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Here, the predictive value of 3D human liver microtis-
sues (hLiMT) to identify known hepatotoxicants using a 
panel of 110 drugs with and without clinical DILI has been 
assessed in comparison to plated two-dimensional primary 
human hepatocytes (PHH). Compounds were treated long-
term (14 days) in hLiMT and acutely (2 days) in PHH to 
assess drug-induced cytotoxicity over an 8-point concen-
tration range to generate IC50 values. Regardless of com-
paring IC50 values or exposure-corrected margin of safety 
values, hLiMT demonstrated increased sensitivity in iden-
tifying known hepatotoxicants than PHH, while specific-
ity was consistent across both assays. In addition, hLiMT 
out performed PHH in correctly classifying hepatotoxi-
cants from different pharmacological classes of molecules. 
The hLiMT demonstrated sufficient capability to warrant 
exploratory liver injury biomarker investigation (miR-122, 
HMGB1, α-GST) in the cell-culture media. Taken together, 
this study represents the most comprehensive evaluation of 
3D spheroid hepatic cultures up to now and supports their 
utility for hepatotoxicity risk assessment in drug discovery.
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Abbreviations
ALI	� Acute liver injury
α-GST	� Alpha-glutathione-s-transferase
2D	� Two-dimensional
3D	� Three-dimensional
DILI	� Drug-induced liver injury
ELISA	� Enzyme-linked immunosorbent assay
hLiMM	� Human liver microtissue maintenance medium
hLiMT	� Human liver microtissue
HMGB1	� High mobility group box 1
NLR	� Negative likelihood ratio

Abstract  Drug-induced liver injury (DILI) continues to 
be a major source of clinical attrition, precautionary warn-
ings, and post-market withdrawal of drugs. Accordingly, 
there is a need for more predictive tools to assess hepato-
toxicity risk in drug discovery. Three-dimensional (3D) 
spheroid hepatic cultures have emerged as promising tools 
to assess mechanisms of hepatotoxicity, as they demon-
strate enhanced liver phenotype, metabolic activity, and 
stability in culture not attainable with conventional two-
dimensional hepatic models. Increased sensitivity of these 
models to drug-induced cytotoxicity has been demonstrated 
with relatively small panels of hepatotoxicants. However, 
a comprehensive evaluation of these models is lacking. 
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NPC	� Non-parenchymal cells
PHH	� Primary human hepatocytes
P450	� Cytochrome P450
miR-122	� MicroRNA-122
MOS	� Margin-of-safety
qPCR	� Quantitative polymerase chain reaction
PLR	� Positive likelihood ratio
ROC	� Receiver operating characteristic analysis
RT PCR	� Real-time PCR
ULN	� Upper limit of normal

Introduction

Drug-induced liver injury (DILI) continues to be a lead-
ing cause of attrition during drug development, withdrawal 
post-marketing, and cautionary/restrictive labeling (Wat-
kins 2011). Hepatotoxicity risk is difficult to predict based 
on the various etiologies that encompass DILI (Chalasani 
et  al. 2008), with unknown factors driving patient sus-
ceptibility towards hepatic stress and injury (Chalasani 
and Bjornsson 2010), coupled with the poor concordance 
of preclinical species to identify human hepatotoxicants 
in vivo (Olson et al. 2000). However, retrospective analy-
sis over the past 50 years has identified several epidemio-
logic risk factors associated with DILI that include but are 
not limited to physicochemical properties of the drug, dose 
and disposition, and signals in a battery of in vitro assays 
(Dambach 2014). For example, high daily dose (>100 mg) 
and lipophilicity (log P > 3) (Chen et al. 2013), significant 
hepatic metabolism (>50% dose) (Lammert et  al. 2010), 
and being a substrate for CYP450 enzymes (Yu et al. 2014) 
have all been positively associated with clinical incidence 
of DILI. In concordance with high daily dose, compounds 
whose total plasma exposure, in particular Cmax, were 
greater than 1.1 μM, were associated with DILI from those 
that were not (Shah et al. 2015). A drug’s potency to inhibit 
the transporters of bile-acids (bile salt export pump (BSEP, 
ABCB11) and multidrug-resistance protein-4 (MRP4, 
ABCC4)) has been shown to correlate with human hepato-
toxicity (Kock et al. 2014; Morgan et al. 2010), which was 
increased when corrected for the total steady state plasma 
concentration (Morgan et al. 2013). Similarly, the ability of 
a drug to adversely affect mitochondrial function (O’Brien 
et  al. 2006; Porceddu et  al. 2012) was associated with 
increased risk for DILI, which was further enhanced when 
considering other risk factors such as BSEP inhibition and 
dose/exposure (Aleo et al. 2014; Shah et al. 2015).

Lastly, drug-induced cytotoxicity in hepatic cell lines 
(Gustafsson et  al. 2014; O’Brien et  al. 2006; Shah et  al. 
2015; Xu et  al. 2008) or primary-plated hepatocytes 
(Schadt et  al. 2015) has also been associated with human 
hepatotoxicity, especially when considering dose or 

exposure (Schadt et  al. 2015; Shah et  al. 2015). Depend-
ing on the endpoints and compound sets employed, these 
assays generally experience sensitivities between 50 and 
70% and specificities of 70 and 90% to identify human 
hepatotoxicants (Dambach 2014; Schadt et al. 2015). These 
high-to-medium throughput testing platforms have been 
proposed for incorporation in early phase drug develop-
ment, in combination with preclinical in  vivo studies to 
aid in optimizing compounds with favorable safety attrib-
utes. These include the use of cell-based imaging assays 
in HepG2 cells or human hepatocytes (Garside et al. 2014; 
O’Brien et al. 2006; Persson et al. 2013; Tolosa et al. 2012; 
Xu et al. 2008), or cell viability assessment in SV-40 trans-
formed human liver epithelial (THLE) cells (Dambach 
et al. 2005; Gustafsson et al. 2014). As hepatotoxicity has 
been proposed to occur as a result from multiple mecha-
nisms for many drugs, some workers have used multi-par-
ametric analysis in a single cell type (Garside et al. 2014; 
O’Brien et al. 2006; Persson et al. 2013; Tolosa et al. 2012; 
Xu et al. 2008) and others a panel of individual cell based 
and bile-acid transporter inhibition assays (Aleo et al. 2014; 
Schadt et al. 2015; Shah et al. 2015; Thompson et al. 2012) 
to predict hepatotoxicity retrospectively. However, few of 
the models contain the full complement and functionality 
of metabolic enzymes and transporters present in human 
hepatocytes in vivo (Gustafsson et al. 2014; Wilkening and 
Bader 2003), which is also true with plated primary human 
hepatocytes (PHH) that rapidly loose liver phenotype and 
CYP450 activity in traditional monolayer cultures (Rodri-
guez-Antona et al. 2002). These factors significantly limit 
the ability of these platforms to detect metabolite-induced 
cytotoxicity as well as the effects of the parent drug and its 
metabolites on bile-acid homeostasis/intrahepatic cholesta-
sis and mitochondrial impairment.

