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Abstract

Foreign function interfaces are typically organised monolithically, tying to-
gether the specification of each foreign function with the mechanism used to
make the function available in the host language. This leads to inflexible
systems, where switching from one binding mechanism to another (say from
dynamic binding to static code generation) often requires changing tools and
rewriting large portions of code.

We show that ML-style module systems support exactly the kind of ab-
straction needed to separate these two aspects of a foreign function bind-
ing, leading to declarative foreign function bindings that support switching
between a wide variety of binding mechanisms — static and dynamic, syn-
chronous and asynchronous, etc. — with no changes to the function specifi-
cations.

Note. This is a revised and expanded version of an earlier paper, Declara-
tive Foreign Function Binding Through Generic Programming (Yallop et al.,
2016). This paper brings a greater focus on modularity, and adds new sec-
tions on error handling, and on the practicality of the approach we describe.

Keywords: foreign functions, functional programming, modularity

1. Introduction

The need to bind and call functions written in another language arises
frequently in programming. For example, an OCaml programmer might call
the C function puts to display a string to standard output1:

1 For the sake of exposition the example is simple, but it captures the issues that arise
when writing more realistic bindings.
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int puts(const char *);

Before calling puts, the programmer must write a binding that exposes the C
function as an OCaml function. Writing bindings presents many opportuni-
ties to introduce subtle errors (Furr and Foster, 2005; Kondoh and Onodera,
2008; Li and Tan, 2014), although it is a conceptually straightforward task:
the programmer must convert the argument of the bound function from an
OCaml value to a C value, pass it to puts, and convert the result back to an
OCaml value.

In fact, bindings for functions such as puts can be produced mechani-
cally from their type definitions, and tools that can generate bindings, such
as swig (Beazley, 1996), are widely available. However, using an external
tool — i.e. operating on rather than in the language — can be damaging to
program cohesiveness, since there is no connection between the types used
within the tool and the types of the resulting code, and since tools introduce
types and values into a program that are not apparent in its source code.

This paper advocates a different approach, in which foreign functions such
as puts are described using the values and types of the host language. More
concretely, each C type constructor (int, *, char, and so on) becomes a value
in OCaml, and each value that describes a function type can be interpreted
to bind a function of that type. For example, here is a binding to the puts

function, constructed from its name and a value representing its type:

let puts = foreign "puts" (str @→ returning int)

(Later sections expound this example in greater detail.)
Describing foreign language types using host language values results in

a much closer integration between the two languages than using external
tools. For example, the interface to swig is a C++ executable that generates
OCaml code, and there is no connection between the C++ types used in the
implementation of swig and the types of the generated OCaml code. In
contrast, the type of the foreign function (which is expounded in detail in
Section 2.2) is directly tied to the type of the OCaml function that foreign

returns, since calls to foreign are part of the same program as the resulting
foreign function bindings.

This improved integration has motivated implementations in a number
of languages, including Common Lisp2, Python3 and Standard ML (Blume,

2CFFI https://common-lisp.net/project/cffi/manual/index.html
3ctypes https://docs.python.org/2/library/ctypes.html
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2001). However, although these existing designs enjoy improved integration,
they do not significantly improve flexibility, since in each case the mechanism
used to bind foreign functions is fixed. For example, Python’s ctypes module
binds C functions using the libffi library4, which constructs C calls entirely
dynamically. The programmer who would like more performance or safety
than libffi can offer can no longer use ctypes, since there is no way to
change the binding mechanism.

This paper describes a design that extends the types-as-values approach
using modular abstraction to support multiple binding mechanisms, includ-
ing (i) a dynamic approach, backed by libffi, (ii) a static approach based
on code generation, (iii) an inverted approach, which exposes host language
functions to C, and several more interpretations, including (iv) bindings that
handle errno, and (v) bindings with special support for concurrency or cross-
process calls. The key is using parameterised modules to abstract the defini-
tion of a group of bindings from the interpretation of those bindings, making
it possible to supply various interpretations at a later stage. Each bind-
ing mechanism (i.e. each interpretation) is then made available as a module
implementing three functions: the @→ and returning functions, which con-
struct representations of types, and the foreign function, which turns type
representations into bindings.

For concreteness this paper focuses on a slightly simplified variant of
ocaml-ctypes (abbreviated ctypes), a widely-used library for calling C func-
tions from OCaml that implements our design. As we shall see, the OCaml
module system, with its support for abstracting over groups of bindings, and
for higher-kinded polymorphism, provides an ideal setting.

1.1. Outline

This paper presents the ctypes library as a series of interpretations for
a simple binding description, introduced in Section 2. Each interpretation
is presented as an implementation of the same signature, FOREIGN, which ex-
poses operations for describing C function types. We gradually refine FOREIGN

throughout the paper as new requirements becomes apparent.
Section 3 introduces the simplest implementation of FOREIGN, an inter-

preter which resolves names and builds calls to foreign functions dynamically.
Section 4 describes a second implementation of FOREIGN that generates

4libffi https://sourceware.org/libffi/
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OCaml and C code, improving performance and static type checking of for-
eign function bindings.

Section 5 shows how support for higher-order functions in foreign bindings
extends straightforwardly to supporting inverted bindings, using the FOREIGN

signature to expose OCaml functions to C.
Section 6 describes some additional interpretations of FOREIGN that sup-

port error handling and concurrency.
Section 7 explores a second application of the multiple-interpretation ap-

proach, using an abstract signature TYPE to describe C object layout, and
giving static and dynamic interpretations of the signature.

Section 8 presents evidence for the practicality of the ctypes approach,
touching on adoption, performance and some brief case studies.

Finally, Section 9 contextualizes our work in the existing literature.

2. Representing types

C types are divided into three kinds: object types describe the layout of
values in memory, function types describe the arguments and return values
of functions, and incomplete types give partial information about objects.
Bindings descriptions, as for puts in the introduction, involve representations
of both object types, such as int, and function types, such as int(const char

*).

