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Abstract We define a measure of network cohesion and show how it arises naturally
in a broad class of dynamic models of endogenous perpetual growth with network
externalities. Via a standard growth model, we show why network cohesion is crucial
for conditional convergence and explain that as cohesion increases, convergence is
faster. We prove properties of network cohesion and define a network aggregator that
preserves network cohesion.
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1 Introduction

The purpose of this paper is to propose an aggregate measure for networks that is
useful for analyzing models of endogenous growth with network externalities. As an
example, we present a standard endogenous growth model in which the productivity
of a particular country (or region) depends on the average stock of capital of its
neighbor countries (or regions). Generally, without such externalities (i.e., when the
network is empty and cohesion is zero), this model predicts that there will be no cross-
country conditional convergence of income. However, under a certain condition, we
can establish conditional convergence of all countries, and that convergence to the
long-run balanced growth path is faster when network cohesion is higher.
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2 T. V. V. Cavalcanti et al.

The condition for convergence requires that the underlying network of externalities
satisfies a certain property, which naturally defines the measure that we introduce.
This novel summary statistic for a (possibly directed and weighted) network can be
interpreted as a measure of network cohesion. It is defined via a matrix of dispersion
which has typical elements that represent the deviation of intensity of the links from
node j to node i , from the average intensity of the links from node j . The elements
of this matrix become larger in absolute value as the intensity of links between nodes
becomes more uneven, and the network cohesion is then defined as one minus the
largest modulus eigenvalue of this matrix. This cohesion measure effectively gives
a characterization of how uniform or fragmented a network is. We show that it is
independent of how we label the nodes, and that it varies between zero and one. The
complete network has the largest possible network cohesion, equal to 1, while the
empty network (or any disconnected network) has the lowest cohesion, equal to 0.

Althoughwemotivate network cohesion using a simple growthmodel,we argue that
this statistic is relevant for characterizing the stability and the speed of convergence of
any similar dynamic systemwith spillover effects from neighbors, in which a balanced
growth path, rather than a steady state, is present, and analysis is carried out in terms of
relative variables of interest, e.g., physical capital, human capital, beliefs and prices,
divided by the average value of the corresponding variable in the whole system. It is in
this sense that network cohesion is useful for analysis of a large variety of endogenous
growth models with an underlying network structure and more broadly important for
a growing literature on networks in economics.1

After carefully defining network cohesion and characterizing some of its proper-
ties, we also propose a way in which large networks can be aggregated into smaller
networks that share the same cohesion. In practice, this aggregation technique can
be implemented in a straightforward manner and is helpful for reducing models with
many dimensions to smaller, more manageable systems, without losing the dynamic
properties of the original system. Last, we provide a detailed comparison between net-
work cohesion to two other network statistics that are related to it, namely algebraic
connectivity (see Fiedler 1973 and Mohar 1991) and the recently introduced spectral
homophily (see Golub and Jackson 2012a, b). We also explain how network cohesion
is related to other aggregate network measures that capture cohesion.

Our contribution is broadly related to a large variety of literature within engineer-
ing, biology and political economy, whenever the common factor between these and
our setting is a system of variables with dynamics that evolve via an average-based
updating process (i.e., a process bywhich next period’s node-specific variable depends
on the current average of such a variable in the node’s neighborhood). For example, in
our growthmodel setting, the future capital of a country depends on the average capital
of the countries that this country is linked to (via trade and technological spillovers).
A more detailed discussion of how the present work fits into the literature is presented
at the end of Sect. 4.

1 Goyal (2007) and Jackson (2008) provide an overview of recent research and models on networks in
economics and techniques for analyzing different economic issues.Network cohesion is used for the analysis
of an endogenous growth model with human capital in Cavalcanti and Giannitsarou (2015).
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Network cohesion 3

There is an important difference between the setting we are interested in and other
related strands of literature that focus on dynamic processes that converge to a sta-
tionary, constant steady state (i.e., convergence of Markov processes and convergence
of beliefs). In such settings it is known that convergence and its speed depend on the
second largest modulus eigenvalue of a stochastic matrix with typical element that
gives the intensity of the links from node j to node i . We, on the other hand, are inter-
ested in growth models, where perpetual endogenous growth implies convergence to
a balanced growth path rather than to a constant steady state. In such growth models,
the dynamics are not stationary and their local properties are determined by a matrix
which, as we show, is an appropriate transformation of the matrix that determines the
local dynamics of the corresponding detrended model.

Our main contributions are then to (a) demonstrate that the dynamics of such sys-
tems cannot be analyzed directly by using known network measures such as algebraic
connectivity or spectral homophily, (b) showhow the dynamics of such systems reduce
to a matrix that is closely related to the corresponding stochastic (intensity) matrix of a
system with a steady state and (c) show formally that the spectrum of this matrix is the
same as the spectrum of the corresponding stochastic matrix after replacing eigenvalue
1 with eigenvalue 0. These results not only allow us to show properties of network
cohesion and give statements regarding convergence and speed of the dynamic systems
we study, but also emphasize the fact that network cohesion can be thought of as one
minus the second largest modulus eigenvalue of the stochastic matrix that corresponds
to a system with a steady state. We discuss these points in more detail in Sects. 4 and
6, where we also refer to specific strands of literature and various related papers.

2 A motivating example

We present a very basic endogenous growth model with technological spillovers. We
assume that there are n countries (or regions and states) which are the nodes of a
network N . Let gi j ∈ {0, 1} be a relationship between two countries i and j . For this
example, it is assumed that gi j = g ji (i.e., that the network is undirected) and that
gi j = 1, if there is a link between regions i and j and gi j = 0 otherwise. We also
assume that gii = 1. This notation allows us to represent the links in the network
with an adjacency matrix G.2 The interpretation of such links between two countries
i and j may be trade between them, or simply geographical proximity, e.g., the two
countries sharing a border. The importance of spatial externalities for growth, as in the
latter interpretation, has previously been emphasized in the literature, e.g., see Ertur
and Koch (2007) and references therein. Network externalities and their importance
for growth are also addressed in Konno (2010).