Recent advances in more physiologically relevant 
hepatic in  vitro models have created promising tools to 
enhance prediction of hepatotoxicity in drug discovery. 
These emerging platforms include, but are not restricted 
to, plated micro-patterned co-cultures of hepatocytes with 
stromal fibroblasts (Khetani and Bhatia 2008; Khetani 
et al. 2013), three-dimensional (3D) bioprinted liver tissues 
comprised of several hepatic cell types (Ma et  al. 2016; 
Nguyen et  al. 2016), and 3D spheroid cultures either as 
mono-culture or co-culture with hepatic non-parenchymal 
cells (NPC) (Bell et al. 2016; Messner et al. 2013). In most 
cases, these systems displayed enhanced metabolic activ-
ity, hepatocellular phenotype, and stability in culture, pre-
viously not attainable with traditional hepatic cell line or 
hepatocyte models [refer to review (Godoy et  al. 2013)]. 
For example, micro-patterned co-cultures of primary rat or 
human hepatocytes and stromal fibroblasts demonstrated 
that long-term (e.g., 7 days) treatment in this system out-
performed conventional cultures to identify hepatotoxicants 
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when assessing GSH depletion, albumin and urea secretion, 
and cell viability assessment for a 45-compound test set 
(Khetani et al. 2013). Previous studies using this platform 
demonstrated increased CYP450 activity and improved 
stability of liver phenotype over time in culture compared 
to monocultures of primary hepatocytes (Khetani and Bha-
tia 2008), which was hypothesized to be driving in part 
the increased sensitivity towards hepatotoxicants (Khetani 
et  al. 2013). Similarly, hepatic spheroid models have gar-
nered interest as additional tools to aid in predicting DILI 
(Bell et al. 2016; Hendriks et al. 2016; Messner et al. 2013). 
The 3D spheroid models have been reported to maintain 
metabolic activity and viability for up to 28 days in addi-
tion to the presence of canicular membrane structures (Bell 
et  al. 2016; Hendriks et  al. 2016; Messner et  al. 2013). 
Recent published work suggests that long-term treatment 
(28  days) in liver spheroid cultures increased sensitivity 
for detection of a panel of five drugs known to cause DILI 
clinically (Bell et al. 2016). However, a thorough retrospec-
tive assessment of known DILI-positive and DILI-neg-
ative compounds in a 3D liver spheroid model is lacking. 
To this end, we investigated cytotoxicity of 110 marketed 
drugs comprised of both DILI positives (63%) and nega-
tives (37%) in 3D human liver microtissues (hLiMT) that 
are made up of primary human hepatocytes and non-paren-
chymal cells (e.g., Kupffer cells) for repeat-dose long-term 
treatment. For comparison, we also assessed cytotoxic-
ity for the identical compound set in plated PHH from the 
same human donor used to prepare the hLiMT. The work 
presented here provides the most comprehensive evaluation 
of 3D liver spheroids up to now for retrospective prediction 
of clinical hepatotoxicity. Using drug-induced cytotoxicity 
as an endpoint, hLiMT assay experienced increased sen-
sitivity and specificity to identify known human hepato-
toxicants in relation to plated PHH. Together with recently 
published studies, this work supports 3D hepatic spheroid 
models as promising tools to aid in hepatotoxicity risk 
assessment during drug discovery.

Materials and methods

Reagents and chemicals

Cryopreserved PHH, primary human non-parenchymal 
cells (NPCs), InVitroGro HT™ thawing media, InVitroGro 
CP™ plating media, and 1% Torpedo™ Antibiotic Mix 
were obtained from BioreclamationIVT, Baltimore, MD, 
USA. CellTiter-Glo® Assay was obtained from Promega, 
Madison, WI, USA. 3D InSight™ Human Liver Microtis-
sues, GravityTRAP™ plates, 3D InSight™ Human Liver 
Maintenance Medium (hLiMM) AF and hLiMM TOX 
were obtained from InSphero AG, Schlieren, Switzerland. 

Microclime® lids were obtained from Labcyte, Sunny-
vale, CA, USA. BioCoat collagen I 384-well plates were 
obtained from Corning Life Sciences, Corning, NY, USA. 
All pharmaceutical drugs were provided by AstraZeneca 
Compound Management, AstraZeneca R&D, Macclesfield, 
United Kingdom, or Sigma Aldrich, St. Louis, MO, USA). 
All other reagents were obtained from Sigma-Aldrich 
Company Ltd (Poole, Dorset, UK or St. Louis, MO, USA).

Cytotoxicity assessment in 2D primary human 
hepatocytes

Cryopreserved PHH (lot IZT) were thawed in InVitroGro 
HT™ thawing media at 37 °C, pelleted, and resuspended. 
Viable hepatocytes were counted by Trypan blue exclu-
sion and plated in black-walled, BioCoat™ collagen 384-
well plates at 13,000 cells/well in InVitroGro CP™ plat-
ing media supplemented with 1% Torpedo™ Antibiotic 
Mix and 5% fetal bovine serum and incubated overnight 
for 18 h. Cells were then treated with compounds for 48 h 
diluted in InVitroGro HI™ incubation media contain-
ing 1% Torpedo Antibiotic Mix, 10% fetal bovine serum, 
and 1% DMSO. Cell viability was determined at the end 
of the experiment by CellTiter-Glo® Assay following the 
manufacturers protocols. Luminescence was determined on 
an EnVision™ Muliplate Reader (PerkinElmer, Waltham, 
MA, USA), and data were normalized to vehicle (1% 
DMSO) control wells. Inhibition curves and IC50 estimates 
were generated by non-linear regression of log-transformed 
inhibitor concentrations (8-point serial dilutions including 
vehicle) vs. normalized response with variable Hill slopes, 
with top and bottom constrained to a constant values of 100 
and 0, respectively (GraphPad Prism™, GraphPad Soft-
ware, La Jolla, CA, USA). The highest concentration tested 
for each compound was either the 100× the total clinical 
maximal plasma concentration (Cmax) for the individual 
compound or the limit of solubility in 1% DMSO in media 
if the 100× margin could not be achieved.

Cytotoxicity assessment in 3D human liver microtissues

All spheroid hLiMT used in this study were 3D InSight™ 
Human Liver Microtissues (InSphero AG, Schlieren, Swit-
zerland) and produced according to a patent-pending proto-
col (WO2015/158777A1) using the hanging-drop method. 
GravityTRAP™ plates with single hLiMT in each well 
were covered with Microclime® lids and incubated at 37 °C 
in a humidified 5% CO2 cell-culture incubator in BSA-
free 3D InSight™ hLiMM TOX medium. PHH (lot IZT) 
in co-culture with NPCs (lot RHV) were used to assess the 
cytotoxicity of all compounds listed, except for Dexameth-
asone. Additionally, other hepatocytes lots: IZT, OFA, SSR, 
and EBP, co-cultured with different NPC lots: RHV, JJB, 
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ZAR, and QGU were used to assess donor-dependent cyto-
toxicity for selected compounds.

Compound treatment started 6  days after seeding and 
lasted for 14 days. Re-dosing of the hLiMT was performed 
after 5 and 9  days from initial dosing. Seven serial dilu-
tions of 200X or 100X compound stocks in DMSO and the 
vehicle controls were aliquoted and frozen for each dosing. 
At the day of treatment, aliquots were diluted to working 
concentration with hLiMM TOX. Working concentration 
of acetaminophen, cycloserine, ethotoin, flucloxacillin and 
levocarnitine, along with corresponding dilutions were pre-
pared directly for each dosing in hLiMM TOX. For a sub-
set of compounds, 5–6  days of treatment was performed. 
For these studies, compounds were re-dosed on day 3 and 
the experiment was concluded at day 5 or 6. The concen-
trations tested for each compound were identical to those 
employed for the PHH cytotoxicity assessment outlined 
above.