2.1. Representing object types

Figure 1 gives a signature for the abstract type typ, which represents C
object types, including a number of constructors (int, str, ptr, and so on)
which build OCaml values that represent particular C types. The complete
definition of typ includes constructors for other primitive types, and for ar-
rays, unions and structs, which are omitted for brevity here. Structs are
considered later, in Section 7.

The parameter of each typ value tracks the OCaml type that correspond
to the C type it describes. For example, the value str, which describes the
C type char *, has the following type:

val str : string typ

reflecting the fact that C values described by the str value have the OCaml
type string.

Figure 2 gives an implementation of typ and its constructors as a gener-
alized algebraic data type, or GADT (Cheney and Hinze, 2003) — that is,
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type α typ

val void : unit typ

val str : string typ

val int : int typ

val ptr : α typ → α ptr typ

Figure 1: C object type descriptions

type α typ =

| Void : unit typ

| Int : int typ

| Char : char typ

| Ptr : α typ → α ptr typ

| View : (β → α) * (α → β) * β typ → α typ

and α ptr = address * α typ

val string_of_ptr : char ptr → string

val ptr_of_string : string → char ptr

let void = Void and int = Int and char = Char

let ptr t = Ptr t

let str = View (string_of_ptr, ptr_of_string, Ptr Char)

Figure 2: An implementation of Figure 1

as a datatype whose parameters may vary in the return type of each con-
structor. The signatures of the constructors closely match the signatures in
Figure 1 except that str is built using a constructor View, which builds a
new type representation from an existing representation and a pair of func-
tions that convert between the corresponding types. For str, the type rep-
resentation is built from Ptr Char and from a pair of functions string_of_ptr

and ptr_of_string that convert between the C and OCaml representations of
strings.

2.2. Representing function types

Binding C functions also requires a representation of C function types.
Here is the binding from Section 1 again, which we will use throughout the
paper to illustrate our different interpretations
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module type FOREIGN = sig

type α fn

val (@→) : α typ → β fn → (α → β) fn

val returning : α typ → α fn

val foreign : string → α fn → α
end

Figure 3: The FOREIGN signature for describing foreign functions (version 1)

module Puts(F: FOREIGN) = struct

open F

let puts = foreign "puts" (str @→ returning int)

end

Besides the object type representations already considered, three OCaml
functions are used to define puts: foreign, @→ and returning. In order to
support different implementations of these functions we have placed the defi-
nition of puts within a functor, parameterised by a module F that will supply
their implementations when the functor is applied.

Figure 3 shows the FOREIGN signature. There is a parameterised type fn,
for representations of C function types, two functions @→ and returning, for
building values of type fn, and a function foreign that accepts a name and a
C function type representation and returns an OCaml value.

As with typ, the parameters of fn track the OCaml types that correspond
to the C types they describe. The types of @→ and returning combine the
types of their arguments, building up the types of OCaml functions that
correspond to the types of the C functions they will expose, so that the value
describing puts, written str @→ returning int, has the OCaml type string

→ int.

3. Interpreting bindings

Our first implementation of FOREIGN is a simple interpreter, Foreign_dyn,
that turns bindings description into callable OCaml functions. For example,
here is the effect of passing Foreign_dyn to the binding description for puts at
the OCaml top level:

# include Puts(Foreign_dyn);;

val puts : string → int = <fun>
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module Foreign_dyn = struct

type _ fn =

Fn : α typ * β fn → (α → β) fn

| Returns : α typ → α fn

let (@→) s t = Fn (s, t) and returning t = Returns t

let foreign = foreign_dyn

end

Figure 4: The Foreign_dyn implementation of FOREIGN (Figure 3)

val dlopen : string → dl_flag list → library

val dlsym : library:library → string → address

Figure 5: The dlopen and dlsym functions

# puts "Hello, C!";;

Hello, C!

- : int = 10

Figure 4 gives the implementation of Foreign_dyn. There are two parts: a
definition of the type fn as a datatype whose two constructors Fn and Returns

correspond directly to @→ and returning, and a definition of the foreign

function as foreign_dyn, which we now proceed to define.
The purpose of foreign is to turn the name of a C function and a de-

scription of its type into a callable OCaml function. The two parameters
of foreign correspond to the two actions necessary to complete this task:
resolving the name and interpreting the type description.

The foreign_dyn implementation of the foreign function dynamically re-
solves the name "puts" and dynamically synthesises a call description of the
appropriate type. Dynamic name resolution is implemented by the Posix
functions dlopen and dlsym (Figure 5) and call frame synthesis uses the libffi
library to handle the low-level details.

The dlopen and dlsym functions each take two arguments. The two argu-
ments to dlopen represent the name of a library to load and a list of flags,
specified by Posix, that specify the resolution strategy. The two arguments
to dlsym represent the library to search and the symbol to search for; if the
optional library argument is not passed, then the symbol table of the exe-

7



cutable of the calling process is searched instead.
Call synthesis involves two basic types. The first, ffitype, represents C

types; there is a value of ffitype for each scalar type:

type ffitype

val int_ffitype : ffitype

val pointer_ffitype : ffitype

(* etc. *)

and a function that returns the ffitype corresponding to each typ value:

val ffitype_of_typ : α typ → ffitype

The second type, callspec, describes a call frame structure as a list of
argument types and a result type, which can be used to calculate the ap-
propriate size of a buffer for storing argument and return values. There are
primitive operations for creating a new callspec, for adding arguments, and
for marking the callspec as complete and specifying the return type:

type callspec

val alloc_callspec : unit → callspec

val add_argument : callspec → ffitype → int

val prepare_call : callspec → ffitype → unit

The return value of the add_argument function is an integer representing an
offset into the buffer that is used for storing arguments when making a call.

Finally, the call function takes a function address, a completed callspec,
and two callback functions, and performs a call.

val call : address → callspec → (address→ unit) → (address→ α) → α

In more detail, call addr cs w r allocates a buffer large enough to hold the
arguments described by cs, populates the buffer with arguments by passing
its address to the function w, invokes the function at addr, and then reads
and returns the return value from the buffer by passing its address to the
function r.