A country i at time t has a production function yit = Ait kα
i t , with 0 < α < 1,

where yit is output, kit is capital and Ait is the level of technology of country i , which
is defined as

2 In the literature of networks it is more common to assume no self-links (loops), i.e., gii = 0. Here, we
adopt the alternative assumption of gii �= 1, which is more attractive for the types of endogenous growth
models that we are interested in.
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4 T. V. V. Cavalcanti et al.

Ait = A

(∑
j gi j k j t∑
j gi j

)β

. (1)

with β = 1−α. In other words, technology for country i depends on a constant A > 0,
common to all countries, and on the average capital of this country’s neighboring
countries.3

To keep things as simple as possible, we assume a constant and exogenous savings
rate 0 < s < 1, no population growth (population is normalized to 1) and no exogenous
technological change, i.e., A is constant.4 Capital accumulates according to

kit+1 = syit + (1 − δ)kit , (2)

where 0 < δ ≤ 1 is the depreciation rate.
The standard AK production function can be retrieved under the assumption that the

network that describes the technological interdependence of countries is empty, i.e.,
for G = In . In that case yit = Ait kα

i t = Akit . This benchmark version of the model
predicts divergence of countries that have different initial capital (even if all model
parameters are identical for all countries). The question we then ask is, if we allow for
technological externalities, i.e., any network other than the empty one with G �= In ,
can the different countries converge if they have different initial capital, and if yes,
how fast? As it turns out, as long as the network is connected (in the graph theoretic
sense), there is convergence of the countries to a common balanced growth path and
the rate of convergence can be parameterized by the measure of network cohesion that
this paper introduces.

Let k̄t be the average capital of all countries at time t , and let xit = kit/k̄t be the
relative capital of country i at time t . Then, the dynamic system that describes the
economy is given by

xit+1 = γi t xi t
1
n

∑
i γi t xi t

, (3)

in which

γi t = sA

(∑
j gi j x j t∑
j gi j

)β

x−β
i t + (1 − δ) (4)

is the growth rate of the capital stock of country i at time t . Collecting the dynamic
equations for all countries, we can determine the evolution of this system by analyzing
the following nonlinear system of difference equations:

xt+1 = W (xt ) . (5)

where W is defined via (3) and (4). It is straightforward to verify that x∗ = en ≡
(1, 1, . . . , 1)T is a solution to the system. If this solution is stable, then there is
convergence of the initially different countries, since x∗ = en implies that in the

3 Here, the term ‘neighboring’ refers to the countries that country i is linked to in the network.
4 A microfounded version of this model would be an overlapping generations economy. This would also
yield a constant savings rate that depends on the discount factor.
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Network cohesion 5

balanced growth path, kit = k∗
t for all countries irrespective of the initial conditions.

Moreover, along this balanced growth path all countries will grow at the same rate

γ ∗ = k∗
t+1
k∗
t

= sA + (1 − δ).
To establish whether the solution is stable, we need to evaluate the Jacobian

J (x) = dW (x)
dx

(6)

at x∗ = en . For i , j = 1, . . . , n, let

fi j = gi j∑n
m=1 gim

− 1

n

n∑
i=1

gi j∑n
m=1 gim

. (7)

Then, we get

J
(
x∗) = 1

sA + 1 − δ
[βsAF + (αsA + 1 − δ)Cn] , (8)

in which F is a matrix with typical element fi j andCn = In− 1
n ene

T
n , with In the n×n

identity matrix and en an n × 1 column vector of ones. The stability of the solution
is therefore determined by the eigenvalues of J (x∗). If all eigenvalues of J (x∗) are
inside the unit circle, then the system is stable and the countries converge. Moreover,
the smaller the eigenvalues of J (x∗) are in absolute value, the faster convergence is.

The measure of network cohesion we propose is defined as one minus the largest
modulus eigenvalue of F and arises naturally in this simple growth model. As we will
show in Sect. 4, nonzero network cohesion ensures convergence of the countries and
the higher it is, the faster convergence will be. With this example in mind, we propose
a general definition of network cohesion in the next section and then explain why this
statement is true.

3 A measure of network cohesion

The network N , which can generally be weighted and/or directed, consists of a set of
nodes labeled by i = 1, 2, . . . , n. It is assumed that gi j > 0 if there is a link from
node j to node i and gi j = 0 otherwise. We adopt the convention that gii > 0, for
all i = 1, 2, . . . , n. This notation allows us to represent the network by the adjacency
matrix G = [

gi j
]
.5

5 If the network is undirected, as in the growth model of Sect. 2, then the matrix G is symmetric. If the
network is unweighted, then gi j = 1 if there is a link between i and j , and gii = 1 for all i . Allowing for
weights that are generally different from one or for nonsymmetric adjacency matrices is very general and
allows us to consider, for example, growth models in which the spillover effects may be stronger between
some countries and weaker between others. The magnitude of weights in the diagonal elements may reflect
the importance of a country’s own capital for its productivity, relative to the remaining countries’ capital.
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6 T. V. V. Cavalcanti et al.

Next, let

D = diag

⎡
⎣∑

j

g1 j ,
∑
j

g2 j , . . . ,
∑
j

gnj

⎤
⎦ , (9)

and define the row stochastic matrix

R = D−1G, (10)

with typical element

ri j = gi j∑
j gi j

(11)

that represents the intensity of the link from node j to node i . 6

Finally, let

Cn = In − 1

n
ene

T
n (12)

be the centering matrix of order n.7 We can now define the matrix

F = CnR. (13)

We call G the adjacency matrix, R the intensity matrix and F the relative inten-
sity matrix. We now provide the mathematical definition of our measure of network
cohesion.

