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We address the challenging problem of the joint estimation of transmitted symbols and phase distortions in standardized
multicarrier systems, including pilot or virtual subcarriers. These subcarriers create time correlation on the useful transmitted
OFDM signal that we propose to take into account by an autoregressive model. Because the phase distortions are nonlinear, we set
the joint estimation algorithm on the framework of the Sequential Monte Carlo methods. Simulation results are provided in terms
of bit error rate (BER) and mean square error (MSE); they highlight the efficiency and the robustness of the estimator.

1. Introduction

Regarding the“Digital Subscriber lines” (DSLs), the “Digital
Audio Broadcast” (DAB), the IEEE 802.11 “Wireless Local
Area Network” (WLAN), or the IEEE 802.16, most of the
recent communications systems are based on orthogonal
multicarrier technologies. Unfortunately, such technologies
are sensitive to phase noise (PHN) and carrier frequency
offset (CFO) coming from the defaults of the oscillators.
These phase distortions destroy the orthogonality between
subcarriers and lead after Fourier Transform to both a
common rotation of all the symbols and intercarrier interfer-
ences. In this paper, we propose to take into account the time
evolution of the OFDM symbols for the joint estimation of
the transmitted symbols, the phase noise and the frequency
offset. The Sequential Monte-Carlo-based algorithm we have
proposed in [1] for this joint estimation achieves unequaled
performance when dealing with orthogonal multicarrier
systems without virtual and pilot subcarriers. But, in mul-
ticarrier standards, virtual and pilot subcarriers are used,
taking up spectral resources and leading time correlation
of the useful transmitted OFDM signal. This correlation
has not been considered in the algorithm developed in [1],

making it suboptimal in practical cases. As a consequence,
we propose here to take into account the correlation of the
unknown OFDM signal by an autoregressive model (AR) and
to deduce a new dynamic state space model on which the
SMC estimation algorithm is built. The rest of the paper is
organized as follows. Section 2 is devoted to the formulation
of the problem. In Section 3, the estimation of the AR
parameters is given followed by the SMC estimator of the a
posteriori distribution of the unknown OFDM symbols, the
PHN and the CFO. Section 4 presents the performance of our
algorithm and compares it to a perfect Common Phase Error
(CPE) correction scheme which corresponds to the ideal case
of [2]. Section 5 concludes this paper.

In this paper, N , Ncp, and T denote, respectively, the
number of subcarriers, the cyclic prefix length, and the useful
OFDM symbol duration. Let N (x;μ,Σ) and Nc(x;μ,Σ)
represent, respectively, the real and circularly symmetric
complex Gaussian random vectors with mean μ, and let
covariance matrices Σ. In and 0n×m be, respectively, the n× n
identity matrix and the n×m matrix of zeros. Finally, lower
case bold letters are used for column vectors and capital bold
letters are used for matrices; (·)∗, (·)T , and (·)H denote,
respectively, conjugate, transpose, and Hermitian transpose.
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2. Problem Formulation

2.1. Equations of the Phase Distortions and of the Received
Signal. First, input i.i.d. bits are encoded into M-QAM
symbols dn,i, where i denotes the ith subcarrier and n denotes
the nth OFDM symbol. In standard systems, some of the
subcarriers located at the edges of the OFDM block are not
modulated. These Ng subcarriers are referred to as virtual
subcarriers (VSCs) and belong to the set Ωg . Moreover, a set
of P pilot subcarriers are used. They are located on Ωp, with
{Ωp ∩Ωg} = ∅ and Ωp ∪Ωg = Ω.

