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Here we test whether genome size is a predictor of pollen size. If it were, inferences of ancient genome size would be possible using
the abundant paleo-palynolgical record. We performed regression analyses across 464 species of pollen width and genome size.
We found a significant positive trend. However, regression analysis using phylogentically independent contrasts did not support
the correlated evolution of these traits. Instead, a large split between angiosperms and gymnosperms for both pollen width and
genome size was revealed. Sister taxa were not more likely to show a positive contrast when compared to deeper nodes. However,
significantly more congeneric species had a positive trend than expected by chance. These results may reflect the strong selection
pressure for pollen to be small. Also, because pollen grains are not metabolically active when measured, their biology is different
than other cells which have been shown to be strongly related to genome size, such as guard cells. Our findings contrast with
previously published research. It was our hope that pollen size could be used as a proxy for inferring the genome size of ancient
species. However, our results suggest pollen is not a good candidate for such endeavors.

1. Introduction

Pollen range in size by over three orders of magnitude [1, 2]
(Figure 1). The variation in pollen size may stem from strong
selection pressures related to pollen dispersal strategies. For
example, wind-pollinated species may achieve long-distance
transport by having pollen that are (1) small, (2) light
weighed, (3) dehydrated, and (4) that have shapes conducive
to wind capture [1–3]. However, some gymnosperms have
large pollen but are also wind pollinated (Pinaceae and
Podocarpaceae) [4]. Two air-filled sacs (sacci) facilitate wind
dispersal in these groups [3, 4]. Pollen of species that use
insect facilitated dispersal can sometimes be quite large, but
we are not aware of any study showing that pollen dispersed
by insects is generally larger than pollen dispersed abiotically.
However, there is greater interspecific variability for pollen
grain size in species that use insect dispersal [5–7]. Under-
standing what controls pollen size from a developmental
perspective will enhance our understanding of the ecological
significance of variation in pollen size.

It has frequently been observed that pollen size is related
to the length of the style (see [8, 9] and citiations therein).
Delpino [8] suggested that larger pollen grains contain more
resources for the growth of pollen tubes and therefore larger
pollen is better suited to fertilize flowers with longer styles.
Darwin [10] disagreed with this proposal, suggesting that
pollen tube growth was facilitated by resources garnered
from the style. Closely related species sometimes exhibit
extreme variation in pollen size and style length. A change
in style length may ensure reproductive isolation, especially
if style length increases with pollen size, and larger pollen
may be necessary for pollination of flowers with longer styles
[8, 9]. Conversely, there may simply be inherent allometric
determinants of organ size that are shared between both
pollen, styles, and other plant parts (see [11, 12] for a current
review of genetic determinants of organ size).

Recently, Beaulieu et al. [13] found a strong positive
relationship between genome size and cell size, leaving open
the possibility that genome size may partly determine, or
be correlated with pollen size. A pollen grain consists of
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Figure 1: Pollen varies considerably in size. (a) Images of pollen at the same scale and (b) (Inset on a): a histogram of pollen widths showing
a log normal distribution.

a vegetative cell and a generative cell. The generative cell
is enclosed within the cytoplasm of the vegetative cell. For
our purposes, we refer to pollen as unicellular, yet it is
clear that the cellular composition of the vegetative cell is
unique. Previous reports suggested that pollen size increases
with ploidy [14–17]. For example, Bennett [17] found that
pollen size increased in proportion to genome size in 16 grass
species. If there is a strong association between pollen volume
and genome size, it might be possible to infer genome sizes
and/or ploidy for species in the fossil record.

Here we perform a large scale analysis of the relation-
ship between pollen size and genome size encompassing
464 species (437 angiosperms and 27 gymnosperms). We
assembled pollen size information (equatorial diameters,
see methods for more complete description) from the
primary literature and from our own measurements and
matched these values with the Plant DNA C-values database
[18]. Here we define genome size as the nuclear DNA
content of the unreplicated gametic genome (the monoploid
genome size sensu [19]). We also assembled published
reports on the relationship between ploidy levels and pollen
size.

2. Methods

Estimates of DNA content were compiled from the Plant
DNA C-values database maintained at the Royal Botanical
Gardens, Kew [18]. Equatorial diameters for spheroidal

(or near spheroidal) pollen were compiled from various
sources including: (1) The Northwest European Pollen
Flora periodically monographed by family in the Review of
Palaeobotany and Palynology (114 species) [20–23] and oth-
ers, (2) the palynological database (http://www.paldat.org/)
an online publication of the Society for the Promotion of
Palynological Research in Austria (122 species), (3) direct
measurements by Leighton Dann using light microscopy
(157 species—water suspension), and (4) various primary
literature sources (71 species). For gymnosperms equitorial
diameters only included the central spehere, not the periph-
eral structures. All values of genome size and pollen width are
listed in our supplementary table mentioned in SM available
online at doi: 10.1155/2010/612017.