Viability of hLiMT was determined at the end of the 
experiment with CellTiter-Glo® 2.0 Cell Viability Assay 
and luminescence were read on a SPARK™ 10  M plate 
reader (Tecan, Männedorf, Switzerland). Data from com-
pound-treated microtissues were normalized to the respec-
tive vehicle controls (0.5 or 1% DMSO) cultured on the 
same GravityTRAP™ ULA plate. The IC50 values were 
calculated in GraphPad Prism™ using identical methods 
listed above for PHH IC50 value estimations.

Compound list and DILI categorization 
of pharmaceuticals

The 110 drugs evaluated for cytotoxicity in  vitro were 
each assigned to one of five categories as described 

previously (Garside et  al. 2014), using information 
extracted from the peer reviewed scientific literature 
and from data contained in product labels. The details of 
the drugs and their categories are listed in Table  1 and 
Supplementary Table S1. Twenty-three have been with-
drawn from clinical use due to DILI, or have been given 
Black Box warnings for DILI in the US product labels, 
and were categorized as severity category 1 ‘‘Severe 
clinical DILI.’’ Twenty-three drugs have been associ-
ated with acute liver failure in humans, but have not been 
withdrawn or given DILI Black Box warnings, and were 
categorized as severity category 2 ‘‘High clinical DILI 
concern.’’ Twenty-three drugs have been reported to 
cause symptomatic liver injury, but not liver failure, and 
were categorized as severity category 3 ‘‘Low clinical 
DILI concern.’’ Sixteen drugs have been associated with 
raised serum levels of alanine aminotransferase and other 
enzymes indicative of drug-induced liver dysfunction, but 
have not been reported to cause symptomatic DILI, and 
were categorized as severity category 4 ‘‘Enzyme eleva-
tions in clinic.’’ The remaining 25 drugs have not been 
associated with evidence of liver dysfunction and were 
categorized as severity category 5 ‘‘No DILI.’’ Eighty-
one of the 110 drugs have been assigned to either High, 
Low or No DILI concern classes by other investigators, 
who considered the clinical severity of DILI reported in 
the clinic and labeling approved by US FDA (Chen et al. 
2011, 2016). This information is summarized in Supple-
mentary Table S1 as ‘‘LTKB DILI classification.’’ For 
binary classification of the compound set into compounds 
positive for clinical DILI and those without, any com-
pound in DILI classes 1–3 were considered DILI+ve and 
categories 4–5 were determined to be DILI–ve.

Table 1   Overview of compounds test set with their corresponding DILI severity category

DILI severity category labeling according to Garside et al. (2014)

DILI severity category Compounds

1: Severe clinical DILI (N = 23) Amiodarone, Benaxoprofen, Benzbromarone, Bosentan, Danazol, Dantrolene, Felbamate, Flutamide, 
Ketoconazole, Lapatinib, Methotrexate, Nefazodone, Perhexiline, Sitax(s)entan, Stavudine, Sudoxi-
cam, Sunitinib, Tienilic Acid, Tolcapone, Troglitazone, Trovafloxacin, Valproic Acid, Ximelagatran

2: High clinical DILI concern (N = 23) Amodiaquine, Atorvastatin, Azathioprine, Carbamazepine, Celocoxib, Clozapine, Diclofenac, Fluclox-
acillin, Imipramine, Indomethacin, Itraconazole, Levofloxacin, Meloxicam, Naproxen, Nimesulide, 
Nitrofurantoin, Paroxetine, Rosiglitazone, Simvastatin, Tacrine, Tamoxifen, Ticlopidine, Zileuton

3: Low clinical DILI concern (N = 23) Acetaminophen, Acetylsalicylic Acid, Amitriptyline, Beta-Estradiol, Chlorpheniramine, Chlorproma-
zine, Clomipramine, Cyclophosphamide, Desipramine, Fluoxetine, Furazolidone, Metformin, Mito-
mycin C, Nifedipine, Penicillin V, Phenformin, Pimozide, Pioglitazone, Quinacrine, Rosuvastatin, 
Spectinomycin, Tretinoin, Verapamil

4: Enzyme elevations in clinic (N = 16) Bumentanide, Buspirone, Cycloserine, Dabigatran, Dexamethasone, Entacapone, Ethotion, Felodipine, 
Fludarabine, Meclofenamate, Minoxidil, Nadolol, Nicardipine, Pargyline, Penbutolol, Theophylline

5: No DILI (N = 25) Albuterol, Alendronate, Ambrisentan, Benserazide, Benztropine, Digoxin, Flavoxate, Flumazenil, 
Guanethidine, Hyoscyamine (Daturine), Indoramine, Levocarnitine, Liothyronine, Mecamylamine, 
Metergoline, Neostigmine, Orphenadrine, Oxybutynin, Phenoxybenzamine, Phentolomine, Procycli-
dine, Propantheline, Pyridostigmine, Streptomycin, Zomepirac
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Statistical methods for data: receiver operating 
characteristic analysis and likelihood ratio calculations

The objective of the statistical analysis was to compare the 
utilities of the PHH and hLiMT assays in terms of their 
ability to predict DILI-positive and -negative compounds. 
The 110 compounds common to both assays were analyzed 
(Table 1). Compounds were classified as either DILI posi-
tive (DILI+ve) or DILI negative (DILI−ve) (i.e., binary 
classification) using each assay IC50 [μM] and the ratio 
of the IC50 [μM] to total plasma Cmax [μM] (referred also 
throughout the manuscript as an assay “margin of safety” 
(MOS) for each compound) as the classifier. Several practi-
cal thresholds spanning the range of IC50 or MOS values 
were used for classification. The sensitivity and specificity 
of each assay were calculated by comparing DILI posi-
tive/negative status as determined by assay IC50 or MOS 
threshold with known DILI status for each compound. In 
addition, the concordance of each assay with known DILI 
status was assessed using Cohen’s Kappa (Cohen 1960). 
Kappa is interpreted as follows: kappa =  1 signifies full 
agreement between assay classification and known DILI 
class, and kappa  ≤  0 signifies no agreement other than 
what would be expected by random chance. The P value 
tests the null hypothesis that kappa  =  0. Concordance 
analysis using Cohen’s kappa goes beyond simple calcula-
tion of the proportion of agreement by accounting for the 
expected proportion of chance agreement, which depends 
on the number of DILI+ve and DILI−ve compounds pre-
sent in the sample set. A first pass analysis consisted of 
removal of censored compounds—i.e., compounds without 
IC50 values obtained—prior to calculating sensitivity and 
specificity. Statistical evaluation involved using receiver 
operating characteristic (ROC) analysis (Altman and Bland 
1994b) to determine a classification boundary between the 
two classes. The criterion for defining the discrimination 
threshold minimized the distance in the ROC curve from 
the perfect assay (sensitivity 100% and specificity 100%). 
The sensitivity and specificity were generated from a ten-
fold cross-validation of the classification model to avoid 
bias in using the data to both define the threshold and deter-
mine its characteristics. Statistical analysis was performed 
using R Version 3.0.1 (R Core Team 2013). For comparing 
the utility of each assay to identify hepatotoxicants from 
those that are not associated with clinical hepatotoxic-
ity, we calculated the positive likelihood ratio (PLR) and 
negative likelihood ratio (NLR) based on the sensitivity and 
specificity estimates outlined above. Likelihood ratios rep-
resent the ratio of the probability of the specific test result 
for compounds associated with DILI to the probability of 
compounds that do not cause DILI. Likelihood ratios sum-
marize sensitivity and specificity to characterize the utility 
of an assay for increasing certainty about a diagnosis and 

