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Abstract

Noise is a prevalent and sometimes even dominant aspect of many biological processes.

While many natural systems have adapted to attenuate or even usefully integrate noise, the

variability it introduces often still delimits the achievable precision across biological func-

tions. This is particularly so for visual phototransduction, the process responsible for con-

verting photons of light into usable electrical signals (quantum bumps). Here, randomness

of both the photon inputs (regarded as extrinsic noise) and the conversion process (intrinsic

noise) are seen as two distinct, independent and significant limitations on visual reliability.

Past research has attempted to quantify the relative effects of these noise sources by using

approximate methods that do not fully account for the discrete, point process and time

ordered nature of the problem. As a result the conclusions drawn from these different

approaches have led to inconsistent expositions of phototransduction noise performance.

This paper provides a fresh and complete analysis of the relative impact of intrinsic and

extrinsic noise in invertebrate phototransduction using minimum mean squared error recon-

struction techniques based on Bayesian point process (Snyder) filters. An integrate-fire

based algorithm is developed to reliably estimate photon times from quantum bumps and

Snyder filters are then used to causally estimate random light intensities both at the front

and back end of the phototransduction cascade. Comparison of these estimates reveals

that the dominant noise source transitions from extrinsic to intrinsic as light intensity

increases. By extending the filtering techniques to account for delays, it is further found that

among the intrinsic noise components, which include bump latency (mean delay and jitter)

and shape (amplitude and width) variance, it is the mean delay that is critical to noise perfor-

mance. As the timeliness of visual information is important for real-time action, this delay

could potentially limit the speed at which invertebrates can respond to stimuli. Conse-

quently, if one wants to increase visual fidelity, reducing the photoconversion lag is much

more important than improving the regularity of the electrical signal.

Author summary

The invertebrate phototransduction system captures and converts environmental light

inputs into electrical signals for use in later visual processing. Consequently, one would

expect it to be optimised in some way to ensure that only a minimal amount of
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environmental information is lost during conversion. Confirming this requires an under-

standing and quantification of the performance limiting noise sources. Photons, which

are inherently random and discrete, introduce extrinsic noise. The phototransduction cas-

cade, which converts photons into electrical bumps possessing non-deterministic shapes

and latencies, contributes intrinsic noise. Previous work on characterising the relative

impact of all these sources did not account for the discrete, causal, point process nature of

the problem and thus results were often inconclusive. Here we use non-linear Poisson

process filtering to show that photon noise is dominant at low light intensity and cascade

noise limiting at high intensity. Further, our analysis reveals that mean bump delay is the

most deleterious aspect of the intrinsic noise. Our work emphasises a new approach to

assessing sensory noise and provides the first complete description and evaluation of the

relative impact of noise in phototransduction that does not rely on continuity, linearity or

Gaussian approximations.

Introduction

The intrinsic-extrinsic relative noise problem in phototransduction

The phototransduction cascade consists of a series of chemical reactions which convert light

inputs into usable current signals at the retina. As it serves as the front end to the visual system,

it should be capable of extracting information from environmental inputs with high accuracy

[1]. However, the cascade mechanism involves small numbers of molecules and therefore ran-

domly executing reactions. Consequently, the electrical representation of each photon is non-

identical and subject to inevitable variability. The signal is therefore degraded during photo-

conversion and the cascade said to be intrinsically noisy [2]. However, the cascade is not

responsible for all the signal variability measurable at the retina. The light input itself intro-

duces randomness through the variable timing of photons. Since the cascade has single photon

sensitivity [3] this extrinsically introduced noise is also transferred across the cascade. This

paper focuses on disentangling the relative contributions of these various noise sources.

The noise fidelity of phototransduction is critical. According to the data processing inequal-

ity [4], the information obtainable from the output of this process cannot be improved upon

by later neuronal computations. As a result, whatever limits cascade performance may also

delimit overall visual performance. An important and as yet unresolved question has been the

determination of the relative influence of extrinsic photon noise as opposed to the intrinsic

degradation caused by cascade reactions in representing the light stimuli. Since photon noise

falls with intensity the relative noise quantification is necessarily a function of light intensity

[5]. If in certain intensity regimes photon noise dominates, then the cascade can be considered

sufficiently reliable for purpose at these luminance settings. If at other intensities the cascade

noise is found limiting then one can query what characteristic of the phototransduction

machinery is fundamentally stopping further intrinsic noise reduction.

This relative noise problem remains unsolved not only in invertebrate vision but also in

vertebrate rods [6], and has parallels in other sensory systems like olfaction. While there are

important structural and dynamical differences between invertebrate vision and rods (funda-

mentally different types of electrical signalling despite similar cascades [7]) and olfaction (pho-

tons are replaced by odour molecules [8]) they are all characterised by an overall motif known

as G protein signalling. Hence, clarifying the invertebrate intrinsic-extrinsic noise relation can

have useful and far reaching consequences for sensory analysis.

Point process analysis of noise in early invertebrate vision
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Previous researchers have focussed on quantifying noise limits by estimating the compara-

tive contributions of photon and cascade noise on the electrical signal variance [9] or by apply-

ing linearised filter approximations to the cascade to calculate relevant noise spectra [10].

However, such approaches generally do not account for the point process or time ordered

nature of this problem. These unmodelled problem dynamics may be especially important in

phototransduction given that it is sensitive to individual photons and that its output is used in

real time higher visual processing.

This paper will address these issues by applying and adapting Snyder filtering techniques

[11] to data generated from the archetypal phototransduction system model of Drosophila

melongaster. The Snyder filter is the point process analogue of the well known Kalman filter

[12]. It provides a mathematically natural way of obtaining causal minimum mean squared

error estimates of hidden Markov variables signalled via discrete observation events. Algo-

rithms for extracting data from transduced photons will be developed and used in conjunction

with Snyder based stimuli reconstruction techniques to show that photon noise dominates in

low light while mean cascade delay limits system performance under bright conditions. This

work will clarify and decompose the noise sources which dominate phototransduction while

highlighting the importance of keeping the analysis discrete and causal.

Discrete cascade dynamics define the intrinsic noise sources

The invertebrate phototransduction cascade consists of a series of stochastic molecular reac-

tions. The Drosophila cascade is particularly important as an analysable and testable archetype,

not only for invertebrate phototransduction, but also for more general G protein signalling

motifs [13]. G proteins are important signal transducing proteins that are ubiquitous across

many biological processes. It is therefore critical to understand the properties and performance

of the Drosophila cascade. Such an understanding would not only provide general insight into

major biological signalling strategies but could also contribute useful theory, applicable to arti-

ficial visual systems aiming at high performance with minimal processing.

Early vision in Drosophila involves light impinging on the rhabdomere of a photoreceptor,

which is composed of about 30,000 microvilli [13]. Microvilli are essentially semi-autonomous

processing units which absorb photons locally and produce quantum bumps (QBs) in response.

The reaction set occurring in each microvilli involves photon absorption by Rhodopsin which

leads to activation of the G protein via a guanosine diphosphate to guanosine triphosphate

exchange. This results in activation of phospholipase C which liberates secondary messengers.

There are only a few G protein and phospholipase C molecules per microvillus [14]. The sec-

ondary messengers activate the first light sensitive channel after a variable delay (15-100ms)

[13]. This delay corresponds to the time required for the messengers to cooperatively overcome

an effective channel activation threshold.

Activation of a single transient receptor potential (TRP) or TRP-like ion channel results in

an influx of Ca2+ which rapidly activates the remaining channels in the microvilli (15-20 total)

via a positive feedback mechanism. This generates a current which is quickly deactivated via a

negative feedback Ca2+ based loop [13]. The effect of these regulated loops is the production of

an essentially discrete, unitary photon signal or QB. A single QB codes for a single absorbed

photon at a microvillus. The QBs generated by each stimulated microvillus sum linearly to

produce the macroscopic photoreceptor response at the receptor cell membrane. As light

intensity increases the QBs become faster and smaller (adaptation) which ensures that the cell

dynamic range is properly utilised. Despite these changes it appears that photoreceptors are

linear event counters even at daylight luminance values [14].

