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A next step to interpret the findings generated by genome-wide association studies is to associate molecular quantitative traits
with disease-associated alleles. To this end, researchers are linking disease risk alleles with gene expression quantitative trait loci
(eQTL). However, gene expression at the mRNA level is only an intermediate trait and flow cytometry analysis can provide more
downstream and biologically valuable protein level information in multiple cell subsets simultaneously using freshly obtained
samples. Because the throughput of flow cytometry is currently limited, experiments may need to span over several weeks or
months to obtain a sufficient sample size to demonstrate genetic association. Therefore, normalisation methods are needed to
control for technical variability and compare flow cytometry data over an extended period of time. We show how the use of
normalising fluorospheres improves the repeatability of a cell surface CD25-APC mean fluorescence intensity phenotype on CD4+

memory T cells. We investigate two types of normalising beads: broad spectrum and spectrum matched. Lastly, we propose two
alternative normalisation procedures that are usable in the absence of normalising beads.

Copyright © 2009 Calliope A. Dendrou et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Genome-wide association (GWA) studies have revolu-
tionised the mapping of common genetic variants, mostly
single nucleotide polymorphisms (SNPs), with susceptibility
to a wide range of common, multifactorial disorders [1],
in particular autoimmune diseases [2]. The next step to
followup on these findings is the identification of the
molecular effects of these genetic risk variants. A potential
approach to achieve this goal is to associate these risk alleles,
in sufficiently large cohorts, with quantitative molecular
traits. This approach has been widely used in the context
of gene expression mRNA analysis [3–6] but RNA is only
an intermediate step and downstream protein level traits
provide more valuable biological information.

Multicolour flow cytometry analysis can provide rich
protein level data simultaneously on different subsets of cells;
this is of particular importance for post-GWA investigations
as genetic heterogeneity identified in disease-associated
regions can differentially affect various cell subsets. However,

the throughput of current flow cytometry approaches,
including data analysis and sample collection, is limited
to a small number of samples per day or week, especially
when fresh blood is required. As the identification of
subtle molecular effects directed by common genetic variants
may require the analysis of a relatively large number of
samples, flow cytometry experiments may need to span over
several months. Owing to the complexity of flow cytometry
technology, various technical artifacts, including variability
in reagents or measuring instruments, can create time-
related biases. Consequently, normalisation procedures are
necessary to enable the comparison of samples analysed at
different dates.

Similar issues have been identified in the context of gene
expression microarray analysis. For these analyses researchers
typically take advantage of the large number of independent
measurements (one per gene or probe), implicitly using
the rank of a gene of interest as a summary statistic. Such
techniques are not available for flow cytometry data, and
therefore specific approaches are required.
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With the motivation of understanding the molecular
effects of type 1 diabetes (T1D) risk variants located in
the IL2 receptor α-chain (IL-2RA/CD25) gene region [7],
we quantified cell surface expression of CD25 on CD4+ T
cells using flow cytometry [8]. We analysed 192 samples
over a seven-month period, including 15 pairs of repeated
individuals (with blood donations separated by at least three
months) in order to assess measurement repeatability. We
show how time-related biases affect the repeatability of a
phenotype of interest, computed as a mean fluorescence
intensity (MFI) in a population of CD4+ memory T cells.
We used the repeatability level of this genetically controlled
and stable phenotype as a proxy for technical variability
of the flow cytometry measurements. We show how using
fluorescent calibration beads to normalise the MFIs can
control for day-to-day technical variability, generated by
the flow cytometer, that could not be controlled for other-
wise.

