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Abstract

DNA microarrays allow the measurement of transcript abundances for thousands
of genes in parallel. Most commonly, a particular sample of interest is studied next
to a neutral control, examining relative changes (ratios). Independent component
analysis (ICA) is a promising modern method for the analysis of such experiments.
The condition of ICA algorithms can, however, depend on the characteristics
of the data examined, making algorithm properties such as robustness specific
to the given application domain. To address the lack of studies examining the
robustness of ICA applied to microarray measurements, we report on the stability of
variational Bayesian ICA in this domain. Microarray data are usually preprocessed
and transformed. Hence we first examined alternative transforms and data selections
for the smallest modelling reconstruction errors. Log-ratio data are reconstructed
better than non-transformed ratio data by our linear model with a Gaussian error
term. To compare ICA results we must allow for ICA invariance under rescaling
and permutation of the extracted signatures, which hold the loadings of the original
variables (gene transcript ratios) on particular latent variables. We introduced a
method to optimally match corresponding signatures between sets of results. The
stability of signatures was then examined after (1) repetition of the same analysis run
with different random number generator seeds, and (2) repetition of the analysis
with partial data sets. The effects of both dropping a proportion of the gene
transcript ratios and dropping measurements for several samples have been studied.
In summary, signatures with a high relative data power were very likely to be
retained, resulting in an overall stability of the analyses. Our analysis of 63 yeast wild-
type vs. wild-type experiments, moreover, yielded 10 reliably identified signatures,
demonstrating that the variance observed is not just noise. Copyright © 2003 John
Wiley & Sons, Ltd.
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Introduction

for each gene. Most commonly, one channel is
used for a neutral control and one other chan-

DNA microarrays allow the simultaneous measure-
ment of transcript levels for thousands of genes
(Schena et al., 1995). These give an indication of
which genes have been turned on in a given sam-
ple. Using multiple ‘channels’ per measurement,
several transcript levels are usually determined

Copyright © 2003 John Wiley & Sons, Ltd.

nel measures the transcript level of a particu-
lar sample under investigation. It is then typical
to focus on the channel ratios. Samples can be
from different tissue types, developmental stages,
disease classes or specifically genetically engi-
neered organisms.
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ICA of expression ratios from DNA microarrays

Independent component analysis (ICA) is a
promising modern method for the analysis of
such experiments. More traditionally, ICA has
been used for blind source separation of noisy
images, sound recordings and electrophysiologi-
cal data. Only recent studies have applied ICA
to microarray experiments (Miskin, 2001; Lieber-
meister, 2002; Lin efal., 2002). ICA can be
seen as a less constrained extension of other fac-
tor analyses, e.g. the popular principal compo-
nents analysis. See Bell and Sejnowski, 1995;
MacKay, 1996; Pearlmutter and Parra, 1996;
Makeig et al., 1997; Roberts and Everson, 2001;
Hyvarinen et al., 2001 for a general discussion
of ICA and typical earlier applications in other
domains.

ICA relies on a non-Gaussian distribution of the
underlying latent variables that are to be uncovered.
As a consequence, certain properties of algorithms
for ICA can depend on characteristics of the data
examined, which will be different according to the
application domain of the analysis.
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For microarray data, little is known about the
expected distributions of the underlying latent
variables. Moreover, in contrast to the very high
number of measurement variables (~10%, scaling
with the number of genes examined), an every-
day data set will consist of only a few samples
(~10-100). Testing results from applications of
ICA in this domain for robustness is therefore of
great interest.

Since it is common in the field to transform or
preprocess the data, we first examined alternative
transforms and data selections for the smallest
modelling reconstruction errors.

A test for robustness requires comparing ICA
results, e.g. the signatures, which hold the loadings
of the original variables (gene transcript ratios) on
particular latent variables. ICA is invariant under
rescaling and permutation of these signatures and
any comparison of two sets of signatures must
allow for that. To this end, we introduced a method
to optimally match corresponding signatures from
two sets to one another.

function permutation_matrix_by_IPF(Sigma,Tau);

Sigma = normalize_gene_ratio_variance_across_samples(Sigma);

Tau = normalize_gene_ratio_variance_across_samples(Tau);

g =
mu = 1;
alphas = ones;
betas = ones;
repeat

M = S ** mu;

M = rescale_rows(M,alphas);

M

mu = log_increase(mu);

repeat

similarity_matrix(Sigma,Tau);

rescale_columns (M,betas) ;

alphas = update_row_scaling(M,alphas);