Definition 1 Given a network N with adjacency matrix G, let matrices Cn , R and F
be defined as in (10), (12) and (13). The network cohesion is defined as κ ≡ 1−ρ(F),
in which ρ (F) is the spectral radius of the matrix F .

We next explain informally what this measure captures. We first look at a typical
element of the intensity matrix, ri j . This represents how ‘intense’ the link from node
j to node i is. For example, for a undirected, unweighted network, the intensity of
every link of node i is the inverse of the node’s degree (i.e., if node i has three links,
each link is one-third intense). If the network is weighted, the intensity for node i is
the weight of the link with node j, over of the strength of node i , and it is larger for
nodes j that have high weights in the adjacency matrix. In other words, the intensity
matrix represents a normalization of the adjacency matrix. Going back to the typical
element ri j , suppose now that we want to compare the intensity ri j of the link from j
to i , with the average intensity from node j to other nodes of the network; we can then
calculate fi j = ri j − r̄ j (with r̄ j = (∑

i ri j
)
/n), and call this the relative intensity of

the link from node j to node i . If fi j > 0, this means that node i has a more intense
relationship to j than other nodes have with j on average, while if fi j < 0, node i has
a less intense relationship to j than other nodes have with j on average. It is easy to

6 Thematrix R is also used inEchenique andFryer (2007),where it is called thematrix of social interactions.
7 The term centering is borrowed from statistics. The matrixCn is a symmetric and idempotent matrix that,
when multiplied with a vector, has the same effect as subtracting the mean of the elements of the vector
from every vector entry.
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Network cohesion 7

see that generally, if the elements fi j are close to zero, i.e., if they do not deviate much
from the averages, the nodes and relationships (links) in the network are alike, then the
spectral radius ρ (F) is small, and the network is cohesive. If the elements fi j are far
from zero, i.e., if the elements fi j are large in absolute value, the more variability there
is in the intensity of links in the network, and the spectral radius ρ (F) is large. In the
context of the simple growth model presented in Sect. 2, the typical element fi j of the
matrix F represents how important the spillover/externality from country j to country
i is, relative to the average spillover from country j to the rest of the world. It is in this
sense that the matrix F can be interpreted as a matrix of dispersion, and therefore we
call the spectral radius ρ (F) of matrix F the coefficient of dispersion of the network.

High variability among the different fi j s can also be interpreted as the network
having more uneven, unequal interactions, i.e., less cohesion in the network. Consider,
for example, two extreme cases, first, an undirected network, in which everyone is
linked to each other (i.e., the complete network), and second the case of an empty
undirected network. In the former case, the interaction with j is of importance 1/n for
node i , and that is true for all nodes i , so that the average r̄ j is also 1/n. Therefore, all the
elements of F are zero, and κ = 1, i.e., there is the highest possible network cohesion.
In the latter case, there is no interaction (link) between any two nodes and κ = 0.8

Next,weprovide twobasic important properties of κ . Thefirst states that isomorphic
networks have the same cohesion and the second states that the cohesion of a network
is always between zero and one. Both these two results hinge on the following theorem,
which we state and prove first.

Theorem 1 If a matrix Q ∈ R
n×n has rows that sum to one, then

ρ (CnQ) = max
λ∈Z |λ| (14)

in which Z = σ (Q)\{1}, and σ (Q) is the set of eigenvalues of Q.

Proof First, note that 0 is an eigenvalue of the centering matrix Cn associated with
eigenvector en . This is true because

Cnen =
(
In − 1

n
ene

T
n

)
en = en − 1

n
enn = 0. (15)

Also, recall that for anymatrix with rows that sum to one, 1 is an eigenvalue associated
with eigenvector en . Now let

Sn =
(

1 0Tn−1
en−1 In−1

)
, (16)

with

S−1
n =

(
1 0Tn−1−en−1 In−1

)
(17)

8 Note that applying the centering matrixCn to R from the left removes the mean from each of the columns
of a matrix, therefore collecting the elements fi j = ri j − r̄ j into a matrix F gives the same elements as
Cn R.
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8 T. V. V. Cavalcanti et al.

and observe that the first column of matrix Sn is the eigenvector of Cn corresponding
to eigenvalue 0 and the eigenvector of Q corresponding to eigenvalue 1. Then

S−1
n CnSn =

(
0 − 1

n e
T
n−1

0 In−1

)
. (18)

From Horn and Johnson (1985), ex. 8 in 1.4 (matrix deflation), we have that the
remaining eigenvalues of Cn are those of the matrix in the lower right block of the
above matrix, i.e., 1 with algebraic multiplicity n − 1. Moreover,

S−1
n QSn =

(
1 ∗
0 Q1

)
, (19)

where from the same result we have that the remaining eigenvalues of Q are those of
Q1, i.e., σ (Q1) = σ (Q)\{1} . Next, we will show that σ (CnQ) = (σ (Q) \ {1}) ∪
{0} , i.e., that the spectrum of CnQ is generated by replacing eigenvalue 1 with 0 in
the spectrum of Q. First, it is straightforward to show that 0 is an eigenvalue of CnQ,
with eigenvector en : Since Qen = en , we have that

CnQen =
(
In − 1

n
ene

T
n

)
Qen =

(
In − 1

n
ene

T
n

)
en = en − 1

n
enn = 0. (20)

Then, using the same result as above, we can use the same Sn to show that

S−1
n CnQSn =

(
S−1
n CnSn

) (
S−1
n QSn

)
=

(
0 − 1

n e
T
n−1Q1

0 Q1

)
. (21)

Therefore the remaining eigenvalues of CnQ are the eigenvalues of Q1, i.e., all the
eigenvalues of Q apart from 1. In other words,