Point process analysis of noise in early invertebrate vision
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The entire cascade, from input photon to output QB is therefore described by transforma-

tions involving small numbers of discrete molecules or channels. This results in randomly

timed reactions and probabilistic interactions that lead to process variability that is visible in

the resulting QB signal [14]. The QB is a non-linear and stochastic electrical depolarisation

that codes for an absorbed photon. Each QB has non-identical and randomly distributed

latency, amplitude and duration. These stochastic QBs lead to variable representations of iden-

tical light stimuli which reduces the reliability of event representation. The variable latency

between photon absorption and bump signalling is controlled by the time required for the sec-

ond messenger to accumulate beyond a dynamic threshold [15]. The variable amplitude and

width of the QB are determined by the sequential Ca2+ feedback loops. Evidence suggests that

the QB latency is uncorrelated with the QB waveform and highly supports the conclusion that

different and independent cascade reaction sets are responsible for these characteristics [16].

Consequently, one can think of QB shape distortion and latency as two independent and

important manifestations of mechanistic cascade noise.

However, these sources of randomness, which are collectively termed cascade noise, are not

the only forms of intrinsic noise [17]. Spontaneous (in the absence of light) activation of G pro-

teins, Rhodopsin or single TRP channels can lead to spurious (false positive) QBs which are

indistinguishable from photon stimulated QBs. While a possible issue at high temperature-low

intensity settings, this dark noise source is negligible under the conditions investigated here

and often the cascade suppresses these events via inbuilt molecular threshold signalling tech-

niques [15]. Additionally a conceptual equivalent to false negative QBs also exists. When a

light stimuli is presented to the cascade, microvilli respond independently to incident photons

and produce respective QBs. Due to cascade stochasticity (random reaction timings), not every

photon becomes a QB but instead there is a quantum capture efficiency, QE ¼ no: effective photons
no: incident photons.

Experiments, however, indicate that often QE is very high especially at low intensities where it

can be close to 1 [18]. Hence the terms intrinsic and cascade noise will be used synonymously,

and QE = 1 assumed. Supplements S3 Text, S4 and S5 Figs show that QEs of at least 0.66 have

negligible noise impact.

Since there is a clear and intimate link between intrinsic noise and the cascade machinery,

any noise analysis will require the incorporation of a physiological model that describes the

full reaction set from Rhodopsin absorption to TRP channel opening. This work makes use of

the Drosophila phototransduction model developed by Nikolic et al [19]. This model simulates

all known reactions and mechanisms of fly phototransduction within a discrete, Poisson

framework, uses known biochemical parameter estimates, and allows for multi-photon inputs.

It was particularly chosen for this analysis since it provides a complete stochastic simulation of

the cascade reactions, does not use common mass action (continuity) approximations and

attempts to maintain a rich and unsimplified dynamical description of the process. Most

importantly, it places emphasis on getting the noise distributions correct and in keeping with

experimental data. Further, the model can be modified to account for other G protein based

cascades, thus providing flexibility for future work [20]. Further information on the Nikolic

model, including a mathematical description and a visualisation of the intrinsic noise compo-

nent distributions, are provided in Supplements S4 Text, S7 and S8 Figs.

Previous approaches neglect causality and system discreteness

This paper will investigate the relative noise source problem and quantify the main limitations

on the reliability of early vision. Previous work on this problem has taken two main view-

points. The first uses deviations from Poisson statistics as a measure of noise contributions.

For a constant light intensity, photon absorption follows a Poisson distribution so that photon
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noise results in a photon catch variance to mean ratio of 1. If the measured ratio is above 1

then any excess variance must be due to intrinsic noise [9]. The results of this analysis suggest

that at low intensities cascade noise contributed 50% and at high intensities 90% of all noise.

This method provides a clear scheme for assessing relative noise sources that is easily interpret-

able. Unfortunately, it is not easily generalised to non-constant or pseudorandom light sources

and depends on the intensity being low enough so that QBs are easily distinguishable (count-

able). Moreover, this scheme neglects causality which asserts that the phototransduced output

at any time cannot depend on inputs after that time. Failing to factor in this information con-

straint can lead to spurious performance evaluations [21].

The second posits that the cascade aims to maximise (mutual) information transfer and cal-

culates signal to noise ratios and channel capacities under a noisy, dynamically range-limited

Gaussian channel assumption [22]. Relative noise sources are then described by how much

they alter these ratios and are treated additively through their spectral densities [23]. This

approach, by keeping analysis within the frequency-domain is analytically tractable and affords

a convenient dissection of optimal sensory noise filtering. However, neither is the noise addi-

tive [24] nor neuronal dynamics Gaussian [25], making these methods at best approximate.

Additionally, photons are point events and their resulting QB streams are countable sums of

impulse responses. As a result the phototransduction system is necessarily discrete and the

transfer of information from the environment to the retina is actually via a Poisson channel.

This insight is a key motivator for the approach taken in this work. The stark coding differ-

ences between Poisson and Gaussian channels were noted by Ghanem et al in [26] and suggest

that conducting the phototransduction analysis under a Gaussian (or continuity) assumption

can be misleading. Additionally, these mutual information based studies neglect time order

and use random variable based definitions of capacity [4]. In reality, the noisy phototransduc-

tion input is a stochastic process and the causal capacity should be expressed as in Lestas et al
[21] instead. Consequently, these signal to noise ratio based schemes are probably only reliable

at very high intensities where Poisson-Gaussian approximations are valid, and likely break

down at lower luminance values, where the discrete nature of the system dominates.

In contrast to the above methods, this work directly and explicitly treats the time ordered,

discrete and stochastic nature of the relative noise problem with point processes, integrate-fire

algorithms and causal filters. No continuity or linearity approximations are made and a causal

mean squared error distortion is used as the noise performance measure; in place of the usual

signal to noise or variance to mean ratios. Getting the performance metric right is important,

because application of different measures, even on the same data set, as noted in the work of

Grewe et al [27], can lead to different and often misleading results. Since phototransduction

should maximally preserve environmental information, using causal capacity based metrics

would seem natural. However, embedding causality in this way is difficult. It is known from

information theory that distortion functions (which directly calculate estimation error) pro-

vide a useful dual to capacity [4]. In this interpretation the concept of maximising information

transfer is replaced with that of minimising distortion between a true and estimated stimuli.

The distortion quantifies the difference between the true stimuli, denoted x(t) and some esti-

mator of x(t). Note that x(t) is also referred to as the hidden state. Discreteness and causality

are then directly accounted for by choosing an estimate that incorporates the naturally ordered

and point-based structure that information takes when transmitted across a Poisson channel.

This work chooses the causal conditional mean as a suitable estimator. If the causal infor-

mation available until time t are the observations Dt
0

then this estimator is x̂ðtÞ ¼ E½xðtÞ jDt
0
�.

This expectation integrates x(t) with respect to its conditional distribution given the causal

data. The conditional mean estimator has a fundamental link to the ordered mutual
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information across a Poisson channel [28] and minimises a broad class of distortion functions.

Among these is the function: E½ðxðtÞ � x̂ðtÞÞ2� (the expectation is now over state trajectories).

This distortion is termed the minimum mean squared error (MMSE) and is chosen as the per-

formance metric for this work. If some other estimator is used instead then this distortion is

simply called the mean squared error (MSE). Any estimate which is a function of Dt
0

alone will

incorporate causality and discreteness. However, it is only when it takes the form of x̂ðtÞ, the

conditional mean, that it will minimise the MSE. Note that these square error distortions pro-

vide the additional advantage of not being sensitive to the removal of constant signals, which is

a characteristic of the adaptation response in phototransduction [29]. Consequently the clean-

est approach, involving the least approximations is to optimally and causally reconstruct the

input intensity stimuli and directly calculate the MMSE. While mathematically more difficult

than the Gaussian and variance approaches, comparing MMSEs between light intensity recon-

structions subject to various noise sources is the most appropriate and quantifiable way of

measuring relative noise contribution.