2. Results

2.1. Repeatability of CD25-APC Normalised Mean Fluorescent
Intensity (MFI) Phenotype. Using multicolour flow cytom-
etry analysis, we previously identified CD25 cell surface
expression on CD4+ memory T cells to be associated
with genetic variants in the CD25 gene region [8]. This
phenotype is a MFI of anti-CD25 conjugated to APC in
this cell population. To analyse this cell population the 192
samples were gated manually (using the software FlowJo,
Tree Star, Inc.) to correct for interindividual and technical
variability (see Figure S1 in supplementary material avali-
able online at doi: 10.1155/2009/476106 for a description
of gating procedure). Constant flow cytometer settings,
pooling of different antibody batches prior to the start
of the study, and strict protocol adherence were used to
control for technical variability. Nevertheless, when analysing
the distribution of this MFI phenotype across time, we
observed significant time effects. Because this phenotype
is correlated to CD25 genotype, we restricted this analysis
to 149 samples with an identical T1D susceptible CD25
genotype at the main CD25 expression associated SNP [8].
However, time-associated trends remained significant even
in this subgroup (p = 5 × 10−4 when regressing the
MFI against a quadratic model for time, coded in number
of days, see Figure 1(a)). These time effects are probably
due to fluctuations in the flow cytometer that cannot be
measured.

To better control for technical day-to-day variability
of the flow cytometry measures, MFIs were converted to
molecules of equivalent fluorochrome (MEF) using six peak
calibration beads (Dakocytomation, see Methods). For each
experimental day, the MFIs of the six peak calibration beads
were measured using flow cytometer settings identical to
the ones used for the analysed samples. Using the MFI
to MEF correspondence provided by the manufacturer we
fitted a linear model MEF = α × MFI and used this linear
transformation for MFI normalisation. The efficiency of this
procedure is illustrated by the improved repeatability of the
MEF in contrast with the nonnormalised MFI (Figures 1(b)

and 1(c)), thus demonstrating an improved control for day-
to-day technical variability.

2.2. Background Subtraction Using Isotype Control. Typical
flow cytometry procedures to control for day-to-day techni-
cal variability use a fluorochrome-conjugated isotype control
antibody to quantify the background, nonspecific, fluores-
cence intensity. Subtraction procedures are then applied to
compare the background level with the observed intensity
in order to estimate the fraction of positive cells, as defined
by cells with a fluorescence level exceeding background [9].
In the example described here, measures obtained using
background subtraction (either two-percent of background
or maximum positive difference, see [9]) are less replicable
(R2 = 0.443) and correlations with the MEF phenotype are
limited (R2 = 0.59, see Figure 2).

These differences are consistent with the fact that the MFI
and the fraction of CD25+positive cells provide different
types of information. Therefore, these summary statistics
require different normalisation approaches: one using nor-
malisation beads, the other using an isotype control.

2.3. Broad Spectrum versus Spectrum Matched Beads. The
calibration beads used in this study are broad spectrum
beads, which means that the same set of beads can be
used to normalise fluorochromes at different wavelengths
(e.g., PE and APC using the same set of beads). Alternative
normalisation tools use spectrum matched beads, that is,
fluorescent beads whose light spectrum matches exactly the
fluorochrome of interest, for example, APC. Such spectrum
matched beads are required to standardise flow cytometry
measurements across different laboratories or flow cytome-
ters [10]. The fact that the data presented in this study were
generated using a single flow cytometer (BD Biosciences
LSRII) limits the complexity of MFI normalisation, thus
justifying the use of broad spectrum beads.

To better understand the impact of broad versus spec-
trum matched normalising beads, we analysed normalising
beads from another dataset generated during the same
time period using the same flow cytometer. For this
additional dataset broad spectrum (Dakocytomation) and
APC spectrum matched (BD Biosciences) were tested. For
technical reasons, and also to better understand the effect
of variability in photomultiplier tube voltage (controlling
the light detection sensitivity), flow cytometer settings were
not kept constant through time for these additional beads
data. Indeed we observed that, as expected, the normali-
sation coefficient is strongly negatively correlated with the
APC photomultiplier tube voltage (Figure 3). Note that,
in contrast with the data in Figure 3, the APC voltage
remained constant for all other data (Figures 1, 2, 4, and
5), and, therefore, differences in voltage settings explain the
differences in MFI trends between Figures 1(a) and 3. We
found very close agreement between broad spectrum and
APC spectrum matched beads (Figure 3), hence justifying
the use of broad spectrum beads if the analysis involves a
single flow cytometer operated under a strictly adhered-to
protocol.