σ (CnQ) = (σ (Q) \ {1}) ∪ {0} . (22)

This implies that
ρ (CnQ) = max

λ∈Z |λ| . (23)

�	
This theorem says that if we center a matrix Q with rows that sum to one around

its column means, then the spectral radius of the centered matrix is the second largest
modulus eigenvalue of Q. In fact, the theorem shows a lot more than that, i.e., that the
whole spectrum of CnQ coincides with the spectrum of Q after replacing eigenvalue
1 with eigenvalue 0. Note that this theorem holds generally for matrices with rows that
sum to one, not just stochastic matrices. An immediate consequence of this theorem
is that the cohesion of a network is equal to one minus the second largest modulus
eigenvalue of its intensitymatrix. This observation is very useful for proving properties
of network cohesion. With this result in place, we can now show two properties of
network cohesion κ .
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Network cohesion 9

Proposition 1 Isomorphic networks have the same cohesion.

Proof Let N1 and N1 be networks with adjacency matrices G1 and G2, respectively.
Since the two networks are isomorphic, there exists a permutation matrix P such that
G2 = PG1P−1. Also, P−1 = PT since P is a permutation matrix. Let R1 = D1G1
and R2 = D2G2 be their corresponding intensity matrices. To show the result it
suffices to show that R1 and R2 have the same eigenvalues. Note that

R2 = D2G2 = D2PG1P
T = PD1G1P

T = PR1P
T , (24)

where the third equality follows the fact that if G2 = PG1P−1, then it must be that
D2 = PD1P−1 from (9). Therefore R1 and R2 are similar and thus have the same
eigenvalues. �	
Proposition 2 The cohesion of a network N satisfies the inequality 0 ≤ κ ≤ 1.

Proof From the definition of the network cohesion and Theorem 1, it suffices to show
that the second largest modulus eigenvalue of R is between 0 and 1. From Theorem
8.1.22 of Horn and Johnson (1985), we have that

min
i

∑
j

ri j ≤ ρ (R) ≤ max
i

∑
j

ri j ⇐⇒ 1 ≤ ρ (R) ≤ 1. (25)

Therefore, the spectral radius of ρ (R) is exactly equal to 1. It follows that, |λ| ≤
ρ (R) = 1 for any other eigenvalue λ of R. �	
Corollary 1 Special networks

(i) For the empty network the cohesion is κ = 0.
(ii) For the complete network the cohesion is κ = 1.
(iii) For the star network the cohesion is κ = 1/2.

Proof All three statements follow immediately by applying Theorem 1 and Proposi-
tion 1 to the particular networks. �	
Corollary 2 Disconnected networks have zero cohesion.

Proof Without loss of generality, we consider a disconnected network that consists of
two components. Then from Proposition 1, there exists an isomorphic network with
the same cohesion and has intensity matrix that can be written in the block form

R =
(
R1 0
0 R2

)

where R1 and R2 are the corresponding intensity matrices of the two disconnected
components. The eigenvalues of R are then all the eigenvalues of R1 and R2. To see
this let for example λ1 be an eigenvalue of R1, with eigenvector x1. Then(

R1 0
0 R2

) (
x1
0

)
=

(
R1x1
0

)
=

(
λ1x1
λ10

)
= λ1

(
x1
0

)
,
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10 T. V. V. Cavalcanti et al.

i.e., λ1 is an eigenvalue of R with eigenvector x = (
xT1 0T

)T
. Since each of the

intensity matrices R1 and R2 has 1 as an eigenvalue, R has 1 as an eigenvalue with
multiplicity at least 2. Therefore, from Theorem 1, after replacing one of these with
the zero eigenvalue, the set of eigenvalues of F still contains 1, and therefore, κ

= 0. �	
Proposition 2 states that network cohesion varies between 0 and 1 and Corollary 1

gives a natural interpretation to these two bounds, by mapping them to two extreme
networks: the smallest possible cohesion is achieved for the empty network (no links),
and the highest cohesion is achieved for the complete network (all links). The star
network has cohesion equal to 1/2 and provides a separation point between networks
with low cohesion (<1/2) and high cohesion (>1/2).

4 AK growth model continued and some other examples

Wenowreturn to the simple growthmodel thatwepresented inSect. 2. In order to deter-
mine under what conditions the system (5) converges to x∗ = en , and at what speed,
we first show an auxiliary result that provides the exact spectrum of the Jacobian at x∗.
Lemma 1 For a network N, let F be the relative intensity matrix and Cn as defined
in Sect. 3. Then, for any scalars b, d ∈ R, the spectrum of bF + dCn is

σ (bF + dCn) = {bλ1 + d, . . . , bλn−1 + d, 0} (26)

with λi ∈ σ (F) \ {0}.
Proof First note that eneTn F = 0, and FeneTn = 0, and therefore

FCn = F − F

(
1

n
ene

T
n

)
= F −

(
1

n
ene

T
n

)
F = CnF, (27)

i.e., the matrices F and Cn commute. From Theorem 2.4.9 in Horn and Johnson
(1985), the spectrum of the sum of commuting matrices consists of combinations of
sumsof the eigenvalues of thesematrices, i.e.,σ (bF + dCn) ⊆ bσ (F)+dσ (Cn). The
eigenvalues ofCn are 0 with multiplicity 1 and 1 with multiplicity n−1, i.e., σ (Cn) =
{0, 1, . . . , 1}, and the eigenvalues of F are 0 with multiplicity 1 and λ1, . . . , λn−1, i.e.,
σ (F) = {0, λ1, . . . , λn−1}, as shown in Theorem1. For bothCn and F the eigenvector
corresponding to eigenvalue 0 is e. This implies that 0 is also an eigenvalue of bF+dCn

with eigenvector e. We can then apply the same deflation argument as in the proof of
Theorem 1, with Sn as defined in expression (16), to obtain

S−1
n (bF + dCn) Sn = b

(
0 ∗
0 F1

)
+d

(
0 ∗
0 In−1

)
=

(
0 ∗
0 bF1 + dIn−1

)
. (28)

Then, the remaining eigenvalues of bF+dCn are the eigenvalues of bF1 +dIn−1, i.e.,
bλ1 + d, . . . , bλn−1 + d. Therefore

σ (bF + dCn) = {bλ1 + d, . . . , bλn−1 + d, 0} . (29)

�	
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Network cohesion 11

We can now establish the following result for theAK growthmodel with technology
spillovers:

Proposition 3 Let the dynamics of the n countries in network N be described by (5).
Then the solution x∗ = en is stable and the countries converge, if the network cohesion
is strictly positive, i.e., if κ > 0.