The importance of the approach presented here may extend beyond the phototransduction

noise problem. Any real-time system which receives information sequentially and in packets is

subject to the constraints of causality and discreteness. Developing and adapting techniques

that can incorporate these often unmodelled dynamics can therefore have wide ranging

importance. Accounting for these constraints has appeared as a concern, explicitly in molecu-

lar biochemistry [21] [30], and implicitly in general neuroscience [31]. In both cases informa-

tion can be interpreted as being transferred over timing (Poisson) channels, with packets

representing either molecular events or spikes and the real time estimation problem involving

either molecular population inference or neuronal stimuli reconstruction. This work sits pre-

cisely within this framework.

Bobrowski et al [32] is the only other work (to the authors’ knowledge) to have (implicitly)

dealt with causality and dicreteness. They showed that causal Snyder filtering could be used to

obtain real time MMSE reconstructions of neuronal stimuli without the need for common

approximations such as time discretisation. Using these techniques they estimated noisy,

dynamic stimuli from discrete spiking streams. This paper extends their work by i) developing

algorithms for the causal estimation of dynamic stimuli that are now no longer observable

through the Poisson events they modulate, but must instead be inferred from noisy and poten-

tially continuous waveforms based on those events, and ii) explicitly showing why factoring

discreteness, non-linearity and causality is important for relative noise analysis. In this setting

photons are interpreted as analogues to information bearing spikes and it is shown that is is

possible to estimate complex light inputs from noisy outputs without the need for common

linearity, continuity or Gaussian approximations.

Markov-Poisson light models and physiological simulators are combined

to solve a fundamental estimation problem

Since the relative noise problem quantifies the contributions of both extrinsic and intrinsic

noise, it requires both an environmental light model and a phototransduction simulator.

Visual neuroscience literature has often taken two approaches to light inputs (both in experi-

ments and theoretical analyses) when investigating sensory performance [33]. The first is to

repeatedly present simple inputs, which are easy to generate and control (for example short,

constant intensity flashes), in the hope that they elicit simple responses that allow more trans-

parent analysis of the sensory system. Averaging over the repetitions should then lead to mean-

ingful results. The second involves using more complex, non-repeated stimuli that represent

input forms that the sensory system is likely to encounter in normal operation. These
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naturalistic stimuli should reveal more intricate properties of the system as it is supposedly

evolutionarily designed for such inputs. The downside of these is the loss of analytical tractabil-

ity [33].

This works attempts to meld the advantages of both approaches by using simple but non-

trivial, non-repeated light models that share some of the characteristics of naturalistic stimuli

yet are still amenable to analysis. Specifically, a flickering, continuous time, discrete space Mar-

kov process description for environmental light intensity, λ(t) is used. This intensity modulates

a Poisson process that produces a discrete photon stream, denoted as Pt
0

over the domain [0 t].
Time, t, is measured in ms with λ(t) having units of ms−1. These models are analytically

treatable with Markov modulated Poisson theory. Naturalistic stimuli are known to have i) sto-

chastic fluctuations which can be large, ii) relatively slow dynamics compared to the visual

response time and iii) long correlation times [34]. The Markov modulated stimuli used here

intrinsically possess these first two properties. The third property is approximated and simpli-

fied within the Markov assumption of the model.

There are two key differences, however, between the light models used here and the general

naturalistic light stimuli often found in the literature. The first is that most stimuli are in terms

of velocities and contrast and applied to motion detection (optic flow). The models in this

paper are solely in terms of light intensity. Velocities and contrasts are not appropriate for this

work as the paper treats light at a single photoreceptor so that no motion signal is present [35].

This property is therefore not relevant to this work. Secondly, naturalistic stimuli would likely

encompass a broad range of intensity distributions depending on ambient conditions. As a

result some of these would be dissimilar to those used here. However, given the rich range of

intensity functions obtainable by appropriate choices of Markov parameters, this is not a true

limitation. This work focuses on switching, bimodal stimuli. The fundamental formulation of

this stimuli (called the interrupted model) is given in the models section of this paper. More

complex and general bimodal light models are described in Supplement S2 Text.

This photon stream produced by the light model is the input to the phototransduction

model. The Nikolic model described previously is used as the cascade simulator. It produces a

QB output stream Qt
0

which, at best, can only contain the information present in Pt
0

(by the

data processing inequality [4]). By comparing estimates of the light intensity given Pt
0

or Qt
0

one obtains an understanding of the noise deterioration at both the front and back end of the

cascade respectively. To make the problem non-dimensional the normalised intensity,

xðtÞ ¼ lðtÞ
a

, α> 0 ms−1 is used (it is explicitly described by the Markov states of the light

model). The causal conditional mean estimates of x(t) given Pt
0
, the raw photon stream, and

Qt
0
, the quantum bump stream, are denoted x̂phðtÞ and x̂qbðtÞ respectively. The comparison

across the cascade is made with the MMSE indices: mseph ¼ E½ðxðtÞ � x̂phðtÞÞ
2
� which only

measures photon noise (the noise floor) and mseqb ¼ E½ðxðtÞ � x̂qbðtÞÞ
2
� which characterises

the combined impact of photon and cascade noise. These estimates of x(t) assume a spatial

integration of the output from all stimulated photoreceptors. It is well know that QBs linearly

sum over the low and medium intensity range up to hundreds of photons per second [36].

Consequently for the range of intensities investigated this assumption is valid.

Values of x̂ph and mseph within this Poisson-Markov framework can be directly obtained

from an optimal (MMSE) non-linear filter, known as the Snyder filter [11]. The Snyder filter is

a Bayesian technique for inferring the posterior distribution of a hidden Markov state given

modulated Poisson observations and a prior on the hidden states. Integrating this posterior

gives the conditional mean estimator that is used in the MMSE distortion function. The Sny-

der filter is exact in that it makes no approximations or simplifications on either the state or

observation dynamics. It solves a differential-difference equation on the state posterior leading
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to a deterministic continuous solution trajectory between observation (event) times with dis-

continuous updates at the observed random event points. The continuous component of the

solution restarts after every event update and the overall posterior evolution falls within the

framework of piecewise deterministic Markov processes. The equations behind the filter and

their adaptation for this work are given in Supplement S1 Text. In general the Snyder filter

does not require a Markov chain description of the state process. The inference procedure

developed here may therefore be a useful blueprint for analyses involving other types of light

models. For details of its general formulation and its application to other types of state estima-

tion problems in biology see [11] and [32] [37] respectively.

In contrast, there is no known method for calculating x̂qb and mseqb since it is difficult to

describe the cascade noise within a tractable analytical framework. This paper develops algo-

rithms for estimating and bounding x̂qb and mseqb. By comparing these estimates to x̂ph and

mseph meaningful conclusions will be drawn about the relative impact of intrinsic and extrin-

sic noise on the normalised intensity input.

Models

Fundamental Markov on-off light model

Two main Markov light models are used in this work. The first is a fundamental, symmetric,

stochastic on-off light switch which emits photons according to an interrupted Poisson pro-

cess. It is also known as the random telegraph signal. The second is a multi-state Markov

model which has a bimodal Gaussian type state distribution and represents a complex light

source that flickers between two extreme intensities while also possessing small light changes

about the extreme modes. The bimodal model can be thought of as a generalisation of the

interrupted model to higher state spaces with additional switch frequencies. The mathematical

details of the former follow. The bimodal model and its qualitative similarities and differences

to the interrupted source are described in Supplements S2 Text, S1, S2 and S3 Figs. The inter-

rupted light source with state transition rates set at k> 0 ms−1 is shown in Fig 1. This model

has the maximum entropy rate of any 2 state stationary Markov source and is therefore the

most complex model (from an information theory perspective) for its state size [4].