M = rescale_rows(M,alphas);
betas = update_column_scaling(M,betas);
M = rescale_columns(M,betas) ;

until average_squared_element_change_in_M < maxInnerDelta

until average_squared_element_change_in_M < maxDelta

return(M) ;

Figure |. Iterative proportional fitting, algorithm overview. The procedure aborts after a specified maximum number
of iterations. A faster converging, yet possibly less robust, alternative is obtained by initializing M = S and updating
M = M * *mu, where xx stands for element-wise exponentiation. update_row_scal ing rescales individual rows so that

they each sum to |

Copyright © 2003 John Wiley & Sons, Ltd.
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function analyse_similarity_matrix(S):

ok = Zeros;
good = zeros;
M =8S;

row_index=0;

repeat

i = highest_diagonal_element_index_next(row_index,M);
if M(i,i) >= max(row_of(M,i)) and

M(i,i) >= max(column_of(M,i)) and

M(i,1i) >= 0.1 then
ok(i) = 1;

if M(i,i) >= 0.6 then

good(i) = 1;
end_if

row_of(M,i) = zeros;

column_of(M,i) = zeros;

end_if
until no_changes_to_M;

return(ok,good,S);

Figure 2. Similarity matrix analysis, algorithm overview. If a diagonal element similarity score is less than 0.1, it is considered
too bad for a match. We consequently call similarity scores of at least 0.1 ‘ok’ matches. Matches meeting the arbitrary
threshold score of 0.6 are called ‘good’. highest_diagonal_element_index_next will, in successive calls, return
all row indices of its matrix argument so that the corresponding diagonal element values decrease. Once the set of all
row indices has been exhausted, the function will restart with the index for the highest such element. By allowing multiple
iterations, clear cases can be dealt with first, removing ambiguities for matches with weaker similarity score. The loop is

aborted after a specified maximum number of iterations

We then examined the stability of signatures
after (1) repetition of the same analysis run with
different random number generator seeds, and
(2) repetition of the analysis with partial data
sets. We studied both the effects of dropping
a proportion of the gene transcript ratios and
dropping measurements for a fraction of the
samples.

Methods

Selection and preprocessing of data sets

We used data published by Hughes ef al. (2000),
who provide one of the most extensive data sets
publicly available, and moreover performed 63
‘neutral’ vs. ‘neutral’ experiments, examining the
natural variation seen in unaltered wild-type yeast.
It is this subset of 63 samples that this study uses.

The data were first preprocessed to remove all
the ratios of genes for which there occurred values

Copyright © 2003 John Wiley & Sons, Ltd.

that were not a number, or infinite. Data for 1464
such genes were dropped, reducing the size of the
final data matrix to 63 x 4870. All further analysis
was done on this subset of the data.

The data, as provided by Rosetta Inc. (Hughes
et al., 2000), contain log,,-transformed channel
ratios and estimates of their experimental errors.
For an examination of non-transformed ratios, both
the data and the experimental error estimates have
been appropriately reverse-transformed.

Algorithms

ICA was performed using ensemble learning (revie-
wed by MacKay, 1995) as implemented in MatLab
by Miskin (2001). With s enumerating samples
(e.g. different tissues or experimental conditions)
and i enumerating the original input variables (gene
transcript ratios), we get a decomposition:

Dy =) AyBj + vy (1)
l

Comp Funct Genom 2003; 4: 300-317.



ICA of expression ratios from DNA microarrays

where [ enumerates the latent variables, and v
allows for Gaussian noise. The matrix B = (o})
holds the signatures: a signature o; = (0y;); shows
how much each of the original input variables
contributes to a particular latent variable; oj; is
often also called the loading of gene i on com-
ponent /. The amounts required to reconstruct the
data in latent variable space are given by the so-
called mixing matrix, A. For any particular A and
B, v =D — AB gives the reconstruction error, i.e.
the magnitudes of noise required for the model to
match the observed data.

In contrast to other approaches to ICA, which
calculate a point estimate of the parameters of the
model, ensemble learning computes a factoriza-
tion approximation to the full posterior (MacKay,
1995). The hyperparameters of this approximate
posterior are initialized with random values.

Signatures from two ICA runs were compared to
one another using an iterative proportional fitting
(IPF) procedure to obtain a best-guess permutation
matrix giving the required reordering for an optimal
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match. For two signatures, o and 7, a similarity

measure: )
(o)

St = TN o 5

2.0 2.

was defined, which is invariant under rescaling of
the signatures. Here, the sums run over all original
variables (gene transcript ratios). Figure 1 outlines
the IPF procedure; further details can be found in
the online supplement.