Callbacks suitable for passing to call may be constructed using the read

and write functions that read and write values of specified types to memory:

val read : α typ → address → α
val write : α typ → int → α → address → unit

The call read t addr reads a single value of the type described by t from the
address addr; for example, read int builds a function that can be passed to
call to read an int return value. Similarly, the call write t o addr writes a
single value of the type described by t at offset o from addr. The additional
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offset argument reflects the fact that a function may have many arguments,
which must be written to different portions of the buffer allocated by call; for
example, the following callback function might be passed to call to populate
the buffer with an int argument 3 at offset x and a second float argument
4.0 at offset y.

(fun addr →
write int x 3 addr;

write float y 4.0 addr)

Here is an implementation of foreign_dyn in terms of these operations:

let fn_of_ptr fn (addr,_) =

let callspec = alloc_callspec () in

let rec build : type a. a fn → (address → unit) list → a =

fun fn writers → match fn with

| Returns t →
let () = prepare_call callspec (ffitype_of_typ t) in

call addr callspec

(fun p → List.iter (fun w → w p) writers)

(read t)

| Fn (p, f) →
fun v →
let offset = add_argument callspec (ffitype_of_typ p) in

build f (write p offset v :: writers)

in build fn

let foreign_dyn name fn =

fn_of_ptr fn (dlsym name, ptr void)

The foreign_dyn function combines a call to dlsym with a call to a second
function fn_of_ptr that builds a callable function from a function type repre-
sentation and an address. The fn_of_ptr function first uses alloc_callspec to
create a fresh callspec; each argument in the function representation results
in a call to add_argument with the appropriate ffitype value. The Returns

constructor results in a call to prepare_call; when the arguments of the func-
tion are supplied the call function is called to invoke the resolved C function.
There is no compilation step: the user can call foreign interactively, as shown
above.

3.1. Function pointers

The foreign_dyn implementation turns a function name and a function
type description into a callable function in two stages: first, it resolves the
name into a C function address; next, it uses fn_of_ptr to build a call frame
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typedef int (*compar_t)(void *, void *);

int qsort(void *base, size_t nmemb, size_t size, compar_t cmp)

Figure 6: The C qsort function

let compar_t = funptr (ptr void @→ ptr void @→ returning int)

module Qsort(F : FOREIGN) = struct

open F

let qsort = F.foreign "qsort"

(ptr void @→ size_t @→ size_t @→ compar_t @→ returning void)

end

Figure 7: Using funptr to bind to qsort

from the address and the function type description. The fn_of_ptr function
is sometimes useful independently, and it is exposed as a separate operation.

Conversions in the other direction are also useful, since an OCaml function
passed to C must be converted to an address:

val ptr_of_fn : α fn → α → unit ptr

The implementation of ptr_of_fn is based on the callspec interface used
to build the call interpreter and uses an additional primitive operation, which
accepts a callspec and an OCaml function, then uses libffi to dynamically
construct and return a “trampoline” function which calls back into OCaml:

val make_function_pointer : callspec → (α → β) → address

These conversion functions are rather too low-level to expose directly
to the user. Instead, the following view converts between addresses and
functions automatically:

val funptr : α fn → α typ

let funptr fn = View (fn_of_ptr fn, ptr_of_fn fn, ptr void)

The funptr function builds object type representations from function type
representations, just as C function pointers build object types from function
types. Figure 7 shows funptr in action, describing the callback function for
qsort (Figure 6). The resulting qsort binding takes OCaml functions as
arguments:

qsort arr nmemb sz
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(fun l r → compare (from_voidp int !@l) (from_voidp int !@r))

(The from_voidp function converts a void * value to another pointer type.)
This scheme naturally supports even higher-order functions: function

pointers which accept function pointer as arguments, and so on, allowing
callbacks into OCaml to call back into C. However, such situations appear
rare in practice.

4. A staged interpreter for bindings

Interpreting function type descriptions dynamically (Section 3) is conve-
nient for interactive development, but has a number of drawbacks. First, the
implementation suffers from significant interpretative overhead (quantified in
Section 8). Second, there is no check that the values passed between OCaml
and C have appropriate types. The implementation resolves symbols to func-
tion addresses at runtime, so there is no checking of calls against the declared
types of the functions that are invoked. Finally, it is impossible to make use
of the many conveniences provided by the C language and typical toolchains.
When compiling a function call a C compiler performs various promotions
and conversions that are not available in the simple reimplementation of the
call logic. Similarly, sidestepping the usual symbol resolution process makes
it impossible to use tools like nm and objdump to interrogate object files and
executables.

Fortunately, all of these problems share a common cure. Instead of basing
the implementation of FOREIGN on an evaluation of the type representation,
the representation can be used to generate both C code that can be checked
against the declared types of the bound functions and OCaml code that links
the generated C code into the program.

As the introduction promised, binding descriptions written using FOREIGN

can be reused for code generation without any changes to the descriptions
themselves. However, switching from Foreign_dyn to an approach based on
code generation does require changes in the way that programs are organised
and built. The Foreign_dyn module makes bindings available immediately via
a single functor application:

Puts(Foreign_dyn)

In contrast, the approach described in this section involves applications of the
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module type FOREIGN = sig

type α fn

val (@→) : α typ → β fn → (α → β) fn

val returning : α typ → α fn

type α result

val foreign : string → α fn → α result

end

Figure 8: The FOREIGN signature for describing foreign functions (version 2)

Puts functor to three different implementations of FOREIGN5 The Puts functor
is first applied to modules Foreign_GenC and Foreign_GenML that respectively
generate a C file and an OCaml module.

Puts(Foreign_GenC)

Puts(Foreign_GenML)

The generated files are then compiled and linked into the final program by
means of a second application of Puts:

Puts(Foreign_GeneratedML)

The remainder of this section describes these various implementations of
FOREIGN in more detail.