To better compare and quantify the behaviour of light models, two dimensionless parame-

ters are introduced. The first, b ¼ a

k, characterises the number of photons produced on average

per on state and can be understood as a relative (normalised) light intensity descriptor. Higher

β indicates more photons per state and hence more usable information. The second, g ¼ k� 1

100
,

measures the number of QBs (with a reference maximum width of 100ms) that can fit into the

on time of the underlying Markov chain. This parameter basically describes the relative flicker

of the light stimuli. Higher γ implies a relatively slower flickering light model, which should be

Fig 1. Markov on-off interrupted light model and intensity function. State 1 indicates the light is on and

switching occurs with mean exponential waiting time of 1

k. Photons are emitted with mean rate αx(t) with the

model state x(t) 2 {0, 1} and un-normalised intensity λ(t) 2 {0, α}.

https://doi.org/10.1371/journal.pcbi.1005687.g001
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easier to estimate. Thus, all light models will be compared in terms of their (β, γ) setting with

increases in either likely to lead to better MSE. For more complex stimuli, such as the bimodal

model, k is defined as the smallest death rate on the chain.

Given the stream of photons produced by the interrupted model, an appropriate Snyder fil-

ter can be formulated to obtain the posterior state distribution and then the conditional mean

estimator. The Snyder filter description usually involves a coupled differential-difference equa-

tion for each Markov state posterior component. These dynamical equations are given in

Supplement S1 Text. Since the interrupted model has only 2 states and probabilities must sum

to 1, the complete Snyder equation set can be reduced to a single expression in terms of the

conditional mean estimate x̂ph. When solved with the dummy variables A = β−1 + 2−1,

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
� 2
þ 2� 2

p
and C ¼ tanh � 1 A� 1

B

� �
and initial condition x̂phð0Þ ¼ 1 (assumes a photon at

t = 0) the following conditional state estimator results:

x̂phðtÞ ¼ A � B tanh ðBat þ CÞ for 0 � t � s� ð1Þ

x̂phðsþÞ ¼ 1 ð2Þ

The equations above are given until some time s, when a new photon arrives, with s− and s+

indicating time infinitesimally before and after the photon. This hybrid solution provides use-

ful insight into the behaviour of the optimal MMSE estimator. On every photon x̂ph discontin-

uously jumps to a value of 1 (eq 2) and then continuously decays until the next photon arrives

(eq 1) with a minimum possible value of lim t!1x̂phðtÞ ¼ A � B where 0� A − B� 0.5. The

estimator trajectory is reset on every event (local time becomes 0 again).

The inter-event solution at different β is given in Fig 2. For the interrupted model, the

mean time between photons is 2

a
ms [38], while the mean time between on-off switches is 1

k ms.

Higher β implies more available information and lower mseph values. This effect is observable

in the decay curves of x̂phðtÞ. At low β, due to less certainty about the state, the scheme rela-

tively quickly decays to a steady value approaching 0.5. As β! 0, x̂phðtÞ ! A � B ¼ 0:5,

and mseph! 0.25. This is no better than simply choosing the best constant estimate of

x̂phðtÞ ¼ E½xðtÞ�. At high β the decay is slower (relative to the normalisation time 2

a
) and the

estimate stays close to 1 sufficiently long such that if another photon would occur their would

be little decay between them. However, the decay is sufficiently fast relative to the switching

time so that if no photons occur for an adequate amount of time then the quick fall to

A − B� 0 accurately reflects the state switch. This is especially true for very high β where

photons essentially delineate the boundaries of the of the x(t) trajectory such that staying close

to 1 between photons and decaying to 0 in the absence of photons will, as β!1, result in

mseph = 0. The more generalised filter solution for any Markov model and an illustration of

the resulting trajectory for the bimodal model can be found in Supplements S2 Text and S2 Fig

respectively.

Results

The integrate-fire-Snyder algorithm converts bumps into estimated

photon times for Snyder filtering

While the Snyder filter computes the optimal estimate x̂ph exactly, there is no known equiva-

lent method for obtaining x̂qb, the MMSE estimator given the bumps. One contribution of this

paper is an algorithm that allows calculation of a good substitute for x̂qb, denoted x̂�qb, using the

QB data stream. This non-MMSE estimator would then provide a useful upper bound on the
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combined distortion resulting from both intrinsic and extrinsic noise. The known relationship

of the estimators can then be summarised as mseph � mseqb � mse�qb. The quantity mse�qb �

mseph upper bounds the noise introduced by the cascade since mseph is precisely the distortion

due only to the photon input variability.

The scheme developed here for deriving x̂�qbðtÞ is called the integrate-fire-Snyder algorithm.

The integrate-fire part of the name reflects its similarity to a standard neuronal model [39].

Consider a summed QB stream QT
0

for some maximum observation time, T, obtained by

applying the photon stream PT
0

to the Nikolic phototransduction simulator [19]. The algorithm

uses QT
0

to first derive an estimated photon stream P̂T
0
. This is then applied to the Snyder filter

to obtain x̂�qbðtÞ. While the standard Snyder filter cannot achieve MMSE estimates given a dis-

torted photon stream, as long as P̂T
0

is sufficiently close to PT
0

in some sense then mse�qb should

not be too much larger than mseqb. The integrate-fire part of the algorithm generates a good

Fig 2. Snyder inter-event intensity estimate for the interrupted model when all photon times are known. The solution x̂ph decays

more rapidly relative to the switch time 1

k as the mean number of photons per on state of the light model, β increases. The solution stays close

to state 1 with increasing β, relative to the time to the next photon 2

a
. This indicates increased certainty as there is more information available.

https://doi.org/10.1371/journal.pcbi.1005687.g002
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P̂T
0

from the QB signal by minimising the dissimilarity between the real and estimated photon

streams. This is done by treating photons as spikes and optimising a spike distance metric

across a training data set. The Victor-Purpura Dspike [40] measure, which calculates the opti-

mal transformation from one train to the other via shifts, deletions or insertions of spikes (all

of which have an associated transformation cost), was used. Dspike performed well and pos-

sessed clear minima. In contrast, optimising directly using the calculated mse�qb was found to

be computationally problematic.

Let PT
0

and QT
0

be partitioned into training sets Pa and Qa and test sets Pb and Qb. The train-

ing set is used to optimise the mapping from the real photon stream to the estimated one. The

test set ensures the designed mapping properly captures the overall relationship and is neither

over-trained nor under-trained. The training stage optimises a constant z ¼ m
R

Qadt
R

Pa dt
where the

integral is over the time frame of the training set and m is the varying parameter of interest.

Here z is interpreted as a multiple of the average charge integral of a single photon QB

response. The estimated time of the nth photon in the testing stage occurs at the first time t:
R

Qb dt> nz, with the integral over the test data set. The method fires photons every time the

integrated QB signal crosses an optimised threshold, z.

Fig 3 shows the spike metric optimisation curves, which have a clear minimum at m� 1.