After the Inverse Discrete Fourier Transform (IDFT), the
samples of the transmitted signal can be written, for l =
0, . . . ,N − 1, as follows:

sn,l = 1√
N

N−1∑

i=0

dn,ie
j2πil/N . (1)

Before transmission, a cyclic prefix (CP) of length Ncp is
introduced to remove intersymbol interference (ISI). By
convention, negative time index t is used for the prefix cyclic
as follows:

sn,t =
⎧
⎨
⎩
sn,N+t if −Ncp ≤ t ≤ −1

sn−1,t+N+Ncp if t < −Ncp,
(2)

where sn,t can be decomposed into a known data signal kn,t

and an unknown data signal un,t so that

sn,t = kn,t + un,t (3)

with

kn,t = 1√
N

∑

i∈Ω
dn,ie

j2πit/N , (4)

un,t = 1√
N

N−1∑

i=0
/∈Ω

dn,ie
j2πit/N . (5)

The resulting signal is transmitted in a time varying
frequency selective channel h(t, τ) which is assumed both to
be invariant over one OFDM symbol and to be characterized
by Lp independent propagation paths. Imperfect oscillators
at the transmitter and at the receiver introduce a phase noise
and a carrier frequency offset Δ f so that, at the sampling rate
N/T of the receiver, the discrete form of the carrier delivered
by the noisy oscillator on the tth sample of the nth OFDM
symbol is

pn,t = exp
(
jφn,t

) ∀t = 0, . . . ,N +Ncp − 1, (6)

where φn,t is the phase distortion which includes the
Brownian phase noise and the CFO

φn,t =

⎧
⎪⎨
⎪⎩

νn,0,

φn,t−1 +
2πε
N

+ νn,t ∀t = 1, . . . ,N +Ncp − 1

(7)

with ε being the normalized CFO. ε is a noninformative
variable which is uniformly distributed on the support
[(Δ f T)min, (Δ f T)max]. νn,t is a white Gaussian noise with
variance σ2

ν = 2πβ(T/N) where β is the bandwidth of the
Brownian phase noise normalized with respect to the OFDM
symbol rate 1/T , namely, the parameter βT .

Under matrix notation, the received signal rn,t corrupted
by phase noise and frequency offset can be written before
removal of the cyclic prefix as follows:

rn,t = e jφn,thTn
(

kn,t + un,t
)

+wn,t, (8)

where

un,t =
[
un,t−Ncp · · · un,−Ncp−Lp+1 01×(N+Ncp−t−1)

]T
,

kn,t =
[
kn,t−Ncp · · · kn,−Ncp−Lp+1 01×(N+Ncp−t−1)

]T
,

hn =
[
hn,0 · · · hn,Lp−1 01×(N+Ncp−1)

]T
.

(9)

At the receiver, the cyclic prefix is first discarded, then,
assuming Ncp ≥ Lp and perfect timing synchronization, a
Discrete Fourier Transform is performed on theN remaining
samples of the received signal. The useful signal is then
corrupted by two types of distortions: a multiplicative
one which is common to all subcarriers and known as
Common Phase Error (CPE) and an additive intercarrier
interference (ICI). The larger the phase noise rate βT is,
the worse the SINR (signal to noise plus interference ratio)
is. Furthermore, on a same bandwidth, a larger number
of subcarriers lead to worse system performance due to
the shorter subcarrier spacing for a same two-sided 3 dB
bandwidth of the phase noise [3].

2.2. Autoregressive Modeling of the Unknown Data Signal
Process. Due to the independence of the process between
two different OFDM symbols, the process at time t can be
modeled via the time domain recursion by the complex AR
model of order (t − 1) (i.e., AR(t − 1))

un,t = −
t−1∑

i=1

at,iun,t−i + bn,t , (10)

where bn,t is a circular white Gaussian noise. The
AR model parameters consist of the filter coefficients
{at,1, at,2, . . . , at,t−1} and the driving noise variance σ2

bn,t
.

They are obtained by solving both the noise variance
equation

σ2
bn,t
= Cuu(0) + aTt xn,t (11)

and the Yule-Walker equation

Cn,tat = −xn,t (12)

with

at =
[
at,1 at,2 · · · at,t−1

]T
,

xn,t =
[
Cuu(1) Cuu(2) · · · Cuu(t − 1)

]T
,

Cn,t = E
[

un,tuH
n,t

]
.

(13)
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The correlation function Cuu(t − l) is obtained by using
the cyclostationarity with period N of the process un,t as
follows:

Cuu(t − l) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

N − P −Ng

N
if t = l,

− 1
N

∑

i∈Ω
e j2πi(t−l)/N if t /= l.