Transforming the evaluator of Section 3 into a code generator can be seen
as a form of staging, i.e. specializing the dynamic foreign function based on
static information (the type description) in order to improve its performance
when the time comes to supply the remaining arguments (the arguments to
the bound function). As we shall see, the principles and techniques used in
the staging and partial evaluation literature will be helpful in implementing
the code-generating foreign.

In order to support the staged interpretation, a small adjustment is
needed to the FOREIGN signature. In the dynamic implementation of FOREIGN,
the foreign function returns an OCaml value of type α matching the index of
the fn argument that represents the type of the bound function. In the staged

5As a reviewer notes, two of these implementations, Foreign_GenC and Foreign_GenML,
which are described separately for expository purposes, could be combined into a single
module, eliminating one application of Puts and simplifying the build process for the user.
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module Foreign_Gen =

struct

include Foreign_dyn

type α result = unit

end

module Foreign_GenC =

struct

include Foreign_Gen

let foreign = generateC

end

module Foreign_GenML =

struct

include Foreign_Gen

let foreign = generateML

end

Figure 9: The Foreign_GenC and Foreign_GenML implementations of FOREIGN (Figure 8)

interpretation, the foreign function generates code rather than returning a
value directly. In order to support both the dynamic and the staged imple-
mentations, we give the foreign function an abstract return type (Figure 8)
that can be instantiated appropriately in each implementation. Although
the signature of FOREIGN changes, no change to the bindings description (for
puts) is needed.

4.1. Generating C

The first FOREIGN implementation, Foreign_GenC (Figure 9), uses the name
and the type representation passed to foreign to generate C code. The func-
tor application Puts(Foreign_GenC) passes the name and type representation
for puts to Foreign_GenC.foreign, which generates a C wrapper for puts.

The generated C code, shown below, converts OCaml representations
of values to C representations, calls puts and translates the return value
representation back from C to OCaml6. If the user-specified type of puts is
incompatible with the type declared in the C API then the C compiler will
complain when building the generated source.

value ctypes_puts(value x0) {

char *x1 = ADDR_OF_PTR(x0);

int x2 = puts(x1);

return Val_int(x2);

}

6There are no calls to protect local variables from the GC because the code generator
can statically determine that the GC cannot run during the execution of this function.
However, it is not generally possible to determine whether the bound C function can call
back into OCaml, and so the user must inform the code generator if such callbacks may
occur by passing a flag to foreign.
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module Foreign_GeneratedML = struct

(* ... *)

external ctypes_puts : address → int = "ctypes_puts"

type α result = α

let foreign : type a. string → a fn → a =

fun name t → match name, t with

| "puts", Fn (View (_, write, Ptr _), Returns Int) →
(fun x1 → ctypes_puts (fst (write x1)))

end

Figure 10: The generated module, Foreign_GeneratedML, which matches FOREIGN (Fig-
ure 8)

4.2. Generating OCaml

The second new FOREIGN implementation, Foreign_GenML (Figure 9), gen-
erates an OCaml wrapper for ctypes_puts. The ctypes_puts function deals
with low-level representations of OCaml values; the OCaml wrapper ex-
poses the arguments and return types as typed values. The functor appli-
cation Puts(Foreign_GenML) passes the name and type representation of puts to
Foreign_GenML.foreign, which generates an OCaml module Foreign_GeneratedML

that wraps ctypes_puts.
The OCaml module generated by Foreign_GenML (Figure 10) also matches

the FOREIGN signature. The central feature of the generated code is the foreign

implementation that scrutinises the type representation passed as argument
in order to build a function that extracts raw addresses from the pointer
arguments to pass through to C.

The type variable a is initially abstract but, since the type of t is a
GADT, examining t using pattern matching reveals information about a. In
particular, since the type parameter of fn is instantiated to a function type
in the definition of the Fn constructor (Figure 4), the right-hand side of the
first case of the definition of foreign above is also expected to have function
type. Similar reasoning about the Ptr, Int and Returns constructors reveals
that the right-hand side should be a function of type σ ptr → int for some
type σ, and this condition is met by the function expression in the generated
code.
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4.3. Linking the generated code

The generated OCaml module Foreign_GeneratedML serves as the third
FOREIGN implementation; it has the following type:

FOREIGN with type α result = α

The application Puts(Foreign_GeneratedML) supplies Foreign_GeneratedML as
the argument F of the Puts functor (Section 2.2). The generated foreign

function above becomes F.foreign in the body of Puts, and receives the name
and type representation for puts as arguments. The inspection of the type
representation in foreign serves as a form of type-safe linking, checking that
the type specified by the user matches the known type of the bound func-
tion. In the general case, the type refinement in the pattern match within
foreign allows the same generated implementation to serve for all the foreign
function bindings in the Puts functor, even if they have different types.

4.4. The Trick

The pattern match in the Foreign_GeneratedML.foreign function can be
seen as an instance of a binding-time improvement known in the partial eval-
uation community as The Trick (Danvy et al., 1996). The Trick transforms
a program to introduce new opportunities for specialization by replacing a
variable whose value is unknown with a branch over all its possible values.
In the present case, the Foreign_GeneratedML.foreign function will only ever
be called with those function names and type representations used in the
generation of the Foreign_GeneratedML module. Enumerating all these possi-
bilities as match cases results in simple non-recursive code that may easily
be inlined when the functor is applied.

4.5. Cross-stage persistence

The scheme above, with its three implementations of FOREIGN, may appear
unnecessarily complicated. It is perhaps not immediately obvious why we
should not generate C code and a standalone OCaml module, eliminating
the need to apply the Puts functor to the generated code.

One advantage of the three-implementation scheme is that the generated
code does not introduce new types or bindings into the program, since the
generated module always has the same known type (i.e. FOREIGN). However,
there is also a more compelling reason for the third implementation.