To rank latent variables according to their con-
tribution to the reconstruction, we calculate the
relative data power for a latent variable:

Z (agbi)? Z a’ Z b
3 _ K i (3)

s,i
2 2
> di > di
5,0 i

Note that this quantity can also become larger than
1 for certain values of v.

2

pr =

Distribution of experimental error estimates: histogram and best fit Gaussian
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Figure 3. Distribution of experimental error estimates for (non-transformed) ratio data (left) and log-ratio data (right).
The horizontal axes correspond to the magnitudes of the experimental error estimates, the heights of the bars to their
frequencies. Note that the presentation is semi-logarithmic. The distributions of errors show heavy tails with a wide
range of observed values in the data set. In the above histograms, moreover, all error values larger than a cut-off have
been combined into the last bin. For the left-hand histogram, the cut-off was 3000; the full range of the error values
was ~0.4...38543 (not shown). For the right-hand histogram, the cut-off was |5; the full range of the error values was

~0.09... 167 (not shown)

Copyright © 2003 John Wiley & Sons, Ltd.
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Scatterplots of error-measures, showing the worst 5% of the data
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Figure 4. Scatterplots of error measures for log-ratios, showing the worst 5% of the data. The graphs plot the relationships
between various error measures and the log-ratio data. The error measures shown are: experimental error estimates
(empirical data errors), standard deviations for the reconstructed data from ensemble learning, and reconstruction errors

(original minus data reconstructed from the model)

Pairs of ICA results were then compared using
the heuristic described in Figure 2. A pair of
signatures is considered to be matching one another
when no better score could have been obtained by
pairing any one of them with a different signature
available in the respective other set. Matching
signatures are not reconsidered in further rounds
of this test, and signatures of high relative data
power are examined first. This effectively allows
more ambiguous cases to also be resolved.

Study details

The full analysis was first repeated with 10 different
random number generator seeds, yielding (120 ) =45
pairwise comparisons. In the following other tests,
to separate the effect caused by a changed random
number generator seed, analyses were all run after
using the same seed to initialize the random number
generator (RNG).

Six independent subsets of the complete data
were then each generated by dropping data for a

Copyright © 2003 John Wiley & Sons, Ltd.

Table I. Outline of experiments testing reproducibility

N pw Type

I 4 RNG seed variation

Dropping a random 5% of the original variables
Dropping a random 20% of the original variables
Dropping a random 35% of the original variables
Dropping a random 50% of the original variables
Dropping a random 5% of measurement samples
Dropping a random 20% of measurement samples
Dropping a random 35% of measurement samples

Dropping a random 50% of measurement samples

S~ A D DhoovoyOoNO
Oy ON ON ONONON O O U0

The table shows the type of experiment, how many independent
data sets have been generated (N), and the number of pairwise
comparisons made (pw). Note that when original variables have
been dropped, comparisons have been to results from a complete
reference set.

different random selection of 974 genes (20%).
The obtained signatures were compared to the
signatures of the full analysis. Four independent
subsets of the complete data were generated by

Comp Funct Genom 2003; 4: 300-317.
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Scatterplots of error-measures, discarding the worst 5% of the data: plot of the rest
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Figure 5. Scatterplots of error measures for log-ratios, excluding the worst 5% of the data. A random 5% subset of the
remaining data has been plotted. The scales of the plots show the ranges of the entire remaining data. See also caption to

Figure 4

Table 2. Standard deviations about zero of the reconstruction error for data transform alternatives

(@) Model Ratios Log-ratios (b) Model Ratios Log-ratios
Ratio scale 0.039 0.028 Ratio scale 0.38 0.03
Log-ratio scale 0.025 0012 Log-ratio scale 242 1.72

After application of the ICA model to the (non-transformed) ratio data, or to log-ratios, the standard deviations
about zero of the reconstruction error have been determined in both scales (log and non-transformed). For
the relative errors, only non-zero data points have been considered. a, absolute reconstruction error; b, relative

reconstruction error.

dropping a different random selection of 13 sam-
ples (20%). The four signatures obtained were
matched to one another, again yielding six com-
parisons. The experiments dropping certain original
variables or measurements were also done drop-
ping 5%, 35% and 50% of the data, respectively
(see Table 1).

After optimal reordering according to the permu-
tation matrix constructed using IPF, the similarity
measure (2) was calculated for all signature pairs,
and analysed as to whether individual signatures
could be matched up. We visualized the resulting

Copyright © 2003 John Wiley & Sons, Ltd.

similarity matrices using Hinton-like plots: the area
of a square corresponds to the size of the value rep-
resented; since all values are positive, black colour
does not denote negative quantities, but is used to
mark uniquely identified matches.