We used Phylomatic (tree version: R20080417.new,
maintained by C. A. Webb, http://www.phylodiversity.net/
phylomatic) to construct a “mega-tree” hypothesis for the
species in our sample. Phylomatic is a compilation of previ-
ously published phylogenies and its ordinal “backbone” and
family resolutions are based on the Angiosperm Phylogeny
Website (APweb) [24]. The program matches a species to
a reference tree first by “genus”, then by “family”. Most
relationships among and within “genera” are returned as a
polytomy due to insufficient resolution within the reference
tree at this phylogenetic scale. Branch length information is
taken from the single fossil-calibrated molecular divergence
time estimates mentioned [25]. We fixed these age esti-
mates and provided dates to undated nodes by distributing
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them evenly between nodes with known ages and terminal
taxa.

We used R (R Development Core Team, 2009) to obtain
slope estimates and R2 from regression models. Independent
contrasts were calculated across our phylogeny using Phy-
locom (V.4.1; [26]). The method of independent contrasts
iteratively calculates trait differences (termed “contrasts”)
between extant “species” pairs, and subsequently their
weighed internal node averages, starting at the tips and mov-
ing down to the root of a phylogeny [26]. This calculation
transforms the data into N−1 independent data points, each
representing an evolutionary divergence. For consistency,
the sign of the contrast for the independent variable (e.g.,
genome size) is set to always be positive with the contrasts of
the dependent variable (e.g., pollen width) being compared
in the same direction. These contrasts are then standardized
by their branch length information to ensure statistically
independent data, drawn from a normal distribution with
equal variances, which can be analyzed using conventional
statistics [27, 28]. Note that since the direction of subtraction
in an independent contrast analysis is arbitrary, reversing the
direction of subtraction would result in a contrast of the
opposite sign. This property gives the expected mean value of
zero to all contrasts. Therefore, all regression analyses forced
the line through the origin [28].

We calculated a contribution index to examine the
proportion of the variation, each divergence contributes to
the present-day variation observed in our pollen width data.
The contribution index is the product of the amount of
variation within a focal clade that is from a particular focal
divergence and the amount of the total variation within that
focal clade compared with the whole tree (for a detailed
discussion, see [29]). That is, large divergences leading to
a large number of descendents with a large spread in trait
data typically result in higher contribution index scores.
Contribution index scores were taken directly from the
Phylocom output.

To test whether recent divergences were more likely to
lead to dramatic changes in both genome size and pollen
width, we preformed two separate but similar analyses. First,
we analyzed the independent contrast output for contrasts
involving sister tip taxa (i.e., node depth equals 1) and
compared this to the complete independent contrast output.
The advantage of this approach is that it is completely
objective, however, the limitation is that tip taxa contrasts
could really be quite divergent because of lack of sister
group representation in our dataset. Second, we exam-
ined how genome size and pollen width varied genus by
genus.

3. Results

Genome size and pollen width information for 464 species
was obtained and is summarized in Table 1. The species
comprised 50 orders and 85 families of Spermatophyta (seed
plants; [30]). The angiosperms made up a majority of the
dataset (437 out of 464 species) and contained represen-
tatives from the major clades: Magnoliidae (magnoliids; 2
species), Monocotyledonae (monocots; 76 species), and the

Eudicotyledonae (eudicots; 359 species). Only three families
(Cupressaceae, Pineaceae, and Taxodiaceae) represented the
extant lineages of gymnosperms (Acrogymnospermae; [26])
and all are from the Coniferae. The mean 1C DNA estimates
for this sample (1C = 22,883.6 Mbp) is comparable to the
mean of the acrgymnosperms (1C = 18,111.2 Mbp) taken
from the Plant DNA C-values database [19].

Pollen width varied nearly three orders of magnitude,
or 2.4-fold, from 7 to 167μm. The average pollen width
was 39.5μm. Oenothera biennis had the largest pollen size
(167μm), while Myosotis scorpioides had the smallest pollen
size (7μm) (Table 1). Unlike the 1C DNA data, the mean
of the magnoliids was larger (pollen width = 59.0μm) than
the monocots (pollen width = 48.3μm) and eudicots (pollen
width = 35.4μm). However, the mean of the gymnosperms
(pollen width = 67.2μm) was larger than all three major
groups of flowering plants. Of the 21 families that had more
than five species represented in our sample, Onagraceae had
the largest mean pollen width at 113.9μm, while Plantagi-
naceae had the smallest mean pollen width at 23.6μm.