The Foreign_GeneratedML.foreign function converts between typed argu-
ments and return values and low-level untyped values which are passed to C.
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In the case where the type of an argument is a view, converting the argument
involves applying the write function of the view representation. For example,
the binding to puts uses the str view of Section 2 to support an argument
that appears in OCaml as a string and in C as a char *:

let puts = foreign "puts" (str @→ returning int)

Calling puts with an argument s involves applying ptr_of_string to s to
obtain a char*. However, there is no way of inserting ptr_of_string into
the generated code. In the representation of a view the write function is
simply a higher-order value, which cannot be converted into an external
representation. This is analogous to the problem of cross-stage persistence
in multi-stage languages: the generated code refers to a value in the heap of
the generating program.

The three-implementation approach neatly sidesteps the difficulty. There
is no need to externalise the write function; instead, the generated foreign

implementation simply extracts write from the value representation at the
point when Puts is applied:

let foreign : type a. string → a fn → a =

fun name t → match name, t with

| "puts", Fn (View {write}, Returns Int) →
(fun x1 → ctypes_puts (write x1).addr)

| (* ... *)

Thus, the third implementation of FOREIGN makes it possible to use views and
other higher-order features in the type representation.

5. Inverted bindings

Section 3.1 showed how to invert the call interpreter to support callbacks;
Section 4 showed how to stage the call interpreter to improve safety and
speed. The question naturally arises: Is there a use for an inverted, staged
interpreter? It turns out that there is.

The primary use of ctypes is making C libraries available to OCaml pro-
grams. However, as the discoveries of disastrous bugs in widely-used C li-
braries continue to accumulate, the need for safer implementations of those
libraries written in high-level languages such as OCaml becomes increasingly
pressing. As this section shows, it is possible to expose OCaml code to C via
an interpretation of FOREIGN that interprets the parameter of the result type
as a value to consume rather than a value to produce.
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Specialising the result type of the FOREIGN signature (Fig 8) with a type
that consumes α values gives the following type for foreign:

val foreign : string → α fn → (α → unit)

that is, a function that takes a name and a function description and con-
sumes a function. This consumer of functions is just what is needed to turn
the tables: rather than resolving and binding foreign functions, this imple-
mentation of foreign exports host language functions under specified names.

Continuing the running example, this foreign implementation can export
a function whose interface matches puts. Once again, it suffices to apply the
Puts functor from Section 2.2 to a suitable module. As with the staged call
interpreter (Section 4), Puts is applied multiple times – once to generate a
C header and a corresponding implementation that forwards calls to OCaml
callbacks, and again to produce an exporter that connects the C implemen-
tation with our OCaml functions.

The ctypes library includes a generic pretty-printing function that formats
C type representations using the C declaration syntax. Applying the pretty-
printer to the puts binding produces a declaration suitable for a header:

int puts(char *);

The generation of the corresponding C implementation proceeds similarly
to the staged interpreter, except that the roles of OCaml and C are reversed:
the generated code converts arguments from C to OCaml representations,
calls back into OCaml and converts the result back into a C value before
returning it. The addresses of the OCaml functions exposed to C are stored
in an array in the generated C code. The size of the array is determined by
the number of calls to foreign in the functor – one, in this case.

The generated OCaml module Foreign_GeneratedInvML populates the array
when the module is loaded by calling a function register_callback with a
value of type t callback.

val register_callback : α callback → α → unit

The type parameter of the callback value passed to register_callback is the
type of the registered function:

type _ callback = Puts : (address → int) callback

Finally, the generated foreign function is reminiscent of the staged im-
plementation of Section 4; it scrutinises the type representation to produce a
function consumer that passes the consumed function to register_callback:
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let foreign : type a. string → a fn → (a → unit) =

fun name t → match name, t with

| "puts", Fn (View (read, _, Ptr _), Returns Int) →
(fun f → register_callback Puts

(fun x1 → f (read x1)))

The applied module Puts(Foreign_GeneratedInvML) exports a single func-
tion, puts, which consumes an OCaml function to be exported to C:

val puts : (string → int) → unit

Decorne et al. (2016) give a more detailed study of the use of ctypes
inverted bindings, which they use to wrap ocaml-tls (Kaloper-Meršinjak
et al., 2015) to build an OCaml-based replacement for the libtls library.

6. More interpretations

6.1. errno

Several standard C functions, and many Posix functions, store infor-
mation about errors in a global integer variable, errno. For example, the
following C snippet resets errno to clear any earlier errors, attempts to call
chdir to change the working directory and, if the attempt fails, uses errno to
display details about the problem before exiting the program:

errno = 0;

if (chdir("/tmp") < 0) {

fprintf(stderr, "chdir failed: %s\n", strerror(errno));

exit(1);

}

The errno variable can also be used as the basis of more sophisticated
error-handling strategies — retrying the failed call, transferring control else-
where in the program, and so on. For maximum flexibility in handling errors
that arise when calling C functions from OCaml it is convenient to return
errno alongside the return value of each bound function, allowing the code
that calls errno to determine how errors should be handled.

Supporting returning errno from C to OCaml alongside the return value
of each function requires one final modification to the FOREIGN signature. Fig-
ure 11 shows the final version of FOREIGN, which extends the type of returning
with an abstract type return. For our existing implementations of FOREIGN,
the type return is defined as the identity:

type α return = α
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module type FOREIGN = sig

type α fn

type α return

val (@→) : α typ → β fn → (α → β) fn

val returning : α typ → α return fn

type α result

val foreign : string → α fn → α result

end

Figure 11: The FOREIGN signature for describing foreign functions (version 3)

while for a new implementation Foreign_GenML_errno, return may be defined
as the pair of its parameter and an integer representing errno:

type α return = { rv: α; errno: int }

(Errno support also requires a companion implementation Foreign_GenC_errno

to generate C code that captures and returns errno.)

6.2. Asynchronous calls

Besides supporting errno, the abstraction over the return type in the
definition of FOREIGN in Figure 11 supports a number of other cases in which
bound functions return in unusual ways. In particular, it supports a style of
concurrency that is widely used in the OCaml community.

