of vestigial ATP synthase 

complexes in HAP1-Δb and HAP1-ΔOSCP cells. Mitoplasts from the cells were extracted with 

the concentrations of digitonin/protein (w/w) indicated above each lane, and fractionated by 

blue native-PAGE. The ATP synthase and vestigial complexes were detected by western 

blotting with antibodies against (A), the β-subunit, (B), the g-subunit, (C), the d-subunit, and 

(D), the F6 subunit. Citrate synthase (CS) provided a loading control. o, oligomers; d, dimers; 

m, monomers; m*, monomeric F1-c8 sub-complex. 
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Supplementary information for: 

The permeability transition in human mitochondria persists in the 

absence of peripheral stalk subunits of ATP synthase  

Jiuya He, Joe Carroll, Shujing Ding, Ian M. Fearnley and John E. Walker 

Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge 

Biomedical Campus, Hills Road, Cambridge CB2 0XY, United Kingdom 

General Methods. ATP5F1 and ATP5O were disrupted in HAP1-WT cells by CRISPR-Cas9 

technology (1), employing the gRNAs listed in Table S1. The HAP1-WT and clonal cells, 

HAP1-Δb and HAP1-ΔOSCP, were grown under standard conditions, and their growth rates 

were determined with an IncuCyte HD instrument. Mitoplasts were prepared from cells as 

described before (2, 3). Extracts of mitoplasts, made with 1% (w:v) DDM, were fractionated 

by SDS-PAGE, and subunits b and OSCP and citrate synthase were detected by western 

blotting. The oligomeric states of ATP synthase and vestigial complexes, and complexes I, II, 

III and IV, were examined by analysis of DDM and digitonin extracts of mitoplasts by BN-

PAGE and western blotting. The ATP synthase complexes were detected with antibodies 

against the β-, g-, d-and F6-subunits, and complexes I, II, III and IV with antibodies against 

NDUFS2, SDHA, UQCRC1, and COX4, respectively. The origins of the antibodies are given 

in Table S6.  The oxygen consumption rates of HAP1-WT, HAP1-Δb and HAP1-ΔOSCP cells 

were measured in a Seahorse XFe24 instrument (3). ATP synthase was purified from mitoplasts 

by immuno-capture (3), and analysed by SDS-PAGE. Proteins in Coomassie blue stained bands 

were digested with trypsin (4) and peptides were identified by sequencing by mass 

spectrometry. Stable isotope labelling of proteins with amino acids in cell culture (5) (SILAC) 

of HAP1-WT, HAP1-Δb and HAP1-ΔOSCP cells was carried out as described before (3). After 
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labelling, the proteins in mitoplast samples or immuno-purified ATP synthase preparations 

were fractionated by SDS-PAGE, and quantitated by mass spectrometry (6). Protein ratios for 

the various forms of IF1 were calculated as before (3). The protein ratios for subunit b in the 

samples of ATP synthase immuno-purified from SILAC labelled control and HAP1-Δb cells 

were re-calculated manually (median of peptide ratios) from the MaxQuant evidence file, after 

excluding peptide ratios assigned to a truncated form of the protein expressed in HAP1-Δb 

cells (see Results). The protein ratio for the OSCP in the sample of ATP synthase immuno-

purified from control light/ heavy HAP1-ΔOSCP cells was re-calculated (median of peptide 

ratios) using all the available peptide values (n=174; log2 protein ratio -4.42) rather than the 

MaxQuant value (log2 protein ratio -4.37) obtained using four MULTIMSMS peptide ratios 

assigned for peptide pairs with a control sequence identified by MS-MS and an isotopic cluster 

for the ΔOSCP partner. Total RNA was purified from HAP1-Δb cells with a PureLink RNA 

mini kit (ThermoFisher). Any remaining traces of genomic DNA were removed by digestion 

with RNase-free DNase I. At the end of the digestion, DNase I was inhibited with the DNase 

inactivation reagent (ThermoFisher). cDNA was prepared from the RNA by reverse 

transcription using the RT enzyme mix and buffer from a TaqMan Gene Expression Cells-to-