Advances in Bioinformatics 3

Mar May Jul Sep

Date

15

20

25

30

35

40

45

C
D

25
-A

P
C

M
FI

in
m

em
or

y
C

D
4+

T
ce

lls

0.8

0.9

1

1.1

1.2

N
or

m
al

is
at

io
n

co
effi

ci
en

t

(a)

15 20 25 30 35 40

MFI, first bleed

15

20

25

30

35

40

M
FI

,s
ec

on
d

bl
ee

d

R2 = 0.593

(b)

600 800 1000 1200

MEF, first bleed

600

800

1000

1200

M
E

F,
se

co
n

d
bl

ee
d

R2 = 0.988

(c)

Figure 1: (a) Black crosses show nonnormalised MFIs in the CD4+ memory T cell population as a function of time. The back line was fitted
line to these MFI values using a loess procedure. The red line shows the normalisation coefficient estimated from the beads. (b) Repeatability
plots (n = 15 pairs) for MFIs of CD25-APC cell surface expression in the CD4+ memory T cell population. (c) Repeatability plots (n = 15
pairs) for CD25-APC MEF (normalised MFI) in the same cell population. For (b) and (c), each individual’s blood donations were separated
by at least 3 months.

2.4. Isotype Control Is Not Usable for MFI Normalisation. We
then investigated whether MFIs obtained by measuring the
isotype control fluorescence are usable for MFI normalisa-
tion, in contrast with the traditional use for background
subtraction. Isotype controls are primarily used to provide
information on nonspecific binding via Fc receptors present
on the cells of interest. In our analyses, we attempted to block
such Fc binding using mouse IgG immunoglobulin (Sigma-
Aldrich Company), thereby making the isotype control
primarily a measurement of the autofluorescence [11] of the
cell population examined. We hypothesized that, owing to
this nonspecificity, the biological donor-to-donor variability
would have a more limited effect on isotype fluorescence,
thus providing some information of technical variability.

In Figure 4, we show a comparison of the variability
across time of the normalising beads and isotype control
MFIs. We found that the variability of the isotype control

MFIs greatly exceeds the variability obtained from normalis-
ing beads. A regression analysis using a quadratic model for
time (coded as number of days) regressed against the average
isotype MFI for each day explains only 18.4% of the variance
of the isotype MFI values. The same regression for the
normalising bead MFIs explains 64.8% of the measurement
variance. The isotype MFIs also showed large variation
across different donors analysed on the same day, suggesting
that donor-to-donor differences in autofluorescence levels
contribute to the isotype MFI variability. Moreover, for low
MFI values in the range of the isotype control MFIs, the
signal-to-noise ratio is low.

Overall, the isotype MFIs are highly variable and affected
by donor-to-donor variability. In addition, the biological
variability captured by the isotype control MFIs (average
MFI less than 2) is not significant when analysing higher
CD25 cell surface MFIs in the CD4+ memory T cell
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Figure 2: (a) Correlation between the fraction of CD25-positive cells in the CD4+ memory T cell population and the CD25-APC MEF in
this population. (b) Repeatability (n = 15) of the estimated fraction of CD25-positive cells in the CD4+ memory T cell population obtained
by background subtraction of the isotype control distribution.
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Figure 3: Variability across time of the normalisation coefficient for
broad spectrum beads (black) and APC spectrum matched beads
(red). The blue line shows the APC photomultiplier tube voltage
setting used to measure the beads MFI.

population (average MFI: 25). Thus, the biological donor-
to-donor information captured by the isotype control is not
relevant for normalising the MFIs of interest. Taken together,
these results indicate that the isotype control is not usable for
MFI normalisation.