The best mse�qb values were obtained when the shift cost of Dspike goes to 0. At this setting the

metric gives the difference in the photon count between the real and estimated stream. This can

Fig 3. Spike metric optimisation shows a clear minimum when only photon counts are used. Parameter q

indicates the relative cost of shifting versus inserting/deleting photons. For small values of q (shifts are unimportant)

a clear minimum appears at m = 1 indicating integrate-fire works best with a threshold set at the mean bump area.

https://doi.org/10.1371/journal.pcbi.1005687.g003
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be confirmed by defining a photon count cost on the training set as m ¼ j
R

Pa dt �
R

P̂a dtj.
Here

R
Pa dt = hQai

−1
R

Qa dt is the integral of the true photon stream from the training set and
R

P̂adt ¼ mhQai
� 1
R

Qadt is the integral of the estimated photon stream using the integrate-fire

method with parameter m. The quantity hQai = zm−1 is the average QB charge per photon,

from the training set. Substituting these expressions: μ = (1 − m)mz−1
R

Qa dt. This is minimised

when m = 1 for any QB set. This optimisation will therefore produce good results as long as the

QB charge per photon is similar in the training and test sets. This condition is guaranteed for

sufficiently large test and training sets. Thus, using the optimal m = 1, the integrate-fire converts

some input photon stream into an estimated one every time
R

Qb dt crosses an integer multiple

of hQai. The resulting stream is then fed into the Snyder filter to produce x̂�qbðtÞ.
The use of a perfect integrator (with m = 1) may suggest that errors from previously pro-

cessed QBs (due to their area deviating from average) would persist with observation time and

influence the signalling of upcoming QBs. Often in neuronal modelling this error memory

problem is solved by adding a term that continuously drains some of the accumulated charge.

This makes the integrator ‘leaky’ [39]. However, given the variation of QB area around its

mean size it appeared that these memory errors negated each other and lead to the inference of

the correct number of photons. Since training with Dspike indicated that it was more important

to get the number than the position of the inferred photons correct; perfect integration worked

for this problem. It is not clear that making the scheme leaky would improve performance. If

used naively, for example, then losing charge would lead to less effective photons being sig-

nalled (false negatives) which could deteriorate performance. However, it could improve per-

formance if m and the leaky time constant, �, are jointly optimised during training so that the

number of photons signalled remains the same as in the perfect integrator case. The value of �

might then help get the positions of estimated photons closer to those of the real stream. This

could only strengthen the following results by tightening the MSE upper bound on the true

mseqb.

The integrate-fire-Snyder scheme was compared to standard supervised machine learning

techniques (Gaussian Processes [41]) and optimal linear filtering methods (least squares

Finite impulse response [42]) which directly estimated a x̂�qb from the same QT
0
. The former

attempted to fit a covariance function while the latter minimised the square error on a series

of filter coefficients. Both methods used variable window sizes (also known as fading mem-

ory, this describes how much of the input history affects the output) to get the best perfor-

mance. These methods worked directly on the QB data without estimating photons. The

optimal window size for both schemes was found to be about 5 2

a

� �
. A representative simula-

tion of the resulting MSE upper bounds from these techniques is given in Fig 4. The inte-

grate-fire achieved a lower mse�qb than all of these machine learning schemes. Thus, it appears

that estimating a photon stream and applying the Snyder filter leads to appreciably better

results than methods which directly estimate x(t) from the QB waveform. This figure also

shows the relationship between the integrate-fire estimator and other techniques which also

estimated photons for use with a Snyder filter. The ‘Pure threshold’ scheme produces esti-

mated photons whenever a simple electrical signal threshold is exceeded and the ‘Gradient’

one does so when a forward and backward gradient shift is observed on the QB waveform.

The integrate-fire outperformed the threshold scheme but had comparable MSE to the gradi-

ent one. However, the gradient scheme is not a robust technique, making integrate-fire the

best overall choice. An overview of the general integrate-fire-Snyder estimation process is

given in Fig 5.
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Optimal linear and optimal Snyder filtering on delayed photons and their

performance relative to integrate-fire-Snyder filtering

To illustrate the importance of using non-linear filtering techniques for this analysis, consider

the optimal (MMSE) linear estimate given PT
0

, denoted x̂ l
ph, with distortion msel

ph. For the

interrupted model, this linear MMSE is obtained by applying a continuity approximation to

the system state dynamics [43] [44]. This leads to a differential equation with steady state solu-

tion (see Supplement S1 Text):

msel
ph ¼

1

b

ffiffiffiffiffiffiffiffiffiffiffi

1þ
b

2

r

� 1

 !

ð3Þ

Fig 4. The integrate-fire-Snyder outperforms other machine learning and photon estimating schemes across intensity. The integrate-

fire was tested against Gaussian processes and optimised finite impulse response filters which used the bump data directly. It was also

compared to other schemes that also estimated photons for processing with Snyder filters. These fired photons based on pure current

thresholds or bump gradients. Data is shown for the interrupted model at γ = 20 for a given representative light model trajectory of 7000-8000

photons. The integrate-fire showed superior overall performance. Consistent results have also been obtained for γ = 5. This motivated the use of

the integrate-fire-Snyder as a cascade estimator.

https://doi.org/10.1371/journal.pcbi.1005687.g004
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The central importance of the non-dimensional parameter β is now obvious. Comparison of

the optimal linear estimate given true photons, msel
ph, the optimal non-linear estimate given

the true photons, mseph, and the integrate-fire-Snyder estimate (at several γ) from the resulting

bumps, mse�qb, are given in Fig 6. The significant difference between msel
ph and mseph indicates

that some of the MSE is being contributed by the inefficiency of the linear filter as an estimator

(since it does not fully model the system dynamics). This additional error can likely cloud or

misrepresent the true relative impact of different noise sources. The fact that msel
ph is above

mse�qb at several γ suggests that these approximations reduce the ability to resolve the more sub-

tle contributions of cascade variability. Consequently, linearity or continuity approximations

can seriously distort one’s view of phototransduction noise performance.

As concluded above, keeping analysis exact and non-linear is necessary to properly resolve

the contributions of various cascade noise sources. Comparing the integrate-fire-Snyder

results with filtering solutions that only feature specific components of the cascade noise

should achieve this resolution. Such analysis allows one to identify the major (independent)

intrinsic noise sources clearly. These mainly include QB shape (width and height) variation

and latency noise (see Introduction). The impact of shape noise was assessed by elimination

and the application of the integrate-fire-Snyder to a deterministic version of the Nikolic model

that featured QBs of fixed size and shape. More detail on the differences between stochastic

and deterministic Nikolic models is given in Supplement S4 Text.

QB response latency can be decomposed into a (deterministic) mean delay and a jitter term

describing variation around the mean. The effect of the total QB latency was isolated by apply-

ing the Snyder filter to photons that have been empirically delayed according to the physiologi-

cal latency distribution embedded within the Nikolic model. The empirically delayed MSE

upper bounds are given in Supplements S4 and S5 Figs. To quantify the relative impact of jitter

and mean delay a Snyder filter that optimally reconstructs light intensity given a deterministi-

cally delayed photon stream was developed.

Fig 5. General integrate-fire-Snyder scheme. The standard Snyder filter gives the optimal (MMSE) intensity estimate

given known photons. The random square wave intensity producing these photons delineates the on-off times in the

interrupted light model. The MMSE estimate exactly characterises achievable performance at the front end of the cascade.