CT Kit (ThermoFisher). The regions of ATP5F1 from the 40th nucleotide upstream of the ATG 

start codon to the junction between exons V and VI, and exons VI and VII of ATP5F1, 

respectively (Fig. S1A), were amplified with a KOD Hot Start DNA polymerase kit (Novagen) 

with forward primer 5’ CACAGGGACGCTAAGATTG 3’ paired with the reverse primer 

Rev1, 5’ GTTTTTGCTCATTGAGTTTATC 3’, or Rev2, 5’ CTCCTTTTCCTGCTGTGTG 

3’. The amplified fragments were purified with a gel purification kit (Qiagen) and sequenced 

with reverse primer Rev1 or Rev2 by Source BioScience. 

Opening of the PTP. Four independent assays of PTP opening were used. In intact human 

cells, PTP opening was induced by thapsigargin (7), or ferutinin (8), and, in cells where the 
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plasma membrane had been permeabilized with digitonin, by examination of the capacity of 

the mitochondria to retain Ca2+ introduced exogenously (9) or by monitoring PTP induced 

swelling of mitochondria (10). The assays with thapsigargin and ferutinin, and the calcium 

retention assay were performed as before  (3), except that, in the buffer employed in the calcium 

retention assay, any initial background signal was removed by incorporation of EGTA (3 µM), 

and changes in exogenous calcium levels were measured with 0.4 µM calcium green-5N. Pore 

opening was monitored also by following absorbance changes associated with the swelling of 

mitochondria induced by the addition of Ca2+ in the absence and presence of cyclosporin A. 

Digitonin permeabilized cells (30 x 106/ml) were suspended at 30°C in a buffer containing 10 

mM Tris-MOPS, pH 7.4, 125 mM KCl, 1 mM KH2PO4, 5 mM glutamate, 2.5 mM malate and 

10 µM EGTA-Tris, and stirred at 500 rpm. Calcium chloride (200 µM) was added, and the 

decrease in UV absorbance at 540 nm was followed. The effect of cyclosporin A on calcium 

induced swelling of mitochondria, was studied by adding the inhibitor (1 µM) to the 

permeabilised cells first, and, after 5 min, the 200 µM calcium chloride.   

Table S1. Target Sites for gRNA Molecules Employed in the Disruption of Human 

ATP5F1 and ATP5O. 

gRNA Target site 

ATP5F1-1 GGGACGCTAAGATTGCTACC 

ATP5F1-2 CCGCCGCCACAGCGGGTAAG 

ATP5O-1 GAGAACCTAGCGGTTACGCC* 

ATP5O-2 CCAGGGTGCGATGCTTCGGC 

*reverse complementary sequence used as the gRNA 
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Table S2. Primers Employed in the Amplification by PCR of the Gene Regions Targeted 

by gRNAs in ATP5F1 and ATP5O.  

Primer Sequence 

ATP5F1-forward CATCTTGGTCCTGCCCTGAC 

ATP5F1-reverse GCTGCAGATAGACAAGGCGA 

ATP5O-forward TACAACTCCCAGCCCGAGG 

ATP5O-reverse ACGCCAAGGTTACGGCA 
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Fig. S1. Structures and disruption of ATP5F1 and ATP5O. (A) Structures of the genes. Black 

and unfilled boxes represent, respectively, protein coding exons and non-coding 5’-upstream 

or 3’-downstream sequences within the first and last exons. Introns are depicted as continuous 

lines. Sizes of the exons and introns are given in base pairs. (B) Deletion of DNA sequences in 

HAP1-WT cells to produce HAP1-Δb or HAP1-ΔOSCP clonal cells. Carets indicate the PAM 

(protospacer adjacent motif) sequences for each guide RNA, and solid lines the guide RNA 

target sequences. For each gene, the upper WT sequences show part of exon I and intron A 