2.5. Across-Sample Normalisation in the Absence of Cali-
bration Beads. We then investigated alternative procedures
allowing for the control of flow cytometry day-to-day
technical variability in MFI measurements in the absence
of calibration beads. First, we investigated whether we
could use the 192 samples analysed to estimate the trend
associated with technical variability, and use this estimate to
correct for time-related biases. Because of CD25 genotype-
phenotype correlations [8], we only included 149 individuals
with identical T1D susceptible genotypes at the main CD25
expression associated SNP. We coded time as the number
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Figure 4: Variability across time of the isotype control MFIs (red
crosses, one point per sample) and the normalising beads MFIs
(black line, one point per experimental day). MFIs are scaled such
that the value is equal to one for the first day, and a logarithmic scale
is used for the y-axis.

of days since the first bleed and regressed a quadratic
model for time against the CD25-APC MFI estimated in the
total CD4+ T cell population to generated predicted values
pt. The multiplicative normalising factor was estimated as
αt = pt/pt=0. Applying this correcting factor to our main
phenotype of interest (CD25-APC MFI in the CD4+ memory
T cell population, Figure 5(a)) significantly improved the
phenotype repeatability (R2 = 0.91) and helped control for
time-related biases.

2.6. Within-Sample Normalisation in the Absence of Calibra-
tion Beads. We then investigated a second procedure for
MFI normalisation, a flow cytometry approach analogous to
quantile normalisation for gene expression microarray data.
In the context of microarray data, quantile normalisation
takes advantage of a large number of independent data
points (one point per gene or probe) to rank a gene of
interest within the overall distribution of gene intensities.
This procedure corrects at least partially for variability
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Figure 5: (a) Repeatability for the CD4+ memory T cell population CD25-APC MFI normalised using a multiplicative correction factor
estimated by a regression analysis on the set of 149 samples with identical T1D susceptible genotype. (b) Repeatability for the CD4+ memory
T cell population CD25-APC MFI divided by the CD25-APC MFI in the full CD4+ T cell gate for the same sample/analysed tube.

across independent microarray experiments. Flow cytometry
analysis, on the other hand, does not provide large num-
bers of independent data points. However, some partially
uncorrelated MFI measures are available when analysing
independent cell subsets. Therefore, we recoded our MFI
phenotype of interest (computed in CD4+ memory T cells)
by computing, for each sample, the ratio of MFIs between
CD4+ memory T cells and total CD4+ T cells. The advantage
of this approach is the use of an internal control within
the same sample, therefore providing control for technical
variability. The drawback is the reliance on this additional
phenotype to be biologically stable. This situation is similar
to a gene expression analysis where a single gene is used
for normalising the expression intensities; the underlying
assumption is that the expression of this normalising gene
is stable. In the example provided here the repeatability of
the resulting phenotype was poor (R2 = 0.37, Figure 5(b)),
indicating that the repeatability of the MFI in the total CD4+

T cells is lower than what we observed in the CD4+ memory
T cells.

3. Discussion

We have identified CD25 cell surface expression on CD4+

memory T cells to be a biologically stable phenotype,
quantifiable by flow cytometry analysis. We have shown
that the use of broad-spectrum fluorescent normalising
beads significantly reduces the day-to-day variability of flow
cytometry measurements. This normalisation could not have
been achieved with the sole use of an isotype control,
thus motivating the development of efficient tools for flow
cytometry data normalisation.

We also investigated two alternative normalisation meth-
ods, less effective than normalising beads in this example
but useful in situations where fluorescent beads are absent.

A potentially useful approach consists of using the MFIs
obtained from a different population of cells within the same
sample, thus providing an internal normalisation. However,
this procedure will only be useful in a situation where a
different population with repeatable MFI values exists.