The photons are converted into bumps by the cascade. The integrate-fire uses an optimised threshold to convert these

bumps into estimated photons. These estimated photons are then Snyder filtered to obtain a non-MMSE estimator that

upper bounds the deterioration introduced by the cascade.

https://doi.org/10.1371/journal.pcbi.1005687.g005
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If the original photon stream up to time t is Pt
0
, then denote the delayed stream Pt� t

0
as Mt

0

with delay τ ms. The optimal filtering problem focuses on finding the posterior probability

vector PðxðtÞjMt
0
Þ. Let the conditional estimate x̂dðtÞ ¼ E½xðtÞjMt

0
�. Since introduction of the

delay does not alter the inter-event spacing of the observed events then the usual Snyder filter

can be applied to obtain the estimate x̂ðt � tÞ using Mt
0

as the observed process. Transforming

x̂ðt � tÞ into the desired optimal estimate x̂dðtÞ is possible using Pðxðt � tÞjMt
0
Þ, which is pro-

duced by the original Snyder filter. Since there is no data (no observed events) the evolution

from the delayed to the desired posterior is achieved using the Chapman-Kolmogorov equa-

tions, with initial condition t − τ. R describes the transition rates of the x(t) Markov chain (see

Supplement S1 Text for more details). This gives PðxðtÞjMt
0
Þ ¼ Pðxðt � tÞjMt

0
ÞetR which is

used to calculate the expectation x̂dðtÞ. The solution for the interrupted model between and at

Fig 6. Suboptimal integrate-fire-Snyder on bumps outperforms MMSE linear filtering on known photons. The integrate-fire-Snyder was

run for γ = [5, 10, 20, 30] and results across 10 independent 8000 photon long light model trajectories given. The error-bars delineate the

minimum to maximum of the MSE curves for each γ. Clearly there exist several γ over which the integrate-fire on all cascade noise does better

than the linear MMSE on just photon noise, across a wide β range. Given the disparity, applying linear or continuity approximations can be a

strongly misleading measure of the noise performance of discrete stochastic systems.

https://doi.org/10.1371/journal.pcbi.1005687.g006
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event times is provided in eqs 4 and 5 respectively.

x̂dðtÞ ¼
1

2
1 � e� 2tk
� �

þ x̂ðt � tÞe� 2tk for 0 � t � sþ ð4Þ

x̂dðsþÞ ¼
1

2
ð1þ e� 2tkÞ < 1 if t > 0 ð5Þ

This solution is optimal and not an upper bound like the integrate-fire-Snyder mse�qb curves.

When compared to the standard Snyder solution of eqs (1) and (2), the delayed solution fea-

tures a higher minima and a lower maxima. This shows the increased uncertainty in this prob-

lem as the solution lies closer to the uninformed estimator E½xðtÞ� ¼ 0:5. Observe that

limb!0 x̂dðtÞ ¼ limb!0 x̂phðtÞ ¼ 0:5.

Comparison of various reconstruction estimates

The main results from preceding sections are combined into Fig 7. Results are averaged over

10 independent photon-QB streams of 8000 photons long with error bars showing the maxi-

mum and minimum MSE across the runs. Flickering models at γ = [5, 10, 20, 30] are investi-

gated. At γ> 30 the relative curve behaviour is unchanged and at γ< 5 the model switches too

fast for sensible inference (it is beyond the bandwidth of the phototransduction process). The

β range (1-200) was chosen similarly. Lower βmeans photons are produced too slowly relative

to light switches making inference pointless (hence why MSE settles near 0.25) while higher β
is not any further informative.

The ‘Snyder, photon noise’ curves give mseph, or the noise floor of the model while ‘Snyder,

delay’ refers to msed (photon noise and a deterministic delay). The remaining curves are inte-

grate-fire-Snyder upper bounds. The ‘all noise’ ones correspond to mse�qb (fully stochastic

Nikolic model) while the ‘delay’ ones refer to the integrate-fire-Snyder applied to QBs from

the deterministic Nikolic model. This last curve set is used to confirm the subsequent conclu-

sions and involves applying the integrate-fire-Snyder algorithm to the Nikolic model with all

its variability switched off. Consequently, the QB stream has deterministic bump shapes and

sizes and there is no latency jitter. As a result, only the mean of the stochastic delay acts in this

model. These 4 sets of curves provide an overall perspective of noise performance with relative

light intensity and illustrate the main conclusions that will follow.

At low β all curves converge, while at higher β the cascade noise separates the ‘Snyder, pho-

ton noise’ ones from the rest. The ‘Snyder, photon noise’ curves are exactly the MMSEs achiev-

able at the front of the cascade, and cannot be bettered. The ‘Snyder, delay’ curves are hard

lower bounds, in the sense that they provide a lower limit on the remaining error when all

sources of cascade variability are removed. Since this setting also applies to the deterministic

Nikolic model then the ‘Integrate-fire, delay’ is an upper bound on the impact of the mean QB

delay. The precise MMSE curve under this setting would lie between these bounds. The ‘Inte-

grate-fire, all noise’ curves are an upper bound on all photon and cascade based distortion. All

3 of these sets of bounds remain close at higher β suggesting mean delay is the key intrinsic

noise component. The relative behaviour of the MSE curves with β, remains unchanged as γ
changes. Higher MSE values are observed at lower γ as a relatively faster flickering model (less

QBs are available per state) is more difficult to estimate. In all simulations τ = 43.3 ms is used

to match the mean delay from the Nikolic QB latency distribution.

This analysis was also repeated using more complex and realistic 16 state bimodal light

models. Similar results were obtained and the relative behaviour of the MSE curves found to

be consistent with the above descriptions (see Supplements S2 and S3 Text, S4 and S5 Figs). In

the bimodal model higher frequency small amplitude fluctuations are superimposed on a

Point process analysis of noise in early invertebrate vision

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005687 October 27, 2017 16 / 25

https://doi.org/10.1371/journal.pcbi.1005687


lower frequency flickering (modal switching) between high and low light levels (the modes).

This gives a characteristic 1

f like power spectrum behaviour over a frequency, f, range of almost

two decades. The precise exponent was f−1.23.

The integrate-fire-Snyder algorithm uses simple computations that are

potentially biologically realisable

The integrate-fire-Snyder algorithm is a surprisingly simple yet effective way of reconstructing

light intensity from the bumps. Given these attributes, one wonders if it could potentially be

Fig 7. The dominant noise transition from extrinsic to mean delay, with intensity β, is consistent for light models with differing

relative flicker speed, γ. Parameter γ indicates the number of bumps which can be received per Markov switch time of the light model. Higher γ
therefore means a relatively slower flicker. At lower γ less information is available and hence the MSE higher. The ‘Snyder, delay’ curves are

MMSE values obtained with the Snyder filter optimised for a deterministic delay set to the mean QB latency. These lower bound the noise

introduced by the cascade. The ‘Integrate-fire, all noise’ ones are upper bounds as they involve processing the QBs from the fully stochastic

Nikolic model. The closeness of both of these curve sets reflects the dominance of mean delay among cascade noise components. This

hypothesis is further confirmed by the closeness of ‘Integrate-fire, all noise’ with the MSE generated by applying the integrate-fire-Snyder on the

deterministic Nikolic model, which only featured the mean delay (‘Integrate-fire, delay’) and fixed QB shapes. The ‘Snyder, photon noise’ gives

the noise floor since it is the MMSE achievable at the front of the cascade. Convergence with this at low β shows cascade noise is unimportant in

that regime. All curves are averages over 10 independent 8000 photon-QB streams with error bars indicating the maximum and minimum MSE

swings around this value.

https://doi.org/10.1371/journal.pcbi.1005687.g007
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implemented within a biologically sensible neuronal network framework. The algorithm is

composed of two main parts; i) an integrate-fire estimator that gives P̂t
0

and ii) the Snyder filter

that leads to the state estimate x̂�qbðtÞ. The integrate-fire part involves the accumulation of QB

charge until some spike optimised threshold, z is crossed. Once z is exceeded a point event is

emitted to indicate a suspected photon. This description is standard in neuronal modelling

with the build up of charge usually leading to the release of an action potential or spike [39].

While the integrate-fire mechanism is biologically implementable, the optimisation of its

threshold (which depends on the parameter m) requires a supervisory learning technique that

uses true photon times. In reality, the invertebrate visual system does not have access to this

data. Unsupervised learning procedures may therefore be necessary. If light intensity is low,

unsupervised integrate-fire training should be easily realisable. In this regime QBs are distinct

and far apart so the integration threshold is obvious. In the high intensity regime where QBs

merge together, a more sophisticated way of reducing the data into effective photons is needed.

This would likely involve finding clusters (which code for sets of QBs) within the data. Standard

algorithms exist for extracting clusters and structure from input data. These can be imple-

mented in modular, Hebbian learning networks [45] which are meant to resemble actual spik-

ing neuronal computational behaviours. Hence, it should be possible to train the integrate-fire

scheme in a biologically sensible manner, especially as only a single parameter must be learnt.