This algorithm was implemented in MatLab.

Results

Alternative data selection and transforms

Often, log-ratios are analysed rather than non-trans-
formed ratios. We have examined reconstruction

Comp Funct Genom 2003; 4: 300-317.
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WT63: Signature similarities (54 strongest signature subsets) 9 (y axis) vs. 5 (x axis)
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Figure 6. Hinton-like plot of the similarity matrix for sets of signatures obtained from analysis of the full data sets with
different random number generator seeds. The area of the white blocks represents the values of the corresponding matrix
entries, which can range from zero (no similarity) to one (perfect match). For a perfect match, two signatures must be
co-linear. For reference, the relative data power (POW) is also displayed. Diagonal elements are coloured black if the
match can be considered optimal by heuristic criteria (see Methods)

errors for both alternatives. It is further custom-
ary in the field to normalize data with respect
to the experimental error estimates for each data
point. We prefer to explicitly model data and errors,
using the non-normalized data directly. It has been
observed before that the distribution of reconstruc-
tion errors has heavy tails (Miskin, 2001) compared
to a Gaussian distribution. This is also true for
the experimental error estimates in our data set
(Figure 3).

Copyright © 2003 John Wiley & Sons, Ltd.

A Gaussian distribution would, however, be a
useful approximation for reasonably compact error
distributions. Plotting error measures vs. data val-
ues for log-transformed ratios (Figures 4 and 5)
and non-transformed ratios (see online supplement)
shows that by exclusion of the data points with
the worst 5% of experimental error estimates, one
can indeed get a compact range of errors, avoiding
more complex error models in a first approxima-
tion. The plots also suggest that, in the Rosetta

Comp Funct Genom 2003; 4: 300-317.
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WT63: Typical reproducibility (RNG seed variation)
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Figure 7. Pairwise identification percentages for different random number generator seeds. For 45 attempts of pairwise
matching of signatures from otherwise identical ICA runs with different random number generator seeds, this plot shows
how many signatures could be identified with a similarity score of at least 0.1 (ok) and how many also had a good similarity
score of 0.6 or higher. Signature sets were restricted by different thresholds of relative data power before the comparison
(shown on the x axis). For each such threshold, the graph shows the means and error bars (standard deviations) of the
percentages of the signatures that could be identified in the 45 pairwise comparisons. The number of signatures above the
threshold is also displayed (circles; the total number, not the percentage, is plotted)

data set, several data points with particularly high
errors have actually been generated by range trun-
cation: extreme values appear to have been set to
the finite values £2 on the log-scale. Clearly, we
want to exclude these from a quantitative model.
All further results have been obtained after pruning
the data points with the worst 5% of experimental
error estimates.

Comparing the distributions of the reconstruc-
tion errors for models of log-ratios and non-
transformed ratios, one could see that the log-ratio
model had the lower reconstruction errors both
in log-ratio space and in non-transformed ratio
space (Table 2). A linear model in log-ratio space
corresponds to multiplicative effects for the non-
transformed ratios. Such effects have been pro-
posed for gene expression that is regulated by
multiple transcription factors (Bussemaker et al.,
2001). There is also an alternative explanation for

Copyright © 2003 John Wiley & Sons, Ltd.

the lower reconstruction errors in log-ratio space:
the log-transform makes the range of errors more
compact and easier to model with a Gaussian error
distribution. All further results have been obtained
from log-ratio data.

Reproducibility

In each study, the repeated analyses yielded pair-
wise similarity matrices which were fairly alike.
Only examples and summaries may therefore be
shown.

Effects of different random number generator
seeds

Figure 6 shows a similarity matrix obtained from
the analysis of the full data set with different ran-
dom number generator seeds. Out of the 10 runs,
a pair of signature sets that yielded one of the

Comp Funct Genom 2003; 4: 300-317.
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WT63: Typical reproducibility (RNG seed variation)
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Figure 8. |dentification percentages for different random number generator seeds. For 45 attempts of pairwise matching
of signatures from otherwise identical ICA runs with different random number generator seeds, two pairs of matched sets
have always been combined. This means that this plot displays how many signatures could be identified in at least two
comparisons in addition to results from simple pairwise comparisons. Another curve shows how many signatures from an
arbitrarily picked set could be identified in all the pairwise matches to the remaining nine sets (boxes). Signature sets were
restricted by different thresholds of relative data power before the comparison. For each such threshold, the graph shows
the means and error bars (standard deviations) of the percentages of the signatures that could be identified. The number
of signatures above the threshold is also displayed (circles; the total number, not the percentage is plotted)

worst matches has been chosen for this example.
Only latent variables with a relative data power
of at least 2 x 10™* have been included, leaving
54 of the original 63. The high similarity scores
along the diagonal show good pairwise matches,
while occasional large off-diagonal elements indi-
cate similarity to other signatures than the assigned
optimal match.