(14)

This correlation function clearly shows that, for (t − l) <
N , un,t is colored. Moreover, in (5), we can denote that the
term un,t is the sum of (N − P − Ng) independent and unit
power random variables. Based on the central limit theorem,
a rigorous proof given in [4] establishes that the complex
envelope of a bandlimited uncoded OFDM signal converges
to a Gaussian random process. Consequently, un,t is modeled
by a Gaussian autoregressive process. Using (10), the state
equation of the vector un,t can finally be written in the matrix
form as

un,t = Atun,t−1 + bn,t , (15)

where the transition matrix At is defined as:

At =
⎡
⎣ ξ t

T

I(N+Ncp+L−2) 0(N+Ncp+L−2)×1

⎤
⎦ (16)

with, according to the cyclostationarity of un,t and (10),

ξ t =

⎧
⎪⎪⎨
⎪⎪⎩

[
at 01×(N+Ncp+L−t)

]T
if 0 ≤ t ≤ N − 1,

[
01×(N−1) 1 01×(Ncp+L−1)

]T
if N ≤ t ≤ N +Ncp − 1

(17)

and bn,t is a (N +Ncp +L−1)-by-1 zero mean Gaussian noise
vector with the covariance matrix

E
[

bn,tbHn,t

]
=

⎡
⎢⎢⎢⎢⎣

σ2
bn,t

0

...

0 · · · 0

⎤
⎥⎥⎥⎥⎦

, (18)

where, using (11),

σ2
bn,t
=

⎧
⎪⎪⎨
⎪⎪⎩

Cuu(0) +
k−1∑

i=1

at,iCuu(−i) if 0 ≤ t ≤ N − 1,

0 if N ≤ t ≤ N +Ncp − 1.
(19)

2.3. Dynamic State Space Model. By using the dynamic
evolution of the PHN (7) and the proposed AR modeling
of the unknown OFDM signal (15), we obtain the following
DSS model:

φn,t =

⎧
⎪⎨
⎪⎩

νn,0

φn,t−1 +
2πε
N

+ νn,t ∀t = 1, . . . ,N +Ncp − 1,

un,t = Atun,t−1 + bn,t,

rn,t = e jφn,thTn
(

kn,t + un,t
)

+wn,t .
(20)
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Figure 1: BER performance of the proposed JSCPE-MPF versus
Eb/N0 for different PHN rates βT and numbers of null subcarriers
(P = 4, ε = 0.4).

In order to jointly estimate φn,t , ε, and un,t , we need
the joint posterior probability density function (p.d.f.)
p(φn,t, ε, un,t | rn,t). Unfortunately, this p.d.f. is analytically
intractable, so we propose to numerically approximate
p(φn,0:t, ε, un,0:t | rn,0:t) via the SMC methodology [5].
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3. SMC Method for Joint OFDM Signal, CFO,
and PHN Estimation

The dynamic state space model (20) depends not only on the
hidden state process φn,t, un,t and the hidden variable ε but
also on the parameters of the AR process which have to be
evaluated before the estimation of the processes of interest.
The first subsection is devoted to the identification of the
unknown OFDM symbol by the AR process. Then the SMC-
based joint estimation of the OFDM signal, the CFO, and the
PHN is deduced.

3.1. AR Parameters of the Unknown OFDM Signal. The
correlation of the unknown OFDM signal un,t can easily be
calculated from (14) so that the Yule-Walker equation (12)
can be solved efficiently by the Levinson-Durbin recursion.
However, as the process un,t consists of a sum of (N −
P − Ng) sinusoids, a necessary condition is that the order
of the AR process satisfies t − 1 ≤ (N − P − Ng − 1)
[6]. With this assumption, the inverse matrix C−1

n,t exists,
and the Yule-Walker equation has a unique solution: at =
−C−1

n,txn,t . Nevertheless, as shown in [7], adding a small
value τ0 to its principle diagonal enables the stability and
the accuracy of larger-order AR models. This strategy is
equivalent to the introduction of white noise of variance
τ0 to the original process. The addition of this spectral
bias removes the bandlimitation of the original spectrum
and creates a nondeterministic or regular process that
in some sense closely approximates the original process.
Consequently using this approach, the order of the AR
process can be chosen up to N − 1 (the largest possible order
in our context). The choice of τ0 thus represents a good
tradeoff between the improvement of the AR modeling of un,t

and the bias introduced in the zeroth autocorrelation lag (i.e.,
in the signal power).