are less dependent on disease prevalence, which is impor-
tant for low incidence events such as DILI. In addition, 
these parameters can be calculated directly from sensitivity 
and specificity estimates for tests that have binary results 
(Altman and Bland 1994a; Deeks and Altman 2004). In 
practice, a PLR value of 1 indicates no influence on the risk 
of disease, values between 2 and 5 indicate a small/mod-
erate increase in probability, and values of 10 or greater 
indicate a large and often certain increase in the likelihood 
of disease. Similar interpretation is considered for NLR 
values, but inversely to PLR with values ranging from 1 to 
approaching 0.

Results

Comparison of drug‑induced cytotoxicity in 2D plated 
primary human hepatocytes and 3D human liver 
microtissues

Drug-induced cytotoxicity, as measured by decreases in 
total cellular ATP content, of the 110 compounds listed in 
Table 1 was determined in both PHH treated for 48 h and 
in hLiMT treated for 14 d. The data from these studies are 
summarized in Supplemental Tables S-2 and S-3, respec-
tively. Additionally, exemplary dose–response curves can 
be found in Supplementary Figure S1. The challenge faced 
when comparing these two datasets were that there were 
more IC50 values determined for the hLiMT in relation 
to the PHH for both DILI+ve and DILI–ve compounds. 
As depicted in Fig.  1a, IC50 values were not determined 
(ND) (e.g., IC50 value was greater than the highest dose 
tested) for 54% (37/69) and 33% (23/69) of the DILI+ve 
compounds assessed in PHH (open symbols) and hLiMT 
(closed symbols), respectively. The number of compounds 
without IC50 values increased to 80% (33/41) and 76% 
(31/41) determined in PHH and hLiMT (Fig.  1b) in the 
DILI−ve compound class, which was as expected from 
their clinical safety profile. In total, hLiMT detected more 
IC50 values (56/110) for the compound set than PHH 
(40/110) under these conditions, supporting that the hLiMT 
assay was more sensitive overall to drug-induced cytotoxic-
ity than the plated PHH assay.

Statistical analysis employing ROC assessments

Dose and drug exposure, as measured by the total plasma 
Cmax levels, has been shown to be associated with DILI 
(Chen et  al. 2013; Shah et  al. 2015). Accordingly, we 
asked what the predictive value of the Cmax levels in the 
complete test set in Table  1 was in the absence of any 
assay cytotoxicity assessment. Assay sensitivity and 
specificity were optimized across the Cmax values for the 
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binary DILI classified compound set using ROC analy-
sis. ROC curve analysis of the total plasma Cmax (Fig. 2) 
demonstrated overall sensitivity and specificity of 72.5 
and 73.2%, respectively, at an optimized threshold of 
1.26  μM with the highest area under the ROC curve 
(AUC) value (72.1) of all the comparisons. The thresh-
old was very similar to a recently published threshold 
of 1.1 μM total plasma Cmax set as a predictor of hepa-
totoxicity for a test set of 125 commercial drugs (Shah 
et  al. 2015). Using the fixed threshold of 1.26 μM, the 
PLR and NLR values for total plasma Cmax as a predictor 
of hepatotoxicity was 2.70 and 0.38, respectively. Based 
on this finding, subsequent comparisons of cytotoxicity 

data from both assays were performed using IC50 values 
as well as for the drug’s corresponding MOS value.

In contrast, statistical comparison between the cytotox-
icity data from both PHH and hLiMT assays for the 110 
compounds set was challenging due to the disparate num-
ber of cytotoxicity IC50 values observed between assays 
and the overall number of compounds that did not have 
IC50 values converge. This difference made performing 
ROC curve assessments difficult, where only compounds 
with IC50 values could be included. This comparison 
would bias results towards cytotoxic compounds in both 
DILI+ve and DILI−ve classes, in turn misrepresenting 
the specificity in an assay-dependent manner due to the 

D
ig
ox

in
Fl
ud

ar
ab

in
e

M
et
er
go

lin
e

B
en

zt
ro
pi
ne

M
ec

lo
fe
na

m
at
e

Pe
nb

ut
ol
ol

Pr
oc

yc
lid

in
e

En
ta
ca

po
ne

B
us

pi
ro

ne
C
yc

lo
se

rin
e

A
lb
ut
er
ol

A
le
nd

ro
na

te
A
m
br
is
en

ta
n

B
en

se
ra
zi
de

B
um

et
an

id
e

D
ab

ig
at
ra
n

D
ex

am
et
ha

so
ne

Et
ho

tio
n

Fe
lo
di
pi
ne

Fl
av

ox
at
e

Fl
um

az
en

il
G
ua

ne
th
id
in
e

H
yo

sc
ya

m
in
e

In
do

ra
m
in

Le
vo

ca
rn

iti
ne

Li
ot
hy

ro
ni
ne

M
ec

am
yl
am

in
e

M
in
ox

id
il

N
ad

ol
ol

N
eo

st
ig
m
in
e

N
ic
ar
di
pi
ne

O
rp

he
na

dr
in
e

O
xy

bu
ty
ni
n

Pa
rg
yl
in
e

Ph
en

ox
yb

en
za

m
in
e

Ph
en

to
la
m
in
e

Pr
op

an
th
el
in
e

Py
rid

os
tig

m
in
e

St
re

pt
om

yc
in

Th
eo

ph
yl

lin
e

Zo
m

ep
ira

c
0

50
100
150
200

1000
4000
7000

 
ND

PHH

DILI-ve Compounds (DILI Severity Categories 4-5)

hLiMT

C
yt

ot
ox

ic
ity

 IC
50

 [µ
  

 
 

M
]