Proof To confirm that the solution is stable, we need to examine whether the eigen-
values of the Jacobian at x∗ are inside the unit circle. Recall that

J
(
x∗) = 1

sA + 1 − δ
[βsAF + (αsA + 1 − δ)Cn] . (30)

Using Lemma 1, we can establish that the eigenvalues of J (x∗) are

{bλ1 + d, . . . , bλn−1 + d, 0} , (31)

where

b = βsA

sA + 1 − δ
> 0, d = αsA + 1 − δ

sA + 1 − δ
> 0. (32)

For the solution x∗ = e to be stable, we need all the eigenvalues of J (x∗) to be
strictly inside the unit circle, i.e., we need |bλi + d| < 1. First we note that the
eigenvalues of F are real, because they coincide with the eigenvalues of the row
stochastic matrix R apart from eigenvalue λ0 = 1, as shown in Theorem 1, and R is
similar to D−1/2GD−1/2, which is symmetric for undirected networks. We also know
that 0 ≤ |λi | ≤ 1 since R is row stochastic. From the triangle inequality, and since
b, d ≥ 0, a sufficient condition for stability is then b |λi | + d < 1. Recalling that
β = 1 − α, the condition is equivalent to requiring that |λi | < 1 for all i , or that
κ = 1 − ρ (F) > 0. �	

The intermediate steps of the above proof also provide insights about the rate of
convergence in this growth model. The spectrum of the Jacobian is

σ
(
J

(
x∗)) =

{
βsA

sA + 1 − δ
λi + αsA + 1 − δ

sA + 1 − δ
, i = 1, . . . , n − 1

}
∪ {0} . (33)

Therefore the rate of convergenceρ (J (x∗)) for (5) cannot be higher than 1− (1−α)sA
sA+1−δ

κ ,
an upper bound that decreases as cohesion increases and the following is true:

Corollary 3 Higher network cohesion implies faster convergence to the balanced
growth path of the balanced growth model of Sect. 2.

Next, we discuss some other examples in which network cohesion is relevant. First,
the measure of network cohesion also arises in Cavalcanti and Giannitsarou (2015)
in a model of endogenous growth with overlapping generations and human capital
accumulation that depends on investment in education and local network externali-
ties. In that framework, different households represent the nodes of the network. The
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12 T. V. V. Cavalcanti et al.

paper then examines under what conditions populations that are initially heteroge-
neous can converge to a balanced growth path of long-run equality. It is shown that
network cohesion is crucial for ensuring stability of the dynamic system and con-
vergence to a balanced growth path of long-run equality, even when the network
is connected: if network cohesion is low, the local externality effect may not be
strong enough to guarantee convergence to equality, and inequality persists perpet-
ually.

More generally, cohesion as a network statistic is particularly useful in nonstation-
ary dynamic models in which balanced growth, rather than a steady state, may be
present. As is typical in such models, the variables and dynamics are transformed by
dividing through by averages, and the analysis is carried out in terms or relative vari-
ables (i.e., deviations of variables from an average). In suchmodels, the local dynamics
and their properties can be approximated at first order by the Jacobian, which is typi-
cally a linear function of a dispersion matrix F , i.e., a matrix of deviations of network
intensities from corresponding averages. The spectral radius of F (and thus network
cohesion) is then crucial for determining local stability of a balanced growth path.
Then, one can think of a wide spectrum of models in which externalities and neigh-
borhood effects maymatter for long-run growth and inequality, and for which network
cohesion would be crucial for stability and speed of convergence to a balanced growth
path (e.g., Ray 2006; Garcia-Peñalosa and Turnovsky 2008; Mierau and Turnovsky
2014).

These examples are also useful for demonstrating the link between network
cohesion and various other strands of literature in engineering, operations research
and graph theory. In particular, it is known that the second largest eigenvalue of
an appropriately defined stochastic matrix represents the rate of convergence of
Markov chains to stationarity and this property has been used to analyze conver-
gence rates of genetic algorithms, various models of statistical physics, or problems
of global clock synchronization. Examples of such applications can be found in
Mitra and Weiss (1980), Landau and Odlyzko (1981), Diaconis and Stroock (1991),
Diaconis and Saloff-Coste (1993), Römer (2001) and Li and Rus (2006). The mea-
sure of network cohesion we present here is defined as one minus the coefficient
of dispersion, where, as we have shown, the coefficient of dispersion coincides
with the second largest modulus eigenvalue of a stochastic matrix. The fact that
higher cohesion (or lower coefficient of dispersion) implies faster convergence
in dynamic growth models is in direct correspondence with the aforementioned
results.

There is also a more direct link to the literature on learning, imitation and social
influence in the context of social and information networks (see Goyal (2007) and
Jackson 2008, and references therein). In a simple model of consensus formation as
in DeGroot (1974), the society starts from initial opinions on a matter. Each agent (in
a network) updates his opinion using a weighted average of his current opinion and
the average opinion of his neighbors. We can then analyze the dynamic behavior of
the vector of all opinions as deviations from the average opinion in the society, and
give conditions under which consensus is reached in the limit. Once again, strictly
positive network cohesion is required for convergence and the higher cohesion is, the
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Fig. 1 Network aggregation

faster convergence is achieved.9 More generally, our measure of network cohesion
can be useful for dynamic settings of opinion formation and disagreement, such as
that analyzed in Melguizo (2016).