Since the standard OCaml runtime has limited support for concurrency,
many modern OCaml programs make use of cooperative concurrency libraries
such as Lwt (Vouillon, 2008), which expose monadic interfaces. Cooperative
concurrency requires taking care with potentially-blocking calls, since a single
blocking call can cause suspension of all threads. In the Lwt framework,
a potentially-blocking function that returns a value of type t is given the
return type t Lwt.t. Functions of this type may be connected together with
a monadic bind operator, which may transfer control to another lightweight
thread. For example, a binding to the puts function in the Lwt framework
has type

val puts : string → int Lwt.t

Producing bindings of this type from our sample bindings specification
involves generating an implementation of FOREIGN with a suitable definition
of return:
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type α return = α Lwt.t

There are several ways to actually construct Lwt.t values. A simple ap-
proach, provided by the detach function from the Lwt_preemptive module

val detach : (α → β) → α → β Lwt.t

simply runs a potentially blocking function using one of a pool of system
threads. Support for concurrency using Lwt_preemptive.detach requires simple
modifications to Foreign_GenML, to insert a call to detach around each call to a
bound function, and to Foreign_GenC, to release OCaml’s global runtime lock
when calling the corresponding C functions.

The Lwt jobs framework offers a second, finer-grained approach to build-
ing Lwt.t values. A job is a bound function that can run in a C thread,
without interacting with the OCaml runtime. The Lwt jobs interface splits
a binding to a C function into several stages: creating a job by converting
the arguments from the OCaml to the C representation; running the job, by
calling the C function with the converted arguments; cleaning up the job and
collecting the results; converting the results back to the OCaml representa-
tion. Since these different stages may run in separate threads, there are a
number of subtle invariants, that are easy to violate in hand-written code,
but that the ctypes implementation maintains automatically.

The Lwt and errno approaches may, of course, be combined, by defining
the return type as an application of Lwt.t to a pair of a value and an errno

code:

type α return = (α * int) Lwt.t

6.3. Out-of-process calls

High-level languages often make strong guarantees about type safety that
are compromised by binding to foreign functions. Safe languages such as
OCaml preclude memory corruption by isolating the programmer from the
low-level details of memory access; however, a single call to a misbehaving C
function can result in corruption of arbitrary parts of the program memory.

One way to protect the calling program from the corrupting influence of a
C library is to allow the latter no access to the program’s address space. This
can be accomplished using a variant of the staged call interpreter (Section 4)
in which, instead of invoking bound C functions directly, the generated stubs
marshal the arguments into a shared memory buffer where they are retrieved
by an entirely separate process which contains the C library.
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struct puts_frame {

enum function_id id;

const char *p;

int return_value;

};

Figure 12: A struct for making cross-process calls to puts

Once again, this cross-process approach is straightforward to build from
existing components. The data representation is based on C structs: for
each foreign function the code generator outputs a struct with fields for
function identifier, arguments and return value (Figure 12). The struct is
built using the type representation constructors (Section 2.1) and printed
using the generic pretty printer. These structs are then read and written
by the generated C code in the two processes. Besides the C and ML code
generated for the staged interpreter, the cross-process interpretation also
generates C code that runs in the remote process and a header file to ensure
that the two communicants have a consistent view of the frame structs.

Section 8 describes experiments that quantify the overhead of these cross-
process calls.

7. Structure layout

As we have seen, defining foreign function bindings using an abstract
FOREIGN interface allows considerable flexibility in the interpretation of those
bindings. As we shall now see, a similar approach may be used to address
the other principal challenge in interfacing with foreign libraries, namely
determining the layout of objects in memory.

Figure 13 gives the signature for the Posix function gettimeofday, which
accepts two arguments, a pointer to a struct timeval (Figure 14) and a
pointer to struct timezone. Constructing suitable arguments for gettimeofday

requires determining information about the layout of the structs, i.e. the sizes
and offsets of the fields, along with any trailing padding.

Just as the OCaml binding to puts was described using the operations
of FOREIGN interface, the struct timeval and struct timezone types may be
described using the operations of an interface TYPE (Figure 15).

Figure 16 gives a definition of the timeval structure using TYPE. The first
line creates a module Tv representing an initially empty struct type timeval.
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int gettimeofday(struct timeval *tv, struct timezone *tz);

Figure 13: The gettimeofday function

struct timeval {

unsigned long tv_sec; /* seconds */

unsigned long tv_usec; /* microseconds */

};

Figure 14: The timeval struct

module type TYPE = sig

type τ structure and (α, τ) field

module type STRUCTURE = sig

type t

val t : t structure typ

val field: string → α typ → (α, t) field

val seal: unit → unit

end

val structure: string → (module STRUCTURE)

end

Figure 15: The TYPE interface

The module creation operation is generative — that is, each call to structure

creates a module with a type t that is distinct from every other type in the
program.

The second and third lines call the Tv.field function to add unsigned

long fields with the names tv_sec and tv_usec. Calling Tv.field performs an
effect and returns a value: it extends the struct represented by Tv with an
additional field, and it returns a value representing the new field, which may
be used later in the program to access struct tv values.

The final line “seals” the struct type representation, turning it from an in-
complete type into a fully-fledged object type with known properties such as
size and alignment, just as the closing brace in the corresponding C declara-
tion marks the point in the C program at which the struct type is completed.
Adding fields to the struct representation is only possible before the call to
seal, and creating values of the represented type is only possible afterwards;
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module Timeval(T: TYPE) = struct

module Tv = (val T.structure "timeval")

let sec = Tv.field "tv_sec" ulong

let usec = Tv.field "tv_usec" ulong

let () = Tv.seal ()

end

Figure 16: The timeval structure layout, using TYPE

violation of either of these constraints results in an exception.
As with FOREIGN, there are multiple possible implementations of the TYPE

interface and its operations structure field and seal.

7.1. Computing layout information

As with FOREIGN, we first consider a dynamic implementation of TYPE that
simply computes the appropriate layout directly (Figure 17).