M
ito

m
yc

in
 C

Itr
ac

on
az

ol
e

Q
ui

na
cr

in
e

Su
ni

tin
ib

Ta
m

ox
ife

n
Pe

rh
ex

ili
ne

K
et

oc
on

az
ol

e
A

to
rv

as
ta

tin
Pi

m
oz

id
e

C
hl

or
pr

om
az

in
e

A
m

od
ia

qu
in

e
R

os
uv

as
ta

tin
Si

m
va

st
at

in
C

lo
m

ip
ra

m
in

e
Fl

uo
xe

tin
e

B
en

zb
ro

m
ar

on
e

Pa
ro

xe
tin

e
Ph

en
fo

rm
in

β-
Es

tr
ad

io
l

Tr
og

lit
az

on
e

Tr
et

in
oi

n
A

m
itr

ip
ty

lin
e

To
lc

ap
on

e
A

za
th

io
pr

in
e

Ti
cl

op
id

in
e

D
es

ip
ra

m
in

e
Fl

ut
am

id
e

C
el

oc
ox

ib
La

pa
tin

ib
N

ef
az

od
on

e
A

m
io

da
ro

ne
C

lo
za

pi
ne

R
os

ig
lit

az
on

e
Fu

ra
zo

lid
on

e
Ve

ra
pa

m
il

Im
ip

ra
m

in
e

N
im

es
ul

id
e

D
ic

lo
fe

na
c

N
itr

of
ur

an
to

in
Ta

cr
in

e
B

os
en

ta
n

C
hl

or
ph

en
ira

m
in

e
Xi

m
el

ag
at

ra
n

Si
ta

x(
s)

en
ta

n
C

ar
ba

m
az

ep
in

e
Ti

en
ili

c 
A

ci
d

A
ce

ta
m

in
op

he
n

Fl
uc

lo
xa

ci
lli

n
A

ce
ty

ls
al

ic
yl

ic
 a

ci
d

B
en

ox
ap

ro
fe

n
C

yc
lo

ph
os

ph
am

id
e

D
an

az
ol

D
an

tr
ol

en
e

Fe
lb

am
at

e
In

do
m

et
ha

ci
n

Le
vo

flo
xa

ci
n

M
el

ox
ic

am
M

et
fo

rm
in

M
et

ho
tr

ex
at

e
N

ap
ro

xe
n

N
ife

di
pi

ne
Pe

ni
ci

lli
n 

V
Pi

og
liz

at
on

e
Sp

ec
tin

om
yc

in
St

av
ud

in
e

Su
do

xi
ca

m
Tr

ov
af

lo
xa

ci
n

Va
lp

ro
ic

 a
ci

d
Zi

le
ut

on

0
20
40
60
80

100

1500
3000
4500

 
ND

DILI+ve Compounds (DILI Severity Categories 1-3)
C

yt
ot

ox
ic

ity
 IC

50
 [

M
]

µ
A

B

Fig. 1   3D hLiMT were more sensitive to overall drug-induced cyto-
toxicity than 2D PHH. Cytotoxicity IC50 values for 110 drugs in 
PHH treated for 48 h (open symbols) and hLiMT treated for 14 days 
(closed symbols) for compounds classified as DILI+ve (DILI severity 

categories 1–3) (a) and DILI–ve (DILI severity categories 4–5) (b), 
respectively. Data represent IC50 value estimate for each compound 
listed on the x-axis. For compounds where no IC50 value converged, 
these were plotted at the top and classified as not determined (ND)
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differences in the number of compounds with IC50 values 
obtained between the PHH and hLiMT. To demonstrate this 
limitation, we censored compounds that did not have IC50 
values determined and then performed ROC curve analy-
sis on IC50 or MOS values to determine the relative pre-
dictive value of each assay and the optimal threshold for 
DILI classification. Based on the optimized thresholds for 
both IC50 and MOS values, both PHH and hLiMT exhib-
ited similar sensitivity for detection of known DILI causing 
drugs, with values between 63 and 72% (data not shown). 
Similarly, the specificity for both assays was similar, with 
values ranging between 50 and 57% for correct identifica-
tion of non-DILI drugs when considering cytotoxicity IC50 
values in isolation (data not shown). These findings were 
misleading, as there were 21 more IC50 values obtained 
for the test set in hLiMT assay relative to the PHH assay 
(Fig. 1; Supplemental Tables S2, S3).

Statistical analysis employing practical fixed thresholds

In practice and in practical terms, the absence of a cyto-
toxicity signal (e.g., IC50 value) would indicate a negative 
signal. To account for this, we examined the performance 
of each assay by binary classification of all compound 
data into DILI+ve and DILI−ve groups with pre-defined 
thresholds based on practical cutoffs of 10, 25, 50, and 
100 μM and 10×, 25×, 50×, and 100× for IC50 and MOS 
values, respectively. The summary for this analysis using 

IC50 values is presented in Table  2. Using this compari-
son, the sensitivity of hLiMT to identify DILI+ve com-
pounds was greater at every threshold assessed in relation 
to PHH. For example, hLiMT identified 18.8% (13/69) 
of DILI+ve compounds in relation to 4.3% (3/69) deter-
mined by PHH using a 10 μM threshold (Table 2). Simi-
larly at a 100 μM IC50 threshold, the sensitivity of hLiMT 
was twofold higher for hLiMT in relation to PHH assay, 
with values of 60.9% (42/69) and 33.3% (23/69), respec-
tively (Table  2). Conversely, the specificity was high and 
similar across the assays over the four thresholds, with val-
ues ranging between 85 and 98% between the two assays. 
Using a 100 μM IC50 threshold, there were 6 false posi-
tives identified for both PHH and hLiMT assays, with 4/6 
false positives consistent in both assays (digoxin, penbuto-
lol, metergoline, and benztropine) (Supplemental Tables S2 
and S3). The assay specificity observed in this comparison 
is in contrast to the specificity values obtained for PHH 
and hLiMT from the ROC curve assessment with the cen-
sored data, where values were 57 and 50%, respectively 
(data not shown). By incorporating all data in the statisti-
cal assessment, the specificity values are more in line with 
published reports of specificity of cytotoxicity assays to 
identify human hepatotoxicants that range between 70 and 
90% (Dambach 2014; Schadt et al. 2015). When consider-
ing both sensitivity and specificity for hLiMT in relation to 
PHH with a 100 μM IC50 value threshold, hLiMT outper-
formed PHH with both higher PLR values (4.16 vs. 2.28) 
and lower NLR values (0.46 vs. 0.78) for this 110 com-
pound set. 

Statistical analysis incorporating margin of safety

The predictive value of cytotoxicity in hLiMT to identify 
clinical hepatotoxicants was further examined by evaluat-
ing the MOS for each compound as outlined above using 
fixed thresholds of 10×, 25×, 50×, and 100× MOS val-
ues. The summary of performance of each assay using this 
approach can be seen in Table  3. Similar to comparisons 
using IC50 values, the hLiMT experienced increased sensi-
tivity to identify clinical hepatotoxicants when considering 
MOS values across all 4 thresholds evaluated (Table 3). For 
example at 10× MOS threshold, hLiMT assay experienced 
36.2% (25/69) sensitivity in contrast to 20.3% (14/69) assay 
sensitivity of PHH in identifying DILI+ve compounds. In 
both assays at this 10× MOS threshold only 1 false posi-
tive (meclofenamate) was identified resulting in assay spec-
ificity of 97.6%. The PLR for PHH and hLiMT were 8.32 
and 14.86, respectively. This indicates that an IC50 value 
obtained in PHH and hLiMT that is less than tenfold higher 
than the total plasma Cmax values would cause a moderate 
or large increase the probability of clinical DILI, respec-
tively. As the threshold increased to 25×, 50×, and 100×, 
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Fig. 2   Optimized receiver operating curve (ROC) for total plasma 
concentration (Cmax) alone as predictor of clinical hepatotoxicity. 
Optimized ROC curve for total plasma concentration (Cmax) for 110 
drugs associated with and without clinical hepatotoxicity. ROC curve 
was generated from total plasma Cmax data for the test set and an opti-
mized threshold (in bold) was determined
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higher PLR values and lower NLR values were consistently 
observed in hLiMT in relation to PHH (Table 3), support-
ing enhanced predictive value of hLiMT in relation to PHH 
to correctly identify clinical hepatotoxicants.