The combined data sources showed a significant positive
trend (n = 464, slope = 0.104, R2 = 0.096, P-value<.001,
Figure 2(a)). However, our phylogenetically independent
contrast analysis suggested that there was a large split
between Angiospermae versus Acrogymnospermae (gym-
nosperms) for both pollen width and genome size (Table 2),
but otherwise, divergences in genome size and pollen width
did not co-vary with evolutionary divergences (n = 197
contrasts, slope = 0.04, P > .05, Figure 2(b)). There
were 71 congeneric species pairs in our dataset. Of these,
there were significantly more with a positive relationship
between genome size and pollen width (44/71, sign test P <
.05). Twenty-seven of these congeneric pairs had either no
relationship (slope = 0) or a negative relationship.

Our literature review of ploidy and pollen width showed
consistent reports of pollen width increasing with ploidy
(Table 3): results show that pollen size increased by 1.1x to
2x with a doubling of DNA content.

4. Discussion

The consistent strong positive trend that Beaulieu et al. [13]
found between plant cell size and genome size is weakly
reflected in our analysis of pollen grains. Our regression
test was significant across 464 species, but phylogenetically
independent species contrasts suggest that the relationship
was largely driven by early major divergences during seed
plant evolution (between the Angiospermae versus Acrogym-
nospermae, e.g., see Table 2 for other significant divergences).
At the more microevolutionary level, congeneric species did
tend to support the trend of increasing pollen width with
increasing genome size, but again, divergences across all
taxonomic levels did not support a general evolutionary
trend. Previous investigators have found repeated instances
of increased pollen width with increasing ploidy levels
(Table 3). Our conclusion from these observations is that (1)
if there is a relationship between genome size and pollen
width, it is more likely exposed at the microevolutionary
level, especially when divergences involve variation in ploidy
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Table 1: Summary statistics for pollen size and genome size (1C Mbp) for the major groups of plants analyzed in this study.

Gymnosperms Angiosperms

All Data (N = 464) Coniferae (N = 27) Magnoliidae (N = 2) Monocots (N = 76) Eudicots (N = 359)

pollen size

Smallest 7.00 μm 15.0 μm 44.0 μm 17.0 μm 7.0 μm

Largest 617. 0 μm 108.0 μm 74.0 μm 150.0 μm 167.0 μm

Mean 39.5 μm 67.2 μm 59.0 μm 48.3 μm 35.4 μm

genome size

Smallest 142 Mb 9727 Mb 784 Mb 294 Mb 142 Mb

Largest 80,262 Mb 31,674 Mb 4753 Mb 80,262 Mb 32,585 Mb

Mean 6540 Mb 22883 Mb 2768 Mb 16,414 Mb 324 Mb

Table 2: Contribution index scores (with rank) for divergences in pollen width and 1C DNA content for the species in our sample.

Rank Pollen width contribution Divergences making the largest contribution
1C DNA 1C DNA

content content

rank contribution

1 0.134 Angiospermae versus Acrogymnospermae 1 .384

2 0.050 Polytomy at the origin of Coniferae 194 <.001

3 0.046 Divergence at the origin of Papilionoideae 99 <.001

4 0.041 Divergence between Lythraceae and Onagraceae 138 <.001

5 0.036 Magnoliidae versus Eudicotyledonae 3 <.001

6 0.032 Divergence of Fagaceae and the rest of Fagales 81 .002

7 0.031 Polytomy at the origin of eurosid II 127 .002

8 0.030 Divergence between Zingiberales and Poales 175 .002

9 0.026 Divergence between Solanales and Lamiales 35 <.001

10 0.026 Divergence at the origin of Malvaceae 136 .002
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Figure 2: (a) Scatter plot of the significant positive associations between genome size and pollen width. The slope was estimated using
conventional least-squares methods that do not incorporate the correlated error structure due to phylogeny. (b) Independent contrast results
showing that divergences in 1C DNA content are not associated with divergences in pollen width (open and black points). This result was
consistent when isolating the results to just bifurcating sister tip taxa (black points). The unfilled points represent deeper nodes. A line is not
shown because the relationship was not significant.
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Table 3: Examples of previous studies on the relationship between ploidy and pollen size reported by family, genus, ploidy variation and
how doubling DNA content changed pollen volumne. Primary literature sources are also given.