(grey box), with the arrow indicating the start codon in exon I. Dashed lines denote the deleted 

regions in the HAP1-Δb and HAP1-ΔOSCP cells. Both deletions remove the start codon and 

exon I-intron A boundaries, thereby effectively disrupting transcription and translation of the 

genes. 
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Fig. S2. Characteristics of HAP1-Δb cells and HAP1-ΔOSCP cells. (A) Growth rates of HAP1-

WT (●), HAP1-Δb (■) and HAP1-ΔOSCP (◆) cells. About 100,000 cells were seeded into 
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each well of a 6-well plate, and their confluence was monitored over 120 h. Data points are the 

mean values ±SD (n=4). (B) Relative copy number of mtDNA in HAP1 cells. Regions of the 

genes for cytochrome oxidase subunit II (COX-II) and the amyloid precursor protein (APP) 

were amplified from HAP1-WT, HAP1-Δb and HAP1-ΔOSCP cells, and quantitated as indices 

of mitochondrial and nuclear DNA, respectively. Mean values ± SDs (n=6) are given. (C) 

Assembly of complexes I, II, III and IV in HAP1 cells. Mitoplast samples were prepared from 

HAP1-WT cells and HAP1-Δb and HAP1-ΔOSCP cells, extracted with DDM (3 g/g mitoplast 

protein), and the extracts were fractionated by BN-PAGE. Complexes were detected by 

western blotting with antibodies against complex I (NDUFS2), complex II (SDHA), complex 

III (UQCRC1) and complex IV (COX4). Citrate synthase (CS) provided a loading control. CI, 

complex I; CIII2, complex III dimer; CIV, complex IV; CIII2+CIV, complex III dimer plus 

complex IV; CI*, complex I sub-complex. (D and E), cellular oxygen consumption rates (OCR) 

of HAP1-WT (●), HAP1-Δb (■) and HAP1-ΔOSCP (◆) cells, before and after sequential 

addition of oligomycin (Oligo), carbonyl cyanide-4-(trifluoromethoxy)-phenylhydrazone 

(FCCP), and a mixture of rotenone and antimycin A (Rot/AA). Data represent the mean ±SEM 

(n=6-10 wells). 

Table S3. Number of Calcium Pulses Recorded in Permeabilized HAP1-WT Cells. 

The values in the first row refer to Fig. 4A and B. Rows 2-8 correspond to replicate 

experiments.  

No CsA With CsA  Ratio 

5 12 2.40 

6 16 2.67 

3 8 2.67 

11 26 2.36 
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6 22 3.67 

7 20 2.86 

7 15 2.14 

4 9 2.25 

Av. 6.1 Av. 16.0 Av. 2.63 

SD. 2.4 SD. 6.3 SD. 0.48 

 

Table S4. Number of Calcium Pulses Recorded in Permeabilized HAP1-Δb Cells. 

The values in the first row refer to Fig. 4C and D. Rows 2-4 correspond to replicate 

experiments.  

No CsA With CsA  Ratio 

4 12 3.00 

5 13 2.60 

3 7 2.33 

3 6 2.00 

Av. 3.8 Av. 9.5 Av. 2.48 

SD. 1.0 SD. 3.5 SD. 0.42 

 

Table S5. Number of Calcium Pulses Recorded in Permeabilized HAP1-ΔOSCP Cells. 

The values in the first row refer to Fig. 4D and E. Rows 2-5 correspond to replicate 

experiments.  

No CsA With CsA  Ratio 

6 16 2.67 

7 18 2.57 
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4 

3 

7 

7 

1.75 

2.33 

3 6 2.00 

3 6 2.00 

Av. 4.3 Av. 10.0 Av. 2.22 

SD. 1.8 SD. 5.5 SD. 0.36 

 

 

 
 
Fig. S3. Calcium uptake by HAP1 cells in the presence of Ru360, an inhibitor of the 

mitochondrial calcium uniporter. Digitonin permeabilized HAP1-WT cells (A) and HAP1-Δb 

cells (B) at 20 x 106 cells/ml in a KCl solution containing glutamate and malate (3), were 

subjected to a single pulse of 10 µM CaCl2, followed by the addition of Ru360 (0.5 µM). 