However, given that threshold optimisation found that the integrate-fire should only signal

photons every time the average bump charge is crossed, training may not be necessary. The

average QB area could likely be a parameter that is naturally encoded in the cascade biology.

The second part of the algorithm uses standard Snyder filtering. The filter solution involves

an instantaneous update at the event time which serves as the initial condition for a decaying

inter-event trajectory. For all Markov chain state models it can be shown that the inter-event

Snyder solution can be expressed as a linear equation set in un-normalised probabilities that

must then be normalised [46] (see Supplement S2 Text). Using this formulation the inter-

event trajectory can be seen as only involving weighted combinations of exponentially decay-

ing functions. Bobrowski et al [32] provided strong evidence that these linear Snyder computa-

tions can be achieved with a recurrent neural network that is physiologically realisable and

which uses simple operations such as weighted sums. This involves a graphical structure that

treats incoming spikes as inputs from a sensory layer and encodes the causal posterior compo-

nents, with another layer that has weights derived from the Markov state transition rates.

Having a neuronal population code for posterior probabilities has already been shown to be

biologically plausible [47]. Further, it is known that recurrent networks of integrate-fire neu-

rons are able to represent distributions given noisy inputs [48]. As a result, all parts of the com-

plete integrate-fire-Snyder estimation algorithm possess the potential for possible biological

implementation.

Discussion

Bump shape is relatively unimportant, mean latency is critical, integrate-

fire-Snyder is a powerful estimation scheme

The above analyses show that as light intensity increases, the dominant noise source transi-

tions from being extrinsic to intrinsic. Furthermore, among intrinsic noise sources, it seems

that the performance deterioration caused by QB shape variability is small compared to that

introduced by the mean cascade delay. As a result, the relative magnitude of the mean QB

arrival time, given a photon, to the mean photon inter-arrival time is a key indicator of noise
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performance. Such an event timing based description of noise fits well into the Poisson chan-

nel framework in which this estimation problem lies.

The relatively small impact of QB shape noise is particularly significant. Previous research

using signal to noise ratios found QB amplitude variation responsible for limiting cascade reli-

ability at all frequencies [10]. This diametrically opposite conclusion is likely evidence of why

it is important to get the performance metric right [49]. Furthermore, work based on the Pois-

son-variance approach [9] predicted that at least half of the total noise (extrinsic and intrinsic)

was always due to the cascade. This directly belies the extrinsic-intrinsic noise transition

described here and elucidates the importance of maintaining a point process approach which

properly accounts for signal causality.

The msed curve exactly describes the optimal distortion given photon noise and only a fixed

cascade delay. It therefore provides a distortion lower bound by describing a hypothetical sce-

nario in which all (independent) sources of variability have been removed from the cascade.

The mse�qb curve is derived from the integrate-fire-Snyder algorithm and upper bounds the

unknown MMSE given the QB stream. Simulations found that these two bounds were gener-

ally in close agreement. This suggests that the integrate-fire-Snyder is likely a good means of

converting QBs into estimated photons, over a wide range of intensities. In fact, as shown in

Fig 4, the algorithm outperformed several standard machine learning techniques, achieving

lower mse�qb values on the same data. This not only reinforces the integrate-fire-Snyder as a

good estimation method but also suggests that, generally, it may be beneficial to reduce a QB

stream to an estimated photon stream before performing inference. This seems reasonable

as QBs, being responses to individual photons, must have a discrete information structure

embedded within their noisy waveforms. Note that, since the integrate-fire-Snyder makes few

assumptions on its input and output signals, it may also have applications in more general sys-

tems with discrete-sum informational structures.

Work by van Steveninck and Laughlin [50] treated the transduction process as a filtering

operation and postulated that one could recover the exact photon times by inverting the filter,

subject to fundamental performance limitations. The integrate-fire-Snyder algorithm fits

exactly into this framework, albeit in a non-linear point process setting, and thus provides a

good answer to this postulation. The algorithm performance suggests that generating a good

photon event estimation is sufficient to achieve good mse�qb and that more complex techniques

are unnecessary. However, the use of simplifying techniques that do not fully model process

dynamics can also be misleading. There exists a set of (α, k) for which the noisy integrate-fire-

Snyder estimate, mse�qb, outperforms the linear MMSE estimate given the true photon data,

msel
ph (see Fig 6). Any linear estimator using the QB data must do even worse. Performing the

analysis under a linear or continuity approximation therefore gives a wrong impression of the

noise floor for the system (since the MSE with only photon noise is so high) and will not

resolve the more subtle noise source contributions. This results in a spurious picture of photo-

transduction noise performance. For a more detailed analysis of the dangers of such approxi-

mations, when applied to systems which are naturally discrete and causal see Parag and

Vinnicombe [51] [30].

For all the stimuli investigated, photon noise was found to be limiting at low light intensi-

ties. This is likely due to the photon inter-arrival time being much larger than the delays and

widths of QBs. Given this dominance, one can easily convert QBs into estimated photons

using naive threshold based methods (see the ‘pure threshold’ curve of Fig 4), as the cascade

deterioration has negligible impact on inference. Further, as mse�qb � mseph in this region, the

true MMSE given QBs can be well approximated with the exact, standard Snyder solution. As

intensity increases all MSE curves fall due to the availability of more information. However,
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cascade based noise becomes visible as the mse�qb curve significantly separates from the mseph

one. This divergence increases with normalised intensity, β. At very high intensities photon

noise contributes almost nothing and mseph! 0 as β!1.

A major part of this work involved trying to infer the relative contributions of the various

intrinsic noise sources. As noted previously, intrinsic noise is composed of dark noise (false

positive QBs), QB shape noise (amplitude and width variability), QB latency (mean delay and

jitter) and a quantum capture efficiency, QE< 1 (an analogue to false negative QBs). These

components are independent of each other and can therefore be treated in isolation. Dark

noise is negligible under the conditions of this work and was excluded from analysis. QE is

usually high in real invertebrate visual systems and it can be treated as an additional noise

component on top of the cascade noise (which involves QB shape and latency). Moreover, sim-

ulations found results to be robust to the loss of up to 1

3
of all input photons (QE = 0.66) (see

Supplements S3 Text, S4 and S5 Figs). The integrate-fire-Snyder adapted to lower QEs by sim-

ply reducing its trained firing threshold z, which encodes how much QB charge is believed to

represent a photon. As a result, QE can be largely ignored.

The relative noise problem in the medium-high intensity regime was therefore reduced to

one of disentangling the relative impact of QB shape and latency. This was initially investigated

by comparing the mse�qb bounds achievable with different noise components excluded from

the Nikolic model. If shape noise is removed then the observed QB stream is equivalent to the

input photon stream distorted according to the physiological QB latency distribution. This

stream was described as empirically delayed. The optimal filter for empirically delayed photons

is computationally intractable. However, it was found that applying the standard Snyder filter

to the empirically delayed photons gave an MSE upper bound that was in close agreement

with the fully noisy mse�qb (see Supplements S3 Text, S4 and S5 Figs). This hinted that shape

noise could be less important than latency. To test this hypothesis it was necessary to construct

complementary lower bounds on achievable noise performance.

The QB latency profile can be well described by a normal distribution that matched its

mean [52]. Since normal distributions are parameterised solely in terms of their mean and var-

iance, QB latency may then be considered as essentially and independently composed of a

mean delay and jitter. Separating the impact of each component therefore makes sense. The

mean delay was analysed, because i) unlike jitter it can be examined within an exact inference

framework, and ii) fixed delays or dead times have a clear and important impact on causally

constrained real time systems such as vision. Additionally, there is some evidence in the

literature for dead times and fixed delays being both irreducible and critical to high intensity

phototransduction noise performance [52]. This motivated the development of the optimal

deterministically delayed Snyder filter, which yielded the msed curve. This curve provided

a lower bound on the remaining error when all cascade variability, including jitter, was

removed.