Family Genus Species and chromosome numbers 2x the DNA led to: Source

Boraginaceae Lappula deflexa (2n = 24) & squarrosa (2n = 48) 1.5x to 2x larger pollen [20]

Convolvulaceae Cuscuta epithymum (2n = 14) & carapestris (2n = 56) 1.2x larger pollen [22]

Papaveraceae Fumaria murialis (2n = 30) & capreolata (2n = 60) 1.3x larger pollen [21]

Poaceae Andropogon various species (2n = 60, 120, and 180) 1.2x larger pollen [14]

Polygonaceae Rumex acetosella (2n = 14, 28, and 42) 1.1x to 1.3x larger pollen [23]

Convolvulaceae Ipomoea trifida with diploid pollen 1.3x larger pollen [15]

Brassicaceae Arabidopsis thaliana with diploid and tetraploid pollen 1.7x larger pollen [17]

level, and (2) there was a significant divergence in both
genome size and pollen width with the basal divergence
between Angiospermae versus Acrogymnospermae. While the
ploidy results suggest a mechanistic link between genome
size (of bulk DNA content) and pollen width, the basal
divergence between Angiospermae versus Acrogymnospermae
may simply be a coincidence. Our results could also be
explained by strong selection for pollen to be small which
overwhelms any direct mechanistic link between genome size
and pollen size (if there is any).

Natural selection may act strongly on pollen size, espe-
cially in relation to pollen dispersal strategies. However, even
within species that are primarily bee pollinated, there is
considerable variation in pollen size, even though they have
very similar genome sizes (e.g., Luffa and Lotus in Figure 3).
In contrast, the sometimes wind-pollinated Brassica napus
[31] has small pollen (compared to Luffa and the rest of our
dataset, Figure 3), but Brassica napus is also frequently insect
pollinated [32]. Complicating matters, in some cases plants
are self-compatible and can complete pollination without a
vector. Brassica napus also fits into this category, it is self-
compatible and capable of autonomous pollination [33].
Even in the absence of pollinators, it is able to set half of
its seeds in still air and 80% when the stem is shaken [33].
Furthermore, pollination efficiency is considerably affected
by local and seasonal environmental conditions [3, 34].

In comparison to other plant phenotypic traits, pollen
size varies somewhat less. Pollen size varied in our sample
over three orders of magnitude. However, seed mass and
genome size vary over ten and five orders of magnitude,
respectively [18, 29]. Why is there so little variation in
pollen size? There is strong selection favoring small pollen
size (as noted above), and likewise, selection pressures
against extremely large pollen. Given a size-number trade
off in pollen, small pollen may have a higher probability
of transport to a receptive stigma both by wind and insect
vectors. Perhaps whatever causal factor there is for the
relationship between genome size and cell size, it is apparent
early after an increase in genome size. But selection pressure
favoring small pollen size continually reduces pollen size
unless this pressure is relaxed.

The relationship between cell size and genome size may
arise from the greater necessity of gene transcripts to service
larger cytoplasms [35]. However, pollen is not metabolically
active after dehiscence, but rather become so soon after

Luffa cylindrica

(Cucurbitaceae)

833 Mbp, 130 μm

Brassica napus

(Brassicaceae)

1078 Mbp, 30 μm

Lotus corniculatus
(Fabaceae)

980 Mbp, 13 μm

10 μm

Figure 3: Pollen size can vary considerably (13–130 μm) within a
narrow range of genome sizes (833–1078 Mbp).

imbibition and pollen germination. This quiescence makes
them quite different from guard cells and other cell types
whose sizes have previously been shown to be strongly related
to genome size [13, 36]. Perhaps the maximal volume of the
pollen tube, after its metabolically active growth stage, may
be a better measure of pollen size in this context, not the
recently hydrated sphere.

Several measurement errors could have contributed to
our weak results. Some of our measurements may have
come from unhydrated or incompletely hydrated pollen.
In addition, methods of hydration varied from water to
glycerine jelly, or silicon oil, each of which can result in
different final volumes [37]. Further, various methods of
imaging were used, including scanning electron microscopy
and light microscopy. There was also no control for the
type of pollen reserve (starch or lipids). Each time a new
instrument or investigator is involved, there is the possibility
that measurements are not standardized/calibrated. Environ-
mental factors can affect pollen size, and not all pollen is
exactly spheroidal. However, these are the perils of all meta-
analyses. Clearly, more focused and controlled studies are
needed to probe the nature of the relationship more fully.

One of the reasons we looked for a relationship between
genome size and pollen size was to evaluate the feasibility of
using fossil pollen to infer genome sizes over geological time.
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Our results suggest that this effort would be difficult and
perhaps misleading. Fortunately, the morphology of pollen
grains seems to have enough stasis so that species or group
level identification is accurate through the paleobotanical
record.
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