Examining all 45 pairwise matches, we found
that for (88 £ 4)% of the signatures a best pairwise
match can be identified (range 78-96%), most
of which have a ‘good’ score of 0.6 or higher
[(75 £ 5)%, range 67—-85%].

One wonders whether exclusion of latent vari-
ables with low relative data power could improve
the picture. Indeed, using a cutoff value of ~1%,
even (96 + 7)% of the remaining signatures can be
matched pairwise (range 90—100%), most of which

Copyright © 2003 John Wiley & Sons, Ltd.

have a ‘good’ score [(90 % 8)%, range 82—100%].
Increasing the cutoff above that does not further
help these statistics: only a handful of signatures
remain. If only a few of these are reversed in their
order by relative data power in a pair of compared
sets, so that a signature is amongst the N signatures
of highest data power to be considered in one set,
but not its matching partner in the other, no match
can be found and a bad score results (e.g. at a cutoff
value of 2%, one mismatch in a set of nine already
gives a penalty of more than 10%). For example,
a threshold of 6.5% for relative data power leaves
only three signatures in set 1, and four from set 4.
To perform IPF, the three signatures with the high-
est relative data power have to be chosen from each
set. This, however, discards signature 4 from set 4,
which is the best match to signature 3 of set 1 (data
not shown). Figure 7 displays how well signatures

Comp Funct Genom 2003; 4: 300-317.
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WT63: Typical reproducibility (RNG seed variation)
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Figure 9. Identification percentages for different random number generator seeds, good matches. This figure shows results
corresponding to those plotted in Figure 8. Here, only matches with a good similarity score were being counted

Table 3. Set | signatures identified in all pairwise matches to signature sets obtained with different
random number generator seeds, for different thresholds

Cutoff N Identified signatures with good (ok) similarity scores

1.2 x 1077 60 1245678910 11 12(14) 1718 192021 22242526 27 29 30 32 33 (34) (36)
(40) (41) 4243 47 (51) 57 (58)

2.0x 1074 54 | 3)4567810 11 12(14) (15) (16) 17 19202223 2426272829 303233
(34) (36) (41) 4243 (44) 47

1.2 x 1073 48 12(3)45678910 11 12(15) (16) 17 18 19202223 24 2526 27 28 29 30 32
(36) (41) 42 43 (44)

2.0x 1073 42 12(3)456789 1011 1217181920 (21) 2324 2526272829 30 32 (36) (41)

2.5x 1073 36 12(3)45789 1011 121718 19202324 2526272829

3.6x 1073 30 12345(6)7910 11121718 192023242527 28

43x 1073 24 234(6)789 101112171819 (20) 23

7.5 % 1073 18 134(6)789101217

I.1 x 1072 12 12345(6)789 (1)

The signatures of an arbitrarily picked set of ICA results (set ) were determined, which could be identified in all the
pairwise comparisons to the signature sets obtained from ICA with different random number generator seeds. This
table lists these signatures for various relative data power thresholds, and also shows which of them had a good
similarity score (>0.6). N gives the total number of signatures in the sets that were compared, i.e. this number of
signatures were above the cutoff for all sets.

Copyright © 2003 John Wiley & Sons, Ltd. Comp Funct Genom 2003; 4: 300-317.
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WT63: Signature similarities (54 strongest signature subsets) 1 (y axis) vs. full set (x axis)
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Figure 10. Hinton-like plot of the similarity matrix for ICA results on an 80% subset of variables, matched to the reference
of the set of signatures obtained from analysis of the full data set (see caption to Figure 6). NB: For clarity of demonstration,
the worst match from the six comparisons was chosen for this figure

could be matched pairwise between sets for various
thresholds.

Examination of which signatures could be iden-
tified in a pairwise match also showed that,
for small or heterogeneous sets, this varies non-
trivially with the choice of the threshold parameter:
whether signatures with extreme loadings on par-
ticular original variables (gene transcript ratios) are
included affects the subsequent normalization of
this variable.