3.2. Joint Estimation of the Phase Distortions and of the
Transmitted Symbols. We notice that the DSS model (20) is
similar to the one obtained when the multicarrier system has
no virtual or pilot subcarriers. Only the matrices At (16) and
σ2
bn,t

(11) differ from the DSS model used in [1] to build the
joint SMC estimation without pilot and virtual subcarriers.
As a consequence, we do not have details on the JSCPE-MPF
(joint signal, CFO, and PHN estimation using marginalized
particle filter) algorithm in this paper and suggest that the
reader refer to [1].

4. Results

With regard to the system parameters, 16-QAM modulation
is assumed and we have chosen N = 64 subcarriers with
a cyclic prefix of length Ncp = 8. A Rayleigh frequency
selective channel with L = 4 paths and a uniform power delay
profile, perfectly known by the receiver, has been generated
for each multicarrier symbol. In the following simulations,
the CFO term ε is generated from a uniform distribution
in [−0.4; 0.4] for each multicarrier symbol which severely
degrades the received signal.
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Figure 2: MSE of the multicarrier signal estimate using the
proposed AR model (solid lines) and without the AR model (dashed
lines) versus Eb/N0 for different PHN rates βT (P = 4, ε = 0.4).

Figure 1 shows the BER performance of the proposed
algorithm for different PHN rates and also different numbers
of null subcarriers with and without the AR modeling of the
multicarrier signal. The BER performance of a multicarrier
system in the absence of phase distortions, using the classical
frequency domain MMSE equalizer is also depicted and
denoted below by MMSE-FEQ. From this figure, it can
be firstly denoted that the perfect CPE correction, which
corresponds to the ideal case of [2], achieves unsatisfactory
BER performance due to a large ICI induced by the severe
phase impairments. Then, we can remark that the proposed
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scheme exhibits very good results. Performance of our
algorithm increases obviously with the number of null
subcarriers, especially for high level of phase distortions.
In fact, the proposed AR model of the multicarrier signal
gives more prior information if the number of pilots or null
subcarriers increases and thus improves the robustness of the
proposed estimator. For βT = 10−2 and Eb/N0 = 30 dB, BER
performance of the JSCPE-MPF is, respectively, 4×10−3 and
1.8×10−3 without and with the proposed AR model. In order
to illustrate the gain obtained by the use of the proposed
signal model, the MSE of the multicarrier signal obtained
using the JSCPE-MPF with or without our AR modeling
is shown in Figure 2. The performance of the proposed
estimator is compared to the Posterior Cramér-Rao bound
(PCRB) of a multicarrier system without phase distortions
derived in [1]. The performance gap with and without the
AR model really becomes significant when the number of
null subcarrier increases. All these results clearly highlight
the benefit from the proposed AR model which makes the
SMC estimator more robust to severe phase distortions in
practical system configurations.

5. Conclusion

In this paper, we address the difficult problem of data
detection in pilot-aided multicarrier systems that suffer from
the presence of phase noise and carrier frequency offset.
The originality of this work consists in an autoregressive
modeling of the OFDM signal from which we have deduced
an SMC method for time domain processing of the nonlinear
received signal. Numerical simulations show that even
with significant PHN rates, the JSCPE-MPF achieves good
performance in terms of both the phase distortion estimation
and BER performance; moreover, it offers a significant per-
formance gain in comparison to existing methods. Thus the
JSCPE-MPF algorithm with AR modeling can be efficiently
used with the channel estimator proposed in [8] for the
design of a complete multicarrier receiver in wireline and
wireless communication systems.
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