Comparison of concordance of PHH and hLiMT 
with known DILI status

Concordance of binary classification of compounds as 
DILI+ve or DILI−ve determined by PHH or hLiMT assay 
IC50 or MOS values with the known clinical DILI catego-
rization was assessed by estimating the kappa coefficient 
for each assay at each practical classification threshold 
(Tables 2, 3). Overall agreement with known-DILI status, 
as determined by Cohen’s kappa, was in general higher 
for the hLiMT than for the PHH when comparing within 
practical classification thresholds. Using MOS thresholds 
(Table 3), kappa values for the hLiMT assay were approxi-
mately twice that of kappa values for the PHH assay for 
each corresponding threshold. For both assays, the test of 
kappa = 0 is rejected at α = 0.05 for all thresholds, indi-
cating that there is some agreement beyond random chance 
between the PHH assay and known DILI status, although 
the agreement between the hLiMT assay and known DILI 
status is stronger. Using IC50 thresholds (Table  2), the 
higher concordance of the hLiMT with known DILI status 
was more pronounced, especially at the lower thresholds 
tested. At the 10 μM IC50 threshold, neither assay showed 
statistically significant concordance with known DILI sta-
tus beyond random chance agreement.

Comparison of predictive value in PHH and hLiMT 
across different DILI categories

As outlined above, hLiMT experienced greater sensitiv-
ity to identify compounds that were associated with clini-
cal hepatotoxicity than PHH, regardless of comparing IC50 
values alone or MOS calculations for binary DILI classifi-
cation. The binary classification was necessary to identify 
the performance for each assay for identification of known 
clinical hepatotoxicants using fixed practical IC50 and 
MOS values as the thresholds for binning. However, this 
approach failed to provide detail on the predictive value 
of these assays for the compounds in each of the five DILI 
severity categories. MOS values and the number of com-
pounds for which no IC50 value was detected (ND) for all 
compounds were plotted in relation to the five DILI severity 
categories with the 50× MOS threshold depicted for com-
parison (Fig.  3). The 50× threshold was plotted horizon-
tally and in doing so, the true positives, false negatives, true 
negatives, and false positives for each assay can be visual-
ized by quadrants (Fig. 3a). The numbers of false negative 
compounds (including both compounds above 50× MOS 

threshold and compounds with no IC50 value detected) for 
DILI severity category 1 compounds were lower for hLiMT 
(10/23) than PHH (13/23) (Fig. 3b, c). Similarly, the num-
ber of false negatives in DILI severity categories 2 and 3 
were greater in the PHH in comparison to those identified 
in hLiMT assay. Interestingly, the hLiMT and PHH pro-
duced equal numbers (6) of false positive signals in DILI 
severity categories 4 and 5 using 50× MOS threshold. For 
example, the hLiMT detected only benztropine as a false 
positive from DILI severity category 5 in relation to the 3 
false positive (digoxin, benztropine, procyclidine) from 
PHH in this category (Fig. 3b, c).

Further evaluation of the 14  day MOS values revealed 
that the hLiMT were able to better distinguish between 
structurally related hepatotoxic and non-hepatotoxic com-
pounds than PHH for specific drug classes (Fig.  3d, e). 
In both PHH and hLiMT, catechol-O-methyl transferase 
(COMT) inhibitors entacopone and tolcapone fell below 
the MOS threshold of 50×. Both PHH and hLiMT were 
also able to correctly identify nefazodone as hepatotoxic 
and buspirone as not. However, PHH failed to classify any 
of the three endothelin-receptor antagonists as all com-
pounds in this class did not have IC50 values. Conversely, 
hLiMT correctly identified sitax(s)entan and bosentan, 
both classified as DILI severity category 1, as positive with 
MOS values of 8.7× and 12.5×, respectively (Supplemen-
tal Table S-3). Moreover, hLiMT did not detect cytotoxic-
ity and a corresponding MOS value for ambrisentan, which 
does not have clinical DILI associations (Fig. 3d, e). Simi-
larly, hLiMT identified the peroxisome proliferator-acti-
vated receptor-gamma (PPARγ) agonists, troglitazone, and 
rosiglitazone, as DILI positive with MOS values less than 
50×, while only troglitazone was detected in PHH with an 
MOS <50×.

Time‑dependent cytotoxicity and reproducibility 
of hLiMT assay

The head-to-head comparisons between PHH at 48  h 
treatment and hLiMT at 14  day treatment demonstrated 
increased predictive value of hLiMT to identify known 
hepatotoxicants in relation to PHH. It remained unknown 
whether the enhanced predictive value was due to differ-
ences between the complexity of culture or the differ-
ences in treatment duration across both assays. To begin 
to address this, we evaluated cytotoxicity of a subset (38) 
of the 110 compounds in hLiMT treated for 5–6  days in 
relation to the cytotoxicity in 14-day treatment. Dose and 
time-dependent cell toxicity was observed with com-
pounds for which cell viability was determined after 
5–6 days or 14 days exposure. Prolonged exposure resulted 
in decreased IC50 values for 21 out of 38 compounds 
where data were obtained following both 5–6 and 14 day 
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exposure. (Supplementary Figure S2; Supplementary Table 
S4). A higher IC50 value was observed with only 1/38 drugs 
(flutamide, n =  1), all other values were unaffected. This 
data support that the treatment duration is a significant con-
tributor to achieve lower IC50 values across most of the test 
set (Fig. 1a).

Care was taken to evaluate cytotoxicity for the 110 
drugs in hLiMT and PHH using identical hepatocyte 
lots from the same donor to ensure that donor-to-donor 
variability would not affect interpretation of the results. 
However, the effect of the NPC donor on the enhanced 
sensitivity/specificity observed by the hLiMT in rela-
tion to PHH in identifying known hepatotoxicants 

could not be ruled out. To address this, we compared 
the 14 day IC50 values obtained from 2 to 5 independ-
ent experiments with hLiMT prepared with different 
NPC lots and a fixed hepatocyte source for 21 drugs. 
The data (presented in Fig. 4; Supplemental Table S3) 
revealed that the data obtained from a single donor 
of hepatocytes was reproducible and unaffected by 
preparation of microtissues using different NPC lots 
(Fig.  4a). In addition, comparison of the chlorproma-
zine IC50 values obtained following incubation of 
hLiMT prepared using the same NPC lot, but different 
PHH donors (n =  1–10), revealed only minor changes 
in the IC50 values (Fig. 4b).
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primary human hepatocytes, dotted line threshold of 50× MOS, c 

hLiMT, dotted line threshold of 50× MOS. DILI severity category is 
indicated in brackets with the number of compounds that did not have 
an IC50 value converge per DILI severity category listed at top. d, e 
Comparison of the MOS values for structurally related hepatotoxic 
and non-hepatotoxic compounds in hLiMT (d) and PHH (e) for cat-
echol-O-methyltransferase (COMT) inhibitors (tolcapone and enta-
capone), endothelin-receptor antagonists (sitax(s)entan, bosentan and 
ambrisentan), insulin sensitizers (troglitazone and rosiglitazone), and 
sedatives/antidepressants (nefazodone and buspirone). Filled circles 
margin of safety (MOS) = IC50/Cmax value; open circles not detected 
(ND) value and filled square <IC50/Cmax value
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Measurement of exploratory biomarkers of liver injury 
in the hLiMT assay