Having multiple pairwise comparison available,
the question arises whether the same latent vari-
ables could stably be identified in each of the

Copyright © 2003 John Wiley & Sons, Ltd.

pairwise matches. Examining how many signa-
tures of a given set could be identified in pair-
wise matches to at least two other sets yields, in
the worst case, a reduction of 8% (see Figure 8).
For an arbitrarily picked set 1, we also deter-
mined which signatures could be identified in all
the pairwise comparisons to the remaining nine
sets. In the worst case (for a cutoff value of
2 x 107%), this gave a reduction of more than
40%. For higher cutoff values (>0.5%), however,
no further reduction was seen (data not shown).
For a minimum relative data power threshold of
~1%, in all sets, more than 90% of the signatures

Comp Funct Genom 2003; 4: 300-317.
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WT63: Typical reproducibility on 80% subsets of original variables
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Figure 11. Identification percentages for results from different original variable subsets. For six attempts of pairwise
matching of signatures from ICA of the entire data set (the reference) to results of ICA runs on different 80%-subsets of
the original input variables, two pairs of matched sets have always been combined. This means that this plot shows how
many signatures could be identified in at least two comparisons, in addition to results from simple pairwise comparisons.
Another curve shows how many signatures of the reference set could be identified in all the six pairwise matches (boxes).
(Also see caption to Figure 8)

WT63: Typical reproducibility on 80% subsets of original variables
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Figure 12. Identification percentages for results from different original variable subsets, good matches. This figure shows
results corresponding to those plotted in Figure | |. Here, only matches with a good similarity score were being counted
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WT63: Signature similarities (42 strongest signature subsets) 3 (y axis) vs. full set (x axis)
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Figure 13. Hinton-like plot of the similarity matrix for ICA results on two different 80% subsets of measurement samples
(see caption to Figure 6). NB: The worst match from the six comparisons was chosen for this figure

could be identified in at least two other sets. Also,
more than 80% of the signatures from set 1 were
identified in all pairwise matches to the other nine
sets.

Similarly for identified matches with a ‘good’
score (see Figure 9): A combination of two pair-
wise matches yielded a reduction of 9% com-
pared to plain pairwise scores. The combination
of all pairwise matches for set 1 gave a reduc-
tion of ~15%. For a minimum relative data power
threshold of ~1%, in all sets, 85% of the signa-
tures could be identified in at least two other sets
with a good score (>0.6). Moreover, two-thirds
of the signatures from set 1 were identified in all

Copyright © 2003 John Wiley & Sons, Ltd.

pairwise matches to the other nine sets with a good
score.

The apparent irregularity of the curves showing
the number of signatures found in all pairwise
comparisons reflects that this quantity is derived
for a single set, set 1, while the other plots average
the results for multiple sets.

It was also interesting to check which particular
signatures of set 1 could be identified, as the
relative data power threshold was varied. From
Table 3 one can see that not only are the lists
of signatures at higher cutoffs almost subsets of
those for lower cutoffs but that, moreover, for a
high enough cutoff (~1%) the list of identified

Comp Funct Genom 2003; 4: 300-317.
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Table 4. Reference set signatures identified in all pairwise matches to signature sets obtained
after deleting 20% of the variables, for different thresholds

Cutoff N Identified signatures with good (ok) similarity scores

1.2 x 1073 60 123456789 101112171819 (20) 21 232426272829 303233
(38) (39) (42) 43 (46) 47 49 (53) (54) 57 58

2.0x 1074 54 123456789 101112171819 (20) 21 2426272829 3032 33 36
(38) (39) (40) 43 (46) 47 49 (51)

1.2 x 1073 48 123456789 101112171819 (20) 21 2223 2426272829 3032 33
(39) (41) 42 43 (46)

2.0x 1073 42 1234567891011 12(15) 17 1819 (20) 23 24 26 27 28 30 32 33 (39)

2.5% 1073 36 12346791011 12(14) 17 18 (21) (22) 23 24 26 27 28 29 30 32 (35)

3.6 x 1073 30 123471011 12(14) 17 18 19 (20) 23 24 26 27 28

43 % 1073 24 1234678910 11 12(15) (16) 17 18 19 (20) 23

7.5 % 1073 18 123467891011 12

.1 x 1072 12 123456789 10(11)

Compared to a reference set calculated using the entire data, the signatures were determined which could
be identified in all the pairwise comparisons to signatures obtained after deleting 20% of the original variables.
The table lists these signatures for various relative data power thresholds, and also shows which of them had
a good similarity score (>0.6). N gives the total number of signatures in the sets that were compared, i.e.
this number of signatures were above the cutoff for all sets.