A close correspondence between msed and mse�qb was observed across all the light models

investigated. This confirmed QB latency as the dominant cascade noise source and suggested

that the mean delay in generating a QB from a photon input is critical to cascade noise perfor-

mance. In fact, when plotted, the most visible difference between x̂phðtÞ and x̂�qbðtÞ is a time

shift which is of the order of the mean delay. For an illustration of this difference on a more

complex light model see Supplement S6 Fig. The cascade therefore essentially encodes discrete

events as delayed electrical depolarisations. As a result, by elimination, the actual shape of the

latency distribution is not very important and the variable shape of the QB largely insignifi-

cant. This conclusion was further investigated by applying the integrate-fire-Snyder to the

Nikolic model with all forms of variability turned off. At this setting QBs are of deterministic
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shape and size, and only the mean delay is acting on the cascade. The resulting MSE curves lay

close to and between msed and mse�qb. This correspondence validated the performance deterio-

rating dominance of mean delay.

Thus to a first approximation, the complex set of cascade reactions can be replaced with a

pure delay on the photon inputs. This conclusion contradicts the work in [9] and reiterates the

importance of maintaining a causal, discrete approach. This is especially the case here since

pure delays do not affect the common (acausal) mutual information and would largely be

neglected in such analyses. However, this work asserts that such delays are important,

especially as they may limit the ability of an invertebrate to respond rapidly to stimuli. The

dominance of QB delay on cascade noise means that QB shape can be optimised for other per-

formance goals, such as achieving a dynamic range that maximises the input amplitude repre-

sentation, without affecting cascade accuracy. This shape-latency decoupling allows for more

flexible cascade functionality and may underly why experiments have found the QB waveform

and latency to be uncorrelated [16].

Reducing mean delay may not be physiologically possible

Cascade delay appears to be the single largest intrinsic noise component. One may therefore

wonder why nature has not further optimised phototransduction to reduce its impact. Reduc-

ing delay would not only improve accuracy but also increase visual bandwidth. According to

Eckert and Zeil [53] faster phototransduction requires more mitochondria and hence is much

more energy intensive. Consequently, improving latency will only be feasible if the organism is

willing to devote more energy to visual processes. This explains why flies that must perform

more demanding visual tasks, such as Coenosia, have faster cascades than Drosophila [54] [1].

The dominant effect of cascade delay also clarifies why visual light adaptation, which involves

the production of faster QBs, is helpful at high intensities. In this regime the latency becomes

much more critically limiting and its impact must therefore be, at least partly, countered [14].

A key feature of the adaptation response is a reduced mean delay but a mostly fixed jitter [52].

This seems to support the idea that mean delay is the major source of cascade noise.

Moreover, even if energy constraints were not limiting, significantly improving QB latency

and mean delay would still be unlikely. The latency relates to the time taken for a sufficient

amount of G proteins and phospholipase C molecules to become activated such that the

threshold for opening the TRP channels and generating a normal QB is achieved [15]. A note-

worthy reduction in cascade latency would require a reduction in the threshold for opening

the TRP channels. However, this would increase the sensitivity of the cascade to spontaneous

phospoholipase C and G protein activations which would lead to an increase in dark noise

[55]. Thus, mechanistically reducing latency to improve cascade accuracy may simply result in

a trade between the limiting noise source and possibly lead to no overall improvement.

Concluding remarks

This paper has outlined a useful scheme for extracting data from QBs and used this to charac-

terise the main sources of noise in invertebrate phototransduction. By making use of the pho-

ton counting nature of the visual system, and point process theory, a consistent and accurate

measure of relative noise was achieved that extends the stimuli reconstruction methodology of

Bobrowski et al [32] and clarifies the until now contradictory results between the work of van-

Steveninck and Bialek [10] and those of Lillywhite [3] and Laughlin [9]. Furthermore, this

work pinpointed mean delay as the key cascade noise source and emphasised the dangers of

using continuity approximations for inherently discrete random systems. Lastly this research
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fulfils the request of Grewe et al [27] for a sensible metric (causal MMSE) which can give a

‘complete description of the system [photoreceptor] performance’.

Supporting information

S1 Text. Snyder point process optimal filtering and optimal linear filtering for the inter-

rupted model. The general non-linear Snyder filter is presented and then solved for the inter-

rupted model. The optimal linear filter for this model is also derived.

(PDF)

S2 Text. Multi-state bimodal light models simulate a main light switch with gradual transi-

tions between non-modal states. The bimodal light model is derived and examined in terms

of both its similarity to the interrupted model and the extra dynamical complexity it allows.

(PDF)

S3 Text. Representative MSE curves for extrinsic and intrinsic noise components on

bimodal light models. A 16 state bimodal model is analysed with the integrate-fire-Snyder

approach.

(PDF)

S4 Text. The Nikolic phototransduction model. Further information (including a mathemat-

ical description) about the phototransduction model used in this work is provided.

(PDF)

S1 Fig. Markov bimodal light model with 8 states coding for different light intensities. The

ai and bi are birth and death reaction rates respectively, indicating incremental (nearest neigh-

bour) increases and decreases in light intensity. The �ij are the modal switches. The rates are

chosen to achieve a bimodal state distribution centred on the modal states. The 16 state version

of this model was simulated in this work.

(TIF)

S2 Fig. Optimal intensity estimate given known photons at t = [0 300] ms for 8 state

bimodal model. The more complex Snyder equations for the bimodal model can be decom-

posed into an exponential solution that is qualitatively similar to that of the interrupted model

(and exactly the same when the Markov chain has only 2 states, which are both trivially

modal). Observe the discontinuous update at the photon time of 300ms. This model features

�36 = �63 = k.

(TIF)

S3 Fig. Power spectral density for the 16 state bimodal light intensity. Fast Fourier trans-

forms were used to calculate the frequency response of the 16 state bimodal light model at

[γ, �] = [10, 3k]. The extra small amplitude fluctuations (nearest neighbour reactions) about

the high amplitude modal switches leads to ‘1f type’ (precisely f−1.23) behaviour with f indicating

frequency. This holds over a reasonably large frequency range. This shows that more naturalis-

tic dynamics that can be achieved using higher state Markov modulated Poisson light models.

(TIF)

S4 Fig. Photon noise or cascade delay dominates for a bimodal multi-state model. The con-

clusions of the interrupted model are shown to hold for the more complex bimodal case. All

curves converge at low intensity and all curves with additional intrinsic noise converge at

higher intensities. Data is for a 16 state model at [γ, �] = [20, k].

(TIF)
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S5 Fig. Results on dominant noise remain unchanged with γ for the multi-state bimodal

models. The key conclusions from the filtering analysis across β and γ remain true for more

complex models such as this one. Data is for a 16 state bimodal model at [γ, �] = [10, 3k].

(TIF)

S6 Fig. Estimated intensities before and after the cascade show it mostly acts as a determin-

istic delay. The integrate-fire-Snyder conditional estimate x̂�qbðtÞ (QE = 0.66, all noise) appears

as a delayed version of the Snyder MMSE estimate (only photon noise) x̂phðtÞ. The data is for a

bimodal 16 state model with [γ, �] = [20, k] and β = 100. The normalised relative intensity β is

set to fall within the parameter regime where intrinsic noise dominates.

(TIF)

S7 Fig. The Nikolic noise distributions for QBs. The Nikolic model was run over across 9006

QBs and the resulting QB latency, height and area histograms obtained. Observe the mean

delay is around 43ms. These distributions are known to match experimental results. In the

deterministic Nikolic implementation, all these histograms collapse to their fixed mean values.

(TIF)

S8 Fig. The average QB shape from the Nikolic model. The stochastic Nikolic model was run

over 9006 QBs and the photocurrent responses averaged. The resulting QB was compared

directly with experimental data from Hardie et al [13].

(TIF)
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