A potential limitation of the hLiMT assay was that the 
spheroids were comprised of only approximately 1000 
cells, which could limit the sensitivity to detect second-
ary endpoint measurements in the supernatant such as 
exploratory and mechanistic biomarkers of liver injury. 
As a proof of concept, we evaluated the dose- and time-
dependent release of α-GST, total levels of HMGB1, and 
relative expression of miR-122 into the cell-culture super-
natant of individual spheroids treated with a subset of com-
pounds (Supplemental Methods). Dose and time-dependent 
release of α-GST into the hLiMT supernatant was observed 
for 8/9 DILI compounds where a toxic response was elic-
ited, with the release correlating well with the observed 
decreases in intracellular ATP. In contrast, no release of α-
GST into the hLiMT supernatant was observed for 5 non-
DILI compounds (Supplementary Table S5). An example 
of the observed release of α-GST and the depletion of ATP 
following exposure to chlorpromazine for 14 days can be 
found in Fig. 5a. Similarly, dose-dependent release of the 
miR-122 and HMGB1 were also observed following expo-
sure of the hLiMT to chlorpromazine for 5 days (Fig. 5b, 
c). As with the release of α-GST, the release of these bio-
markers also correlated well with the observed decreases in 

intracellular ATP levels. Together, this data supported that 
mechanistic and exploratory biomarkers could readily be 
detected in the supernatant of the hLiMT assay in response 
to drug-induced cytotoxicity.

Discussion

A significant challenge associated with identifying hepa-
totoxicity risk in drug discovery is that in  vivo studies in 
preclinical species have poor concordance of identifying 
human related hepatotoxicity (Olson et  al. 2000). Major 
efforts have been undertaken in order to improve predic-
tion of potential hepatotoxic drugs without utilizing ani-
mal testing. In preclinical settings in vitro cell-based assay 
methods are frequently used to test DILI potential of drugs 
(reviewed in Chen et al. 2014), as these assays enable the 
monitoring of a cellular response after drug exposure. They 
also provide the possibility of high throughput screening 
and have a low requirement for quantity of drug substances. 
However, the ability of these assays to detect parent com-
pound and metabolite mediated cytotoxicity is significantly 
limited as not all of the cell-based systems employed con-
tain the full complement or functionality of metabolic 
enzymes and transporters present in human hepatocytes 
(Gustafsson et  al. 2014; Wilkening and Bader 2003) and 

Fig. 4   Reproducibility of the 
IC50 values from independ-
ent experiments following 
incubation of the 3D hLiMT 
to test compounds for 14 days. 
Cytotoxic IC50 values for subset 
of compounds were plotted for 
hLiMT were prepared using 
either: the same cryopreserved 
primary human hepatocyte lot 
(IZT) but four different NPC 
lots: filled square JJB; filled 
circle RHV; filled triangle 
ZAR; open circle QCU (a) or 
the same NPC lot but different 
lots of cryopreserved primary 
human hepatocytes (IZT, OFA, 
SSR or EBP) (b) Acet
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plated primary human hepatocytes rapidly lose liver phe-
notype and CYP450 activity in traditional monolayer cul-
tures (Rodriguez-Antona et  al. 2002; Rowe et  al. 2013). 
3D spheroid models are reported to produce more accurate 
assessment of acute and possibly also chronic drug-induced 
hepatotoxicity than traditional 2D culture models (Messner 
et al. 2013) and to be capable of detecting compounds with 
cholestatic liability (Hendriks et  al. 2016). Moreover, 3D 
multicellular liver spheroids require low cell numbers (e.g., 
500–5000 cells), express relevant transporters, maintain 
functionality over 28 days in culture, and can be produced 
in a 96-well format (Messner et  al. 2013), which make 
them amenable to higher throughput long-term repeat-dose 
testing in early discovery.

Here, we present the findings of a comprehensive 
evaluation of a high throughput 3D human liver spheroid 
(hLiMT) assay for retrospective prediction of clinical 
hepatotoxicity versus 2D PHH, which are considered to 
be the ‘gold standard’ for human hepatotoxicity assess-
ment (LeCluyse 2001). We demonstrated that a single cell-
health endpoint on 3D primary hepatocyte co-cultures after 
a 14-day drug exposure is sufficient for prediction of DILI 
with modest/moderate sensitivity (19–61%) and high speci-
ficity (81–98%) depending on thresholds employed. This 
is important since multi-parameter approaches measuring 
sublethal pathways are often cost-prohibitive, with large 

screening needs for early discovery support and medicinal 
chemistry design requirements based on structure toxicity 
relationships (Shah et al. 2015). Hence, the use of simpli-
fied assays that highlight intrinsic risks are preferred over 
high-content screening approaches since this can miss 
identification of pathways that are time-dependent, influ-
enced by hermitic responses and do not necessarily identify 
a mechanism of toxicity but highlight a cell injury path-
way. The more costly high-content approaches can then be 
reserved for deployment at appropriate situations within 
the drug discovery pipeline where increased mechanistic 
insight is desirable.

The direct comparison of 110 drugs on 3D hLiMT and 
2D PHH cultures resulted in a clear difference in useful-
ness of the model systems for prediction of DILI. Expres-
sion of the 14 day ATP IC50 values relative to the human 
plasma total Cmax concentration enabled determination of 
a “margin-of-safety” (MOS; Supplementary Tables S2,S3). 
The initial goal of the analysis was to identify an optimal 
threshold for IC50 and MOS values that would best sepa-
rate the known hepatotoxicants from those without clini-
cal DILI; it became clear that this metric would be highly 
dependent on the compound set employed, concentration 
ranges achievable in  vitro, and accordingly the number 
of IC50 or MOS values obtained from the test set for each 
assay. As such, we presented the predictive value of PHH 
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Fig. 5   POC study demonstrating the utility of hLiMTs to detect bio-
markers of hepatocellular injury in  vitro. Representative changes in 
biomarker levels are depicted following exposure to chlorpromazine 
for 14 days (a) or 5 days (b and c). a In relation to decreases in total 
cellular ATP (filled circle) as determined on day 14. Filled square 
α-GST levels were determined on days 5, 9, and 14 and the values 