5 Aggregation

In this section, we propose a way of aggregating a large network to a resulting smaller
network with the same network cohesion. The importance of such an aggregation
result is practical. Its purpose is to reduce a large network structure into a smaller, more
manageable setting, while preserving the dynamic properties of their corresponding
models. Consider, for example, the context of the AK growth model we have been
working with so far, and assume that the world consists of five countries q = 1, . . . , 5,
each of which have three, two, four, two and one region(s), respectively. We assume
that all regions within a country are linked, as shown in the left-hand side of Fig. 1.
The adjacency matrix of this large network (the nodes of which are regions) is

G =

⎡
⎢⎢⎢⎢⎣
e3eT3 0 0 0 e3
0 e2eT2 0 0 e2
0 0 e4eT4 0 e4
0 0 0 e3eT3 e3
eT3 eT2 eT4 eT3 1

⎤
⎥⎥⎥⎥⎦ , (34)

and its cohesion is 0.2182.
We then ask, how should we ‘aggregate’ the network so that the resulting smaller

network has the same cohesion as the original one? The answer is intuitive. We con-
struct a new network that has the same number of nodes as the number of groups we
identify (here five countries), and each new node corresponds to one of the countries.
The new network is weighted, and the link from node s to node q is weighted as nqns
(i.e., the number of regions in country q, times the number of regions in country s) if

9 Interesting variations of this model can be found in DeMarzo et al. (2003) and more recently Jiménez-
Martínez (2015).
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14 T. V. V. Cavalcanti et al.

the two groups were originally connected, and 0 otherwise. The resulting aggregated
network is pictured in right-hand side of Fig. 1. Its adjacency matrix is

H =

⎡
⎢⎢⎢⎢⎣
9 0 0 0 3
0 4 0 0 2
0 0 16 0 4
0 0 0 9 3
3 2 4 3 1

⎤
⎥⎥⎥⎥⎦ (35)

and its cohesion is 0.2182.
Then, we can study the growth dynamics of the big, disaggregated system of 13

difference equations with

kit+1 = sA

(∑13
j=1 gi j k j t∑13
j=1 gi j

)β

k1−β
i t + (1 − δ)kit , i = 1, . . . , 13, (36)

or the smaller, aggregated system of 5 difference equations

kqt+1 = sA

(∑5
s=1 hqskst∑5
s=1 hqs

)β

k1−β
qt + (1 − δ)kqt , q = 1, . . . , 5, (37)

where the matrices G and H are defined as in (34) and (35). The local dynamics of
the large system (regions) are described by

xt+1 − x∗ = J
(
x∗) (

xt+1 − x∗) , (38)

with

J
(
x∗) = 1

sA + 1 − δ
[βsAC13R + ((1 − β) sA + 1 − δ)C13] , (39)

and the local dynamics of the small system (countries) are described by

χt+1 − χ∗ = J̃
(
χ∗) (

χt+1 − χ∗) , (40)

where χ is the vector of relative capital of all countries and

J̃
(
χ∗) = 1

sA + 1 − δ
[βsAC5P + ((1 − β) sA + 1 − δ)C5] (41)

is the Jacobian of the small system. In what follows, we will show general results that
the ensure that the two Jacobians have the same nonzero eigenvalues. Since the two
networks have the same cohesion, the proof of Proposition 4.2 is the same for either
network and the rate of converge for both systems is the same.

We now formalize the notion of aggregation and provide a theorem and corollaries
that ensure that all the dynamic properties of these two systems are identical. In par-
ticular the theorem ensures that the two Jacobians have the same nonzero eigenvalues
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and the corollaries ensure that all these eigenvalues are real and the two networks have
the same cohesion. This means that the proof of Proposition 3 is the same for either
network and that the rates of converge of the two systems coincide.

For a given undirected network N = {υi , i = 1, 2, . . . , n}, using a suitable permu-
tation, we first find a corresponding isomorphic network that reorganizes the nodes in
such a way that the resulting adjacency matrix G can be written in block form

G =

⎡
⎢⎢⎢⎣
G11 G12 · · · G1k
G21 G22 G2k
...

. . .
...

Gk1 Gk2 · · · Gkk

⎤
⎥⎥⎥⎦ , (42)

with

Gqq = πqqenq e
T
nq , (43)

Gqs = πqsenq e
T
ns , whenever q �= s, (44)

in which πqq > 0 and πqs ≥ 0, q �= s are scalars, and the dimensions of Gqs are
nq×ns . The assumptions on theweights in the network ensure that the diagonal blocks
always have strictly positive entries. The off-diagonal blocks can be zero (when the
corresponding groups of nodes are not linked) or have strictly positive entries (when
the corresponding groups of nodes are linked). Proposition 1 ensures that the cohesion
of the original network N is the same as the cohesion of the one with adjacency
matrix G. Next, we construct the corresponding aggregate network with k nodes, and
corresponding adjacency matrix H which has typical element

hqs = nqnsπqs . (45)

With this in place, we can state the following results:
Aggregation. Let N = {υi , i = 1, 2, . . . , n} be a network that is isomorphic to a

network with adjacency matrix G as defined by (42)–(44) and intensity matrix R, and
let its corresponding aggregate network M = {

uq , q = 1, 2, . . . , k
}
have adjacency

matrix H given by (45) and intensity matrix P . Then the spectrum of R is equal to
the spectrum of P plus the eigenvalue 0 with multiplicity n − k.