In spite of these results, normalisation of fluorescence
intensity data from flow cytometry remains challenging.
Indeed, controlling the technical variability of such a
complex experimental procedure over extended periods of
time is difficult. The development of methods for higher
throughput flow cytometry, enabling the analysis of dozens
of samples on the same day, may address some of these issues
by shortening the duration of the experiment. However,
when the phenotype of interest requires the analysis of
fresh blood, which is the case in this study, the limiting
factor becomes the number of blood samples collected per
day, which is unlikely to become much higher. We have
shown recently that CD25 cell surface expression on memory
cells is decreased and more variable if frozen peripheral
blood mononuclear cells are analysed [8], thereby ruling
out storage of frozen cells as a way to increase throughput.
Therefore, for such experiments the requirement for proper
normalisation of flow cytometry data across several months
remains a necessity.

An elegant approach to circumvent normalisation issues
is the use of a nested design comparing, on each experimental
day, both categories of samples (e.g., individuals with
different genotypes, or cases/controls). When using this
design, only phenotypes of individuals analysed on the same
day are compared with each other, thus avoiding biases
associated with day-to-day technical variability. When the
study is balanced (i.e., the same number of samples from
each category is analysed on each day) the loss of statistical
power to detect phenotype differences is minimal, while the
design becomes much more robust to technical variability.
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4. Methods

4.1. Antibodies and Whole Blood Immunostaining. The
anti-human monoclonal antibodies used for cell surface
immunostaining were APC-conjugated anti-CD25 (BD
Biosciences, clones M-A251 and 2A3), Alexa-Fluor 700-
conjugated anti-CD4, Alexa-Fluor 488-conjugated anti-
CD127, and Pacific Blue-conjugated anti-CD45RA (BioLe-
gend). The isotype control antibodies used were APC-
conjugated mouse IgG1 (BD Biosciences) and Alexa-Fluor
488-conjugated mouse IgG1 (BioLegend). To minimize
potential variation due to antibody batch differences, all
antibodies were obtained prior to the start of the experiment
and all vials of antibody derived from the same clone and
labelled with the same fluorochrome were pooled prior
to usage. To better visualize lower-level CD25 expression,
we increased CD25 detection sensitivity by simultaneously
using two anti-CD25 monoclonal antibodies, (labelled with
the same fluorochrome (clones 2A3 and M-A251), that
recognize distinct epitopes on the CD25 molecule and there-
fore do not cross-compete. Prior to staining, whole blood
samples were blocked with mouse IgG immunoglobulin
(Sigma-Aldrich Company) at a concentration of 2 μg per
100 μL blood. All samples were stained within 5 hours
postvenesection. After blocking, samples were stained for
40 minutes and then lysed for 10 minutes with freshly
prepared 1X BD FACS Lysing Solution (BD Biosciences).
Following erythrocyte lysis, samples were incubated at 4◦C
and were washed with BD CellWASH (BD Biosciences). The
samples were fixed with freshly prepared 1X BD CellFIX (BD
Biosciences). The samples were stored at 4◦C until analysis
by flow cytometry.

4.2. Flow Cytometry Analysis. All immunostained samples
were analyzed using a BD LSRII Flow Cytometer with
BD FACSDiVa Software (BD Biosciences). Each day donor
samples were evaluated, we also analysed six peak normal-
ising fluorospheres (Blank Beads and Calibration Beads,
Dakocytomation) for MFI normalisation purposes. For our
second dataset, where voltage settings were allowed to
vary, six peak normalising fluorospheres (Blank Beads and
Calibration Beads, Dakocytomation) and BD Calibrite APC
Beads (BD Biosciences) were tested on each experimental
day.

4.3. Data Processing and Statistical Analysis. The flow cytom-
etry data were analyzed using FlowJo (Tree Star, Inc.). The
remaining data processing/statistical analysis was performed
using the R programing language. Gates were automatically
extracted from the FlowJo output using an in-house XML
parsing script based on the R XML 2.3.0 library. These gates
were applied to the raw FCS files using the R flowCore

1.8.3 library. Repeatability R2 values are estimated using

[var(X) −∑i(X
1
i − X2

i )2]/var(X) where (X1
i )ni=1 and (X2

i )ni=1

designate the first and second sets of replicates (n = 15 in this

study).
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