WT63: Typical reproducibility on 80% subsets of measurement samples
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Figure 14. Identification percentages for results from different measurement sample subsets. For six attempts of pairwise
matching of signatures from ICA of different 80% measurement sample subsets, two pairs of matched sets have always been
combined. This means that this plot shows how many signatures could be identified in at least two comparisons in addition
to results from simple pairwise comparisons. Another curve shows how many signatures from an arbitrarily picked set

could be identified in all the pairwise matches to the remaining three sets (boxes). (Also see caption to Figure 8)

Copyright © 2003 John Wiley & Sons, Ltd.
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WT63: Typical reproducibility on 80% subsets of measurement samples
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Figure 15. Identification percentages for results from different measurement sample subsets, good matches. This figure
shows results corresponding to those plotted in Figure 14. Here, only matches with a good similarity score were being

counted

signatures is contiguous, starting with the signature
of highest relative data power.

For practical purposes of assessing the reliability
of a single set of signatures from this experiment,
one could therefore pick a threshold of ~1.5%.
The higher the relative data power of a signature,
the more likely it is to be reproducible. Only
occasionally, the closest match to a signature of
high relative data power in reruns of the analysis
occurs with a much lower relative data power
value. A second (verification) run is likely to
expose such cases and may hence be advisable.

Effects of excluding random subsets of the
original variables

Comparison of signatures obtained after exclusion
of a random 20% of the original input variables to
those signatures from ICA of the full (reference)
data set gives a similarly robust picture (Figures 10,
11 and 12). Although, again, there is some vari-
ation by cutoff value, a threshold of ~1% will
give signatures that remain identifiable after exclu-
sion of a random 20% of the original variables.

Copyright © 2003 John Wiley & Sons, Ltd.

At the 1% threshold, over 90% of signatures could
be identified in all six pairwise matches, most of
which were good. In general, the higher the rela-
tive data power of a signature, the more likely it
is to be robust. Since the lists compared in Table 4
show signatures that could be identified in all six
pairwise matches, only minor variation with cutoff
threshold can be expected due to the effect of the
different set choice for each experiment on the sub-
sequent normalization. Signatures 1-11 seemed to
be particularly stable.

The question arises whether even more data
could have been removed without affecting the sta-
bility of the signatures of high relative data power.
Removing 35% or even 50% of the original vari-
ables actually has similar results in that signatures
with higher relative data power are more likely
to be conserved. In each case, two-thirds of the
signatures could be identified in all six pairwise
comparisons, and they all had a good score (data
not shown).

So, do these numbers improve if less data is
removed? Interestingly, there is no such trend (data
not shown). Rather, it seems that removing small

Comp Funct Genom 2003; 4: 300-317.
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Table 5. Set | signatures identified in all pairwise matches to signature sets obtained after randomly excluding

entire measurements, for different thresholds

P (%) Cutoff N Identified signatures with good (ok) similarity scores

50 2.5% 1073 30 () (2) (3) (6) (15) (16) (21)

50 3.6x 1073 24 (12 (4) (6) (15)

50 43x 1073 18 2.(3) (15)

50 7.5 % 1073 12 209 (1)

65 2.0x 1073 36 13(#)(5)6 (@) (8) () (1) (16) (20) (22) (23) (26) 31

65 2.5 % 1073 30 13(5)6©) (1) (14) (19) (20) (21) (22) (26) (28) (30)

65 3.6x 1073 24 3(5)6(8) (9 (10) I'l

65 43x 1073 18 [3(4)(10) 11 (12)

65 7.5%x 1073 12 13#)6(7)(8)(©9) Il

80 2.0 x 1071 48 124 (5)68(9) (10) 19 (22) 25 (27) 28 (29) 30 31 (32) 36 37 43 (46)

80 1.2 x 1073 42 12(3)4(5)68(9) (10) (14) (16) 19 (20) (22) 25 28 (29) 30 31 (32) 36 37

80 2.0x 1073 36 123)46(7)8(9) (13) (14) (22) 25 (26) 28 (29) 30 (31) (32) (33) 36

80 2.5 % 1073 30 123)4(5)6(7)8(9) (14) (15) (16) (18) (20) (22) (23) 25 (27) (28) 30

80 3.6x 1073 24 1234(5)6(9) (12) (14) (15) 21) (22) (23)

80 43x 1073 18 1234(5)6(12) (14)

80 7.5%x 1073 12 1 (2)3)46(7)8(9)

95 1.2 x 1077 54 123456789 (10) (1) 12131618 (19)20 21 22 (24) (25) 26 27 28 (30) 31
(33) 34 (35) 36 (39) 40 (41) (42) (43) 44 (45) 47 49 53 (54)