Proof We start from the intensity matrix of the large network that is isomorphic to N ,
denoted by R. Its typical element is

ri j = gi j∑n
j=1 gi j

= gi j∑n1
j=1 gi j + ∑n1+n2

j=n1+1 gi j + · · · + ∑n1+···+nk
j=nk−1+1 gi j

. (46)

But

n1+···+ns∑
j=ns−1+1

gi j = nsπqs = nqnsπqs

nq
= 1

nq
hqs .
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16 T. V. V. Cavalcanti et al.

Therefore, if row i is in block Gqs , then

ri j = nq
gi j

hq1 + hq2 + · · · + hqk
. (47)

Also,

nqgi j = nqπqs = 1

ns
hqs .

Combining these, we have that if row i is in block Gqs , then

ri j = 1

ns

(
hqs∑k
s=1 hqs

)
= 1

ns
pqs, (48)

inwhich pqs is the typical element of the intensitymatrix P for the aggregated network.
We can then write R in block matrix form as

R =
⎡
⎢⎣
R11 · · · R1k
...

. . .
...

Rk1 · · · Rkk

⎤
⎥⎦ , (49)

where

Rqs = pqs

(
1

ns
enq e

T
ns

)
. (50)

First we show that if λ is an eigenvalue of P , then it will also be an eigenvalue for R.
To see this, let x = [x1, . . . , xk]T be an eigenvector of P, corresponding to eigenvalue
λ, and let x̃ = [

x1e′
n1 · · · xke′

nk

]′
. Then,

Rx̃ =
⎡
⎢⎣

(p11x1 + p12x2 + · · · p1k xk) en1
...

(pk1x1 + pk2x2 + · · · + pkkxk) enk

⎤
⎥⎦ =

⎡
⎢⎣

λx1en1
...

λxkenk

⎤
⎥⎦ = λx̃ (51)

The penultimate equality follows from the fact that λ is an eigenvalue of P correspond-
ing to eigenvector x . Therefore, k of the n eigenvalues of R are the k eigenvalues of
P . Next, we show that the remaining eigenvalues are all zero. First, it is trivial to show
that the linear system Ry = 0 has infinitely many solutions, with n − k free variables.
Therefore, 0 is an eigenvalue, with geometric multiplicity equal to dimNulR, where
NulR is the null space of R. Since the geometric multiplicity is smaller than or equal
to algebraic multiplicity of 0, and there cannot be more than n eigenvalues in total, it
must be that the algebraic multiplicity of 0 is n − k. �	
Corollary 4 Let N = {υi , i = 1, 2, . . . , n} be a network that is isomorphic to a
network with adjacency matrix G as defined by (42)–(44) and let its corresponding
aggregate network M = {

uq , q = 1, 2, . . . , k
}
have adjacency matrix H given by

(45). Then κN = κM.
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Proof Follows immediately from Theorems 1 and 5. �	
Corollary 5 Let M = {

uq , q = 1, 2, . . . , k
}
be a network that is derived from aggre-

gating a larger network as described by the adjacency matrices (42)–(44) and (45).
Then all the eigenvalues of its intensity matrix and relative intensity matrices are real.

Proof Let P be the intensity matrix of M . From Theorem 5, σ (P) = σ (R)\X{0, . . . ,
0}, where R is the intensity matrix of the original undirected and unweighted network,
with adjacency matrix G and D defined as in (9). Then the matrix R = D−1G is
similar to D−1/2GD−1/2. Since G is symmetric, the eigenvalues of R must be real
and the result follows. The eigenvalues of the relative intensity matrix F are also real
from the fact that its spectrum is equal to the spectrum of R by replacing eigenvalue
1 with eigenvalue 0. �	

Wenote that the network aggregation proposed here is such that the generated inten-
sity (stochastic)matrix P of the aggregated network is anunbiased regular aggregation
of the intensity matrix R, in the sense defined in Howe and Johnson (1989). The term
regular refers to satisfying two axioms, namely that the aggregator is a linear function
and that it assigns each state in the original process to exactly one superstate of the
aggregated process. The term unbiased refers to the fact that the aggregation depends
only on the partition of the original states and preserves the Markovian property.10

6 Comparison of cohesion with other network summary statistics

In this section we discuss how network cohesion relates to other summary statistics
of networks and graphs and explain why they are similar or how they differ. The first
statistic we juxtapose with network cohesion is spectral homophily defined in Golub
and Jackson (2012a, b). This is defined in the context of a multitype random network,
which consists of n nodes, each of which is of one of k different types. Types q
and s are linked with some probability πqs and not linked with probability 1 − πqs .
Collecting these probabilities in a matrix , Golub and Jackson (2012a) then define
a matrix P (, n) with typical element

pqs (, n) = hqs (, n)∑k
s=1 hqs (, n)

, (52)

with
hqs (, n) = nqnsπqs . (53)

10 These can be verified using

S =

⎡
⎢⎢⎢⎢⎣
eTn1 0 0
0 eTn2 0

. . .

0 0 eTnk

⎤
⎥⎥⎥⎥⎦ and T =

⎡
⎢⎢⎢⎢⎢⎣

1
n1

en1 0 0

0 1
n2

en2 0

. . .

0 0 1
nk

enk

⎤
⎥⎥⎥⎥⎥⎦

and applying Theorems 1 and 2 in Howe and Johnson (1989).
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18 T. V. V. Cavalcanti et al.