combined to give a fold change relative to control. b, c In relation 
to decreases in total cellular ATP as determined on day 5. Filled cir-
cle cell viability (% control); b open triangle HMGB-1 ng/ml, c open 
inverted triangle miRNA-122 relative expression. Data are from sin-
gle experiments in triplicate
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and hLiMT assays based on practical thresholds for both 
cytotoxicity IC50 values as well as MOS values that would 
likely be implemented in drug discovery at different stages 
of lead-optimization. Across this comparison, hLiMT assay 
experienced greater sensitivity and equivalent specificity to 
PHH in distinguishing between known DILI compounds 
and non-DILI compounds. In general, the overall agree-
ment with known-DILI status, as determined by Cohen’s 
kappa, was higher for the hLiMT than for the PHH when 
comparing within practical classification thresholds. The 
observed increased sensitivity in the 3D hLiMT versus 
the traditional 2D culture model is consistent with reports 
that 3D spheroid models produce better risk assessment of 
drug-induced hepatotoxicity (Gunness et al. 2013). In addi-
tion, we found that long-term exposure of the 3D hLiMT 
resulted in enhanced sensitivity for the detection of DILI 
positive drugs versus short-term culture (Figure S1; Sup-
plementary Table S4). These data are in agreement with 
the findings of Bell et al. (2016) who noted prolonged drug 
exposure of up to 28 days resulted in increased sensitivity 
for detection of DILI compounds amiodarone, bosentan, 
diclofenac, fialuridine, and tolcapone (Bell et  al. 2016). 
Moreover, we also demonstrated that total plasma Cmax 
alone was a good predictor of potential DILI risk. Using 
this dataset, human total plasma Cmax threshold of 1.3 µM 
(Fig.  2) distinguished DILI positive from DILI negative 
compounds with a sensitivity of 73% and a specificity of 
73%. These data back up similar reports by Shah et  al. 
(2015) who also demonstrated that a Cmax, total threshold 
of 1.1 µM was a major driver in distinguishing DILI-pos-
itive and DILI-negative compounds (sensitivity/specific-
ity 80/73%). In both these studies, and the study by Shah 
et  al. (2015), incorporating the plasma total Cmax values 
improved the sensitivity/specificity for each assay and 
helped to derive predictive margins of safety.

The hLiMT assay was also able to retrospectively dis-
tinguish between matched pairs of drugs, with the MOS 
values for the non-hepatotoxic drugs ambrisentan and 
buspirone falling above the threshold value of 50×, and 
the MOS values for their hepatotoxic structural analogues 
bosentan, sitax(s)entan and nefazadone, falling below the 
threshold value (Fig.  3e). In particular, the findings high-
light an increased sensitivity of hLiMT to the cytotoxic-
ity from the hepatotoxic endothelin-receptor antagonists, 
bosentan and sitax(s)entan, in relation to PHH, where no 
IC50 values were detected. Both drugs have strong associa-
tion with DILI, where bosentan has been given a caution-
ary “black box” warning for DILI by the FDA and sitax(s)
entan was voluntarily removed from the market due to 
hepatotoxicity concerns. Extensive studies, in particular on 
bosentan, support potential mechanisms of BSEP transport 
inhibition, and mitochondrial toxicity that lead to intrahe-
patic cholestasis and hepatocellular injury (Fattinger et al. 

2001; Kenna et al. 2015). It remains unclear if the treatment 
time, enhanced liver phenotype, or presence of bile-canicu-
lar membranes were responsible for the increased sensitiv-
ity of hLiMT to these compounds relative to PHH in our 
studies. However, a recent report suggested that bile-acid 
transport inhibition might be involved in part in bosentan-
induced cytotoxicity in this model. Addition of extracel-
lular bile acids in the cell-culture media caused increased 
cytotoxicity of liver spheroid cultures relative to normal 
media treated spheroid cultures treated with bosentan over 
14 day (Hendriks et al. 2016). In our studies, ambrisentan 
was not cytotoxic to hLiMT and has a reported 10- and 
30-fold lower potency to inhibit BSEP transporter function 
than bosentan and sitax(s)entan, respectively (Kenna et al. 
2015). Taken together, the findings in this report in addition 
to the recent published report by Hendriks et al. (2016) sup-
port that hLiMT may be a valuable in vitro tool to evaluate 
the functional and phenotypic (e.g., cytotoxicity) effects 
of bile-acid transport inhibition in an intact hepatocellular 
model. Considering that mechanisms leading to alterations 
in bile-acid homeostasis are believed in part to be respon-
sible for recent prominent late-stage clinical attritions 
and black box warnings of novel therapeutics, including 
examples such as CP-724,714 (Feng et  al. 2009), tolvap-
tan (Slizgi et  al. 2016), AMG-009 (Morgan et  al. 2013), 
and TAK-875 (Wolenski et al. 2017), there is an increasing 
need and awareness to better characterize the phenotypic 
effects of bile-acid inhibition in drug discovery. Accord-
ingly, continued characterization of spheroid hepatic mod-
els in regards to bile-acid synthesis, transport, and homeo-
stasis and their effects to drug treatment is warranted.

Although hLiMT out performed PHH in identify-
ing hepatotoxicants, the assay failed to properly classify 
approximately 40% of the DILI+ve compounds tested. 
In particular, no cytotoxicity was observed with 23/69 
DILI+ve drugs (Figs. 1, 3) and when correcting for clini-
cal exposure 28/69 DILI+ve compounds fell above an 
MOS value of 100x (Table 3). This is not surprising in that 
DILI is comprised of many different etiologies and mech-
anisms, including factors that are both compound- and 
patient-related (Chalasani and Bjornsson 2010; Chalasani 
et al. 2008). Many of the compounds falsely classified were 
associated with low or very low incidence of DILI within 
the patient population and are considered idiosyncratic 
hepatotoxicants and difficult to identify using individual 
assays in isolation. For example rosuvastatin is associated 
with mild, transient elevations (1–3%) of plasma enzyme 
levels with acute liver injury only occurring in 1 in 10,000 
patients (Russmann et  al. 2005). Accordingly, there are 
several compelling reports demonstrating high predic-
tive value using multi-parametric approaches to identify 
known hepatotoxicants, many of which are considered idi-
osyncratic (Aleo et al. 2014; Schadt et al. 2015; Shah et al. 
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2015; Thompson et  al. 2012). These retrospective studies 
support that although the clinical manifestation of DILI for 
many drugs may appear idiosyncratic, there does appear to 
be intrinsic properties of the molecules that pose risk for 
hepatotoxicity. In this vein, the hLiMT assay appears to be 
an additional tool to add to the suite of in silico, in vitro, 
and in vivo studies used to characterize hepatotoxicity risk 
in drug discovery and can be positioned differently by each 
institution based on their level of risk tolerance, throughput 
needs, and other considerations.

In conclusion, spheroid hepatic cultures experienced 
greater mechanistic coverage and sensitivity, while main-
taining similar specificity to the standard PHH assay. The 
hLiMT demonstrated sufficient reproducibility across 
studies and across different preparations with cells iso-
lated from multiple donors. In addition, the potential of the 
3D hLiMT to report on the release of novel translational 
in vivo liver hepatotoxicity biomarkers, miR-122, a highly 
liver specific microRNA (Wang et  al. 2009), HMGB1, a 
marker of immune modulation and necrosis (Antoine et al. 
2009), and α-GST, a sensitive, highly specific and early 
biomarker for hepatocellular injury (Muller and Dieterle 
2009), following exposure to DILI positive drugs demon-
strated in principle that this 3D liver model has the poten-
tial to recapitulate in  vivo findings in  vitro (Fig.  5; Sup-
plementary Table S-4). Taken together, the data produced 
in this comprehensive evaluation of the 3D hLiMT model 
support that hLiMT outperformed PHH in identifying clini-
cally relevant hepatotoxicants when measuring cytotoxic-
ity as an endpoint. This is an important finding considering 
that hepatotoxicity remains a major source of clinical drug 
attrition and post-market withdrawal of drugs (Watkins 
2011). Therefore, alongside other recently published stud-
ies, this study supports the use of hepatic spheroid models 
to aid hepatotoxicity risk assessment in drug discovery.
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