The structure function builds an incomplete empty struct with no align-
ment requirements. The field function computes the next alignment bound-
ary in the struct for its field argument, and updates the alignment require-
ments for the struct. The seal function inserts any padding necessary to
align the struct and marks it as complete.

Computing structure layout in this way works for simple cases, but has a
number of limitations that make it unsuitable to be the sole approach to lay-
ing out data. First, libraries may specify non-standard layout requirements
(e.g. with the __packed__ attribute), and attempting to replicate these quickly
becomes unmanageable. Second, some libraries, define structs with inter-
spersed internal fields which vary both across platforms and across versions.
(The libuv asynchronous I/O library is a typical example.) Replicating this
variation in the bindings quickly leads to unmaintainable code.

7.2. Retrieving layout information

These drawbacks can be avoided with an alternative implementation of
TYPE that, instead of attempting to replicate the C compiler’s structure layout
algorithm, uses the C compiler itself as the source of layout information, much
as the staged foreign (Section 4) generates C code to bind functions rather
than using libffi to replicate the calling convention.

As with the staged foreign function, the idea is to use The Trick to trans-
form field and seal from functions that compute the layout into functions
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type α typ = (* ... *)

| Struct : { mutable complete: bool; mutable fields : α bfield list; }

→ α strct typ

and σ bfield = Field : (α, σ) fld → σ bfield

and (α, σ) fld = { typ: α typ; offset: int; name: string; }

and α strct = α strct ptr

module Type_dyn = struct

type τ structure = τ strct and (α, σ) field = (α, σ) field

module type STRUCTURE = sig

type t

val t : t structure typ

val field: string → α typ → (α, t) field

val seal: unit → unit

end

let structure name =

(module struct

type t

let t = Struct { complete = false; fields = [] }

let field name typ =

let offset = compute_offset t in

let f = { typ; offset; name } in

t.fields <- f :: t.fields;

f

let seal t = compute_padding t; t.complete <- true

end : STRUCTURE)

end

Figure 17: The Type_dyn implementation of TYPE (Figure 15)

that map particular concrete arguments into previously computed layout in-
formation. In order to bring the layout information directly into the OCaml
program an additional stage is needed: first, the Timeval functor (Figure 16)
is applied to a module Generate_C to produce a C program that retrieves
layout information with calls to offsetof and sizeof:

printf("{ftype;fname;foffset=%zu}\n", offsetof(struct timeval, tv_sec));

Compiling and running the C program produces an OCaml module Types_impl

that satisfies the TYPE signature (much as the generated Foreign_GeneratedML

module satisfies FOREIGN), and which contains implementations of field and
seal specialized to the structs and fields of the Timeval module:
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let field s fname ftype = match s, fname with

| Struct { tag = "timeval"}, "tv_sec" → {ftype; fname; foffset = 4}

(* ... *)

The application Timeval(Types_impl) passes the layout information through to
the calls to Tv.field and Tv.seal, making it available for use in the program.

This technique extends straightforwardly to retrieving other information
that is available statically, such as the values of enum constants or preprocessor
macros.

8. Practical aspects

There is evidence that the modular approach to foreign function bind-
ings described here works well in practice. The open-source ctypes library
has seen rapid adoption in the OCaml community: at the time of writ-
ing there are fifty-three packages with direct dependencies on the latest
version of ctypes available via the OCaml package manager OPAM, and
many more by dozens of authors on GitHub and in private commercial
use. Ctypes is in commercial use at several companies, including Citrix,
Cryptosense, Jane Street Capital and Docker. The library has been ported
beyond Linux to OpenBSD, FreeBSD, MacOS X, Windows, the MirageOS
unikernel(Madhavapeddy et al., 2013), the Android and iPhone mobile phone
environments and the Arduino microcontroller. Many of the projects built
on ctypes are substantial: for example the tgls bindings to OpenGL replace
earlier OpenGL bindings which comprised over 11000 lines of hand-written
C. Table 1 lists a few well-known ctypes projects; libraries written by the
authors of this paper are marked with an asterisk.

8.1. Case studies

Multiple interpretations in practice. One common pattern when developing
bindings with ctypes is to start with an implementation based on the dynamic
implementation of FOREIGN (Section 3), which supports easy interactive de-
velopment, then switch to the staged interpretation (Section 4) for improved
performance and safety once the bindings are mature. A number of libraries
have followed this path; one recent example is the ocaml-mariadb library7,
which provides bindings to the MariaDB database. As is commonly the case,

7https://github.com/andrenth/ocaml-mariadb

25

https://github.com/andrenth/ocaml-mariadb


Interface Topic Interpretations
libsodium* cryptography staged
Nebula CPU emulation dynamic
mariadb database staged
argon2 hashing dynamic
GNU SASL authentication staged
glibc passwd identity dynamic
GDAL/OGR geography dynamic
zstd compression staged
libzbar barcodes dynamic
libnl networking dynamic
nanomsg messaging staged
LZ4 compression staged
OpenGL (ES) graphics dynamic
SDL multimedia dynamic
gccjit compilation staged
fsevents* OS X staged
sys/stat.h* Posix staged, Lwt
FUSE protocol* file systems data type
Tokyo Cabinet database dynamic
libuv async I/O staged
libudev OS interface dynamic
llibnqsb-tls* cryptography inverted
hardcaml-vpi hardware simulation dynamic

Table 1: Some bindings using ctypes

switching interpretations required no non-trivial changes to the binding de-
scriptions themselves, but did involve some restructuring of the surrounding
code. In particular, one module in ocaml-mariadb initially included both the
binding descriptions and some high-level functions that used the bindings.
After the switch to the staged approach these high-level functions depended
on the combination of the bindings descriptions and the generated OCaml
module, and accommodating this new dependency involved moving the high-
level functions to a separate module.