The matrix H (, n) with typical element hqs (, n) is the expected number of links
between different types of the random network and pqs (, n) is then the expected
fraction of links that nodes of type q will have with nodes of type s. The spectral
homophily is then defined as the second largest eigenvalue of P (, n). Any realized
network exhibits more (spectral) homophily if the probabilities in the diagonal of this
matrix are higher than the off-diagonal probabilities, i.e., when nodes tend to linkmore
often with the own kind (same type nodes). The close relationship between network
cohesion and network homophily becomes clear oncewe reinterpret thematrix defined
by (45) as a matrix of the expected number of links between different types as in (53),
by imposing 0 ≤ πqs < 1. Then, the spectral homophily of the random network (i.e.,
the second largest eigenvalue of P (, n)) is equal to the second largest eigenvalue of
the intensitymatrix of the aggregate network, which by Theorem 1 and the aggregation
results, is equal to one minus the cohesion of a large network defined by (42)–(44).
We note that although the two measures are related, they arise from very different
settings: network cohesion on the one hand is not defined for random networks and
is in this sense less general; on the other hand, it can be defined for directed and
weighted networks, and the aggregation results go through for any πqs > 0, so is in
this sense more general than spectral homophily. Also, as emphasized earlier, the way
we define network cohesion is suitable for models of endogenous perpetual growth
with a balanced growth path; spectral homophily cannot be used directly for such
models, without the use of suitable transformations and the mathematical results that
we prove here.

The conceptual origins of both network cohesion and spectral homophily can be
traced to the second measure we discuss here, namely a normalization of algebraic
connectivity introduced by Fiedler (1973) and developed further by Mohar (1991).11

This is defined via the graph Laplacian, which is an n × n matrix L , with typical
element

li j =
⎧⎨
⎩

ki if i = j
−1 if i �= j and gi j �= 0
0 otherwise

, (54)

in which ki is the degree of node i . The algebraic connectivity is then the second
smallest eigenvalue of the Laplacian, and it is nonzero if and only if the network
is connected.12 It measures how well-connected a network is. In the engineering and
biology literature, it is considered ameasure of the ability of a network to synchronize:
as it becomes larger, the network is better connected andmore ‘eager’ to synchronize.13

Given this interpretation, the relation of network cohesion to algebraic connectivity is
clearer. To understand this relation, first note that for an undirected and unweighted
network, the Laplacian is given by

L = D − G, (55)

11 Also see Newman (2010) for further details.
12 The Laplacian is a symmetric matrix, and therefore, all its eigenvalues are real.
13 See, for example, Holroyd (2006).

123



Network cohesion 19

in which D is defined as in expression (9) and G is the adjacency matrix. Consider a
normalization of the Laplacian matrix

L =D−1/2LD−1/2 = In − D−1/2GD−1/2, (56)

and recall that D−1/2GD−1/2 is similar to R. The eigenvalues of the normalized
Laplacian (i.e., a normalized algebraic connectivity) are then equal to 1 minus the
eigenvalues of R, which in turn will be equal to network cohesion, whenever the
second largest modulus eigenvalue of R is nonnegative.

Despite the similarities however, the two statistics are not necessarily identical.
First, this relationship between them can be established for undirected networks only,
while cohesion can be defined in general for directed networks too. Also, the spectral
radius of F is not always the same as the second largest eigenvalue of R, if, for
example, R has a negative eigenvalue which is larger in absolute value than its second
largest eigenvalue, or if the eigenvalues of F are complex. Last, the interpretation of the
elements of thematrix F and thus its spectral radius ismore natural and straightforward
in the context of models with perpetual growth than that of the Laplacian and its
normalization.

In the broad literature of graph theory and networks, there is a large variety of
measures that capture aspects of cohesion. In the context of social networks, Borgatti
et al. (2013) discuss how the term ‘cohesion’ can be understood and propose a variety
of measures that can be of interest when thinking of network cohesion. These include
density, average degree, average clustering, various versions of connectivity, number
of components, fragmentation and diameter.

We note that while the number of components and fragmentation measures capture
cohesion in an intuitive way, they do not provide much information on the internal
structure of components. If a network, for example, is even weakly connected, then
fragmentation is always zero, and becomes strictly positive only when the network is
disconnected.On the other hand,whenever the network is disconnected, ourmeasure of
network cohesion is always zero, and becomes strictly positive for (weakly) connected
networks. In this sense, our measure is complementary to fragmentation, since κ

refines our understanding of what happens within components, but assigns a zero to
any disconnected network.

Other measures that are can be interpreted broadly as measures of cohesion are
assortative mixing by degree, the coefficient of variation, as defined in Acemoglu
et al. (2012) and centralization . Figure 2 presents the relationship with some of these
to our measure of network cohesion, based on randomly generating 10,000 networks
of 13 nodes. Each panel contains a scatter plot of network cohesion (horizontal axis)
and the corresponding measure (vertical axis). Definitions for these measures can be
found in standard textbooks (e.g., Newman 2010), or the aforementioned references.
As expected, as κ gets large, combinatorial connectivity, average degree and average
clustering increases, while the coefficient of variation broadly decreases. There is no
clear relationship between the assortative mixing by degree with network cohesion.
The same is true for degree centralization. Of all the measures presented here, the
closest one to network cohesion is indeed algebraic connectivity, as explained earlier,
but only for undirected and unweighted networks.
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Fig. 2 Comparison of network cohesion (horizontal axis) and various related network statistics (vertical
axis). Each panel is a scatter plot of cohesion κ and corresponding measure for 10,000 randomly generated
networks of n = 13 nodes

7 Closing comments

In this paper we introduced the notion of network cohesion, a summary statistic
that arises naturally in dynamic models of endogenous growth with (local) network
externalities. In such frameworks, positive network cohesion is crucial for ensuring
convergence to a balanced growth path and also determines the speed of convergence
to this path. We argue that this statistic is in general useful and relevant for the dynam-
ics of systems of variables that are defined in relative terms, i.e., as deviations from
the average value of the variable. This is because network cohesion is defined as one
minus the spectral radius of a matrix with elements that represent deviations of the
importance of links from their averages. We also note that other summary statistics of
networks that are mathematically related to cohesion (such as algebraic connectivity
or spectral homophily) cannot be directly used for the characterization of dynamic
systems with perpetual endogenous growth.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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