Extramitochondrial calcium was measured with calcium green-5N fluorescence which 

demonstrated that Ru360 reversed the mitochondrial calcium uptake signal. 
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Fig. S4. Effects on protein relative abundance of the individual deletion of the b-subunit or 

OSCP of human ATP synthase in HAP1 cells. (A) and (B) the relative abundances of proteins 

in HAP1-Δb and HAP1-ΔOSCP immunopurified ATP synthase, respectively, and (C) and (D) 

mitoplast samples from HAP1-Δb and HAP1-ΔOSCP cells, respectively. Samples were 

prepared from a 1:1 mixture of HAP1-Δb or HAP1-ΔOSCP cells with HAP1-WT cells that 

were differentially SILAC-labelled, and the experiments were performed twice, using 
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reciprocal SILAC labelling orientations. The data points represent levels of all proteins where 

ratios were determined in both of the experimental labelling orientations. ●, ATP synthase 

subunits and the precursor (P), or the M1 and M2 mature forms of IF1; ●, all other identified 

proteins. Protein ratios are listed in Datasets S1 to S4. 

 

Fig. S5. Effects of the separate deletion of the b-subunit and OSCP in HAP1 cells on the levels 

of ATP synthase subunits in mitoplasts. (A) and (B) Relative abundance of subunits of ATP 

synthase and of two forms of the ATPase inhibitor protein (3). Digitonin solublilized mitoplast 

samples were prepared from a 1:1 mixture of SILAC-labelled HAP1-WT cells and HAP1-Δb 

cells (A), or HAP1-WT cells and HAP1-ΔOSCP cells (B). Proteins were separated by SDS-

PAGE, stained with Coomassie blue, and gel tracks cut into equal sections. Tryptic peptides 
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obtained from in-gel digests were analyzed by quantitative mass spectrometry. The experiment 

was performed twice with reciprocal protein labelling. The bars represent median values of 

both relative abundance ratios determined for proteins identified in the complementary SILAC 

labelling experiments. Error bars show the range of the two values. The relative abundance of 

the c subunit in HAP1-ΔOSCP samples was not determined. The histograms are derived from 

the data in Fig S4 and Datasets S3 and S4. 

 
 
Fig. S6. Alternative splice site between exon I and intron A formed in ATP5F1 in HAP1-Δb 

cells. (A), The upper sequence is part of exon I and intron A (grey box) in HAP1-WT cells, 

with the horizontal arrow indicating the start codon in exon I. The vertical arrows show a splice 

site between exon I and intron A in HAP1-Δb cells (lower sequence). Dashed lines denote the 

deleted region in ATP5F1 in HAP1-Δb cells. (B) The protein encoded from the alternative 

transcript in HAP1-Δb cells. The upper sequence shows the WT protein with the horizontal 

arrow indicating the start of the mature protein, and lower sequence the truncated protein 
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produced in HAP1-Δb cells. Peptides assigned to the truncated protein cover the regions within 

the grey boxes. 

Table S6. Sources of antibodies  

Protein Source Antibody 

ATP synthase β  Santa Cruz Biotechnology sc-33618 

ATP synthase F6 Proteintech 14114-1-AP 

ATP synthase b Santa Cruz Biotechnology sc-514419 

ATP synthase d In-house Rabbit antibody against 

recombinant bovine protein 

ATP synthase g In-house Rabbit antibody against 

recombinant bovine protein 

ATP synthase OSCP In-house Rabbit antibody against 

recombinant bovine protein 

Citrate synthase Proteintech 16131-1-AP 

Complex I NDUFS2 subunit Abcam ab96160 

Complex II SDHA subunit Proteintech 14865-1-AP 

Complex III UQCRC1 subunit Sigma HPA002815 

Complex IV COX4I1 subunit Proteintech 11242-1-AP 
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