95 2.0x 107* 48 123456789 (10) (1) (12) 1316 18 (19) 2021 22 (23) (24) (25) 26 27 28 (29)
31 34 (35) 36 (38) (39) (41) 44 (45) 47

95 2% 1073 42 123456789 (10) (1) (12) 13 (14) (15) 16 18 1920 21 22 (23) (24) 26 27 28
(29) 31 (33) 34 (35) (36) (38) (39) (40) (41)

95 2.0x 1073 36 1234567891013 161819202122 (23) (24) 26 27 28 (29) 31 (32) 34

95 2.5% 1073 30 12345678910 (1) (12) (13) (14) 16 (17) 182021 22 (23) (24) 26 27 28 (29)

95 3.6x 1073 24 123456789 (10) (12) 131416 (17) 18 (19) 21 (23)

95 43x 1073 18 123456789 (1) (12) 13(15) 1618

95 7.5x 1073 12 134568

ICA was performed for four sets of data, in each of which a percentage p of the original 63 measurements had been retained
randomly. The signatures of an arbitrary set of ICA results (set |) were then determined which could be identified in all the
pairwise comparisons to the remaining three signature sets. This table lists these signatures for various relative data power
thresholds, and also shows which of them had a good similarity score (>0.6). N gives the total number of signatures in the sets
that were compared, i.e. this number of signatures were above the cutoff for all sets.

or even large amounts of the original variables has
a similar impact on the signatures as any other
minute changes, such as picking a different seed for
the random number generator, essentially leaving
between two-thirds and 90% of recoverable signa-
tures, most of which have a good score. Apparently,
the robust signatures found are characterized by
many genes, so that dropping even a larger propor-
tion of genes does not preclude picking up these
signatures.

Effects of excluding random subsets of
measurement samples

Already Figure 13 shows that in a setting of
relatively few measurement samples and many
variables, removal of the latter has less serious

Copyright © 2003 John Wiley & Sons, Ltd.

consequences than removal of the former (cf.
Figure 10). At high enough relative data power
(~1%), however, many signatures can still be iden-
tified (Figures 14 and 15). At a threshold of 1%,
in pairwise matches, about two-thirds of the signa-
tures were always identified (half of which having a
good score) after 20% of measurement samples had
been removed from each set. When fewer samples
are removed, this proportion increases significantly
(>80% ok, two-thirds with good score), and it is
much smaller when even more data is dropped.
Only one-quarter of signatures could always be
identified when half of the measurement samples
had been removed, and less than 10% of signatures
could be matched with a good score; cf. Table 5.
The fact that by using a data set of only twice the
size, we can reliably extract three times as many

Comp Funct Genom 2003; 4: 300-317.
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signatures and match six times as many signatures
with a good score highlights the importance of
independent measurement samples in a situation
where few such samples are available.

Conclusion

ICA on yeast gene expression ratio data has proved
to be fairly robust. The data set studied con-
sisted of 63 measurements of expression ratios
for 4870 genes. A relative data power thresh-
old of ~1% gave a set of 12 signatures, all of
which could be clearly identified in analysis reruns
with different random number generator seeds,
with the occasional exception of one or two sig-
natures, depending on the exact choice of the
relative data power threshold. Even after ran-
dom exclusion of substantial amounts of data,
most of the original 12 signatures could clearly
be identified. This was demonstrated by removal
of e.g. up to 50% of the original input vari-
ables (particular gene expression ratios) or 20% of
entire measurements (independent samples), after
which most signatures could still be clearly iden-
tified, missing less than one-third of signatures,
depending on the choice of relative data power
threshold. When only 20% of the original input
variables (particular gene expression ratios) had
been removed, almost all signatures were matched
reliably (i.e. with only one or two exceptions,
depending on the choice of data power thresh-
old).

In summary, the observed robust signatures were
characterized by many genes, which made them
fairly immune to even crude omissions from the
data. Eventually, the 63 measurements yielded ~10
reliably reproducible signatures. This is highly sur-
prising and noteworthy in its own right, consid-
ering that the wild-type ‘control’ data has tradi-
tionally only been treated as noise. The signatures
obtained are presently being studied for biological
relevance.

This work should be repeated on independent
data sets to see whether the recommended cut-
off value of ~1% relative data power also trans-
fers to other analyses, e.g. gene classification
studies by expression profiles over time (Hori
et al., 2001, 2002). It can be expected, how-
ever, that at least another such threshold can be
found.

Copyright © 2003 John Wiley & Sons, Ltd.
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Online supplement

Further details of this study, including additional
figures, can be found at http://www.inference.phy.
cam.ac.uk/is/papers/sup
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