In some cases it is convenient to support multiple interpretations simulta-
neously. For example, the ocaml-sys-stat package, which provides bindings
to the types and functions in the Posix <sys/stat.h> header, exports both
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module Types(T: Cstubs.Types.TYPE) = struct

open T

module Version_7_9 = Profuse_types_7_9.Types(F)

(* ... *)

module Flags = struct

include (Version_7_9.Flags : module type of Version_7_9.Flags)

let fopen_nonseekable = constant "FOPEN_NONSEEKABLE" t

end (* ... *)

Figure 18: Part of the FUSE 7.10 bindings in profuse, built atop the FUSE 7.9 bindings

synchronous and asynchronous (Lwt) versions of the same bindings, obtained
by applying a single functor to two implementations of FOREIGN.

Finally, it is sometimes useful to build custom implementations of FOREIGN
for particular needs, such as instrumenting every bound function to print
tracing information; the functor-based approach described here straightfor-
wardly supports this kind of change without any need to modify the binding
descriptions.

FUSE. The profuse FUSE protocol library8 uses ctypes solely for its ability to
represent the types of binary protocols and perform C structure layout queries
(Section 7). A previous library, ocamlfuse, used manual bindings to libfuse,
the FUSE library for userspace file systems. Profuse improves on ocamlfuse
by directly communicating with the OS kernel via a UNIX domain socket.
This gives profuse the flexibility to stack FUSE file systems and manage
asynchrony without incurring the overhead of the full parsing of messages
and libfuse-managed asynchrony. This use of ctypes ’s type representation
and layout query features is only possible due to the modular embedding
of the C type system; an external bindings generator tool would be much
harder to repurpose.

Additionally, there are several versions of the FUSE protocol in active
use: FUSE 7.8 is widely supported, but recent Linux releases support FUSE
7.23, which offers many more features. In order to support several versions
simultaneously, profuse binds the structures and values of each version using
a functor which imports the binding for the predecessor version in its body,
using the OCaml module language to override and extend only the parts that

8 https://github.com/effuse/profuse/
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have changed. Figure 18 gives a typical example: the bindings for FUSE 7.10
are defined as a number of small changes to the bindings for FUSE 7.9, such
as the addition of a flag FOPEN_NONSEEKABLE.

8.2. Overhead: call latency
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Figure 19: FFI call latency by arity: staged-for-isolation and interpreted bindings

To evaluate the overhead of ctypes, we wrote bindings for ten simple ma-
chine integer functions of arity 0 to 9 which return their last argument. We
then interpreted these bindings both dynamically with libffi (Figure 19)
and statically through a staged compilation (Figure 20). We wrote two other
modules satisfying the same signature with implementations using the tra-
ditional manual OCaml binding technique of manipulating OCaml values in
C with preprocessor macros. The manual variation followed exactly the FFI
directions in Chapter 19 of the OCaml 4.02.1 manual. The expert variation
took advantage of various omissions, shortcuts, and undocumented annota-
tions which preserve memory management invariants and are known to be
safe but difficult to use correctly. The libffi-interpreted bindings have a
large overhead due to writing an ABI-compliant stack frame. Type traversal
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Figure 20: FFI call latency by arity: staged and hand-written bindings

and directed frame construction for the bound symbol results in a call la-
tency linear in the function’s arity. The static bindings are between 10 and
65 times faster than the dynamic bindings. Figure 19 also shows bindings
staged to perform interprocess communication (IPC) via semaphores and
shared memory in order to isolate the bound library’s heap from the main
program (Section 6.3). As expected, the IPC introduces a call latency of
several microseconds.

Each test except staged IPC generation ran for 10s on an Intel Core i7-
3520M CPU running at 2.9 GHz under Linux 3.14-2 x86 64. Staged IPC
generation ran for 45s per test case to collect sufficient samples for a narrow
distribution. All tests had a coefficient of determination, R2, in excess of
0.98 and 95% confidence intervals of less than ±2%.

9. Related work

The approach of representing foreign language types as native language
values is inspired by several existing FFIs, including Python’s ctypes, Com-
mon Lisp’s Common FFI and Standard ML’s NLFFI (Blume, 2001), each of
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which takes this approach.
This paper follows NLFFI’s approach of indexing foreign type representa-

tions by host language types in order to ensure internal consistency (although
OCaml’s GADTs, unavailable to the author of NLFFI, make it possible to
avoid most of the unsafe aspects of the implementation of that library).
However, this paper departs from NLFFI in abstracting the declaration of C
types from the mechanism used to retrieve information about those types,
using OCaml’s higher-order module system to perform the abstraction and
subsequent selection.

The use of functors to abstract over interpretations of the TYPE and FOREIGN

signatures is a central technique in this paper. Carette et al. (2009) use func-
tors in a similar way, first abstracting over the interpretation of an embedded
object language (λ calculus), then developing a variety of increasingly exotic
interpretations that perform partial evaluation, CPS translation and staging
of terms.

The use of GADTs to represent foreign language types, and their in-
dexes to represent the corresponding native language types (Section 2) can
be viewed as an encoding of a universe of the kind used in dependently-typed
programming (Nordström et al., 1990; Benke et al., 2003). Altenkirch and
McBride (Altenkirch and McBride, 2003) use universes directly to represent
the types of one programming language (Haskell) within another (OLEG)
and then to implement generic functions over the corresponding values.

Mapping codes to types and their interpretations by abstracting over a
parameterised type constructor is a well-known technique in the generic pro-
gramming community (Yang, 1998; Cheney and Hinze, 2002). Hinze (Hinze,
2006) describes a library for generic programming in Haskell with a type class
that serves a similar purpose to the TYPE signature of Section 7, except that
the types described are Haskell’s, not the types of a foreign language. There
is a close connection between Haskell’s type classes and ML’s modules, and
so Karvonen’s implementation of Hinze’s approach in ML (Karvonen, 2007)
corresponds even more directly to this aspect of the design presented here.

Availability. The ocaml-ctypes code is available online: https://github.

com/ocamllabs/ocaml-ctypes
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