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We formulate a mathematical model for the cointeraction of schistosomiasis and HIV/AIDS in order to assess their synergistic
relationship in the presence of therapeutic measures. Comprehensive mathematical techniques are used to analyze the model
steady states. The disease-free equilibrium is shown to be locally asymptotically stable when the associated disease threshold
parameter known as the basic reproduction number for the model is less than unity. Centre manifold theory is used to show that the
schistosomiasis-only and HIV/AIDS-only endemic equilibria are locally asymptotically stable when the associated reproduction
numbers are greater than unity. The impact of schistosomiasis and its treatment on the dynamics of HIV/AIDS is also investigated.
To illustrate the analytical results, numerical simulations using a set of reasonable parameter values are provided, and the results
suggest that schistosomiasis treatment will always have a positive impact on the control of HIV/AIDS.

1. Introduction

Schistosomiasis, also known as bilharzia after Theodor
Bilharz who first identified the parasite in Egypt in 1851, is
a disease caused by blood flukes [1]. It affects millions of
people worldwide, especially in South America, the Middle
East, and Southeast Asia where it remains a public health
problem and poses a threat to 600 million people in more
than 76 countries [1]. The disease is often associated with
water resource development projects, such as dams and
irrigation schemes, where the snail intermediate hosts of
the parasite breed [2]. Human schistosomiasis (which has
a relatively low mortality rate, but a high morbidity rate)
is a family of diseases primarily caused by three species
of the genus Schistosoma or flat worms. The adult worms
inhabit the blood vessels lining either the intestine or bladder,
depending on the species of the worm [3]. The highest
number of human schistosomiasis infections is caused by S.
haematobium, which has a predilection for the blood vessels
around the bladder and causes urinary disease [4]. Schis-
tosomiasis is the second most prevalent neglected tropical
diseases after hookworm (192 million cases), accounting for
93% of the world’s number of cases and possibly associated
with increased horizontal transmission of HIV/AIDS [5].

On the other hand, the number of people living with HIV
worldwide continued to grow in 2008, reaching an estimated
33.4 million, which is more than 20% higher than the num-
ber in 2000, and the prevalence was roughly threefold higher
than in 1990 [6]. The HIV virus, by holding the immune
system hostage, has opened many gates for pathological
interactions with other diseases [7]. Schistosomiasis and HIV
infections have major effects on the host immune response,
and coinfection (of the two diseases which may increase the
complexity of treatment for people living with HIV and may
contribute to poorer medical outcomes) is widespread [8].
While schistosomiasis infections are caused by diverse species
from three phyla, HIV is essentially a single entity. There is
some evidence that schistosomiasis infection provides some
benefit in some instances like the atopic disease [9, 10],
and the inflammatory pathology of autoimmune disease
[11–13]. For bacterial and viral infections, impaired control
of replication and elimination may lead to a detrimental
outcome [14–17]. That HIV infection is detrimental to the
immune response to many pathogens is quite clear and poor
regulation of immune system in advanced HIV infection is
illustrated by an increased incidence of hypersensitive drug
reactions [18, 19]. Studies that examine the codynamics of
HIV and schistosomiasis infections have shown a significant
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association between HIV and the presence of S. haematobium
eggs in the genital samples, supporting the argument that
schistosomiasis infection enhances HIV susceptibility when
genital lesions are present [20]. Host-parasite interactions
such as schistosomiasis, where inflammatory responses have
persisted through evolution, perhaps due to selective advan-
tage for parasite egg excretion, may be more detrimental with
regard to HIV infection [21].

Although the negative impact of the synergetic interac-
tions between HIV and schistosomiasis has shown to be a
public health burden, only few statistical or mathematical
models have been used to explore the consequences of
their joint dynamics at the population level. There are
plenty of single disease dynamic models. A significant
number focus on HIV/AIDS [22–26] or on the transmission
dynamics of schistosomiasis [27–37]. Schistosomiasis model
(24) considered in this study differs from those found in
the literature in that we consider Schistosoma mansoni a
human blood fluke which causes schistosomiasis and is the
most widespread and the fresh water snail Biomphalaria
glabrata serves as the main intermediate host, while the
HIV/AIDS model (7) is an extension of the model by Murray
[38] by including HIV therapy while neglecting the issue
of seropositivity considered in [38]. Mathematical modeling
assessing the impact of schistosomiasis on the transmission
dynamics of HIV/AIDS is rare [39].

Quantifying by how much treatment of schistosomiasis
affects HIV/AIDS dynamics will require an extensive sen-
sitivity analysis with parameter values estimated from real
and recent coinfection data. Nevertheless, this theoretical
study provides a framework for the potential benefit of
schistosomiasis treatment on the dynamics of HIV and
highlights the fact that global public health challenges require
comprehensive and multipronged approaches to dealing
with coinfections [7], and current intervention efforts that
focus on a single infection at a time may be losing substantial
rewards of dealing synergistically and concurrently with
multiple infectious diseases in one host. To the best of
our knowledge, except for the study in [39] where the co-
interaction of schistosomiasis and HIV without any form
of treatment is investigated, this work is possibly the first
to give a theoretical mathematical account of the impact of
schistosomiasis on HIV dynamics in the presence of both
schistosomiasis treatment and antiretroviral therapy at the
population level.

The rest of the paper is structured as follows. In the
next section, we present the schistosomiasis and HIV/AIDS
coinfection model. In Section 3 we determine sufficient
conditions for local stability of the disease-free and endemic
equilibria and analyze the reproduction number for the two
diseases separately while Section 4 provides a comprehensive
analysis of the full model. Section 5 provides numerical
results while Section 6 concludes the paper.

2. Model Description

The proposed model is an extension of an earlier study [39],
which did not account for any intervention strategy. The

schistosomiasis and HIV models will be coupled via the
force of infection, and in the absence of any of the diseases
(hence no coinfection), the two basic disease submodels
can be decoupled from the general model (see Sections
3.1.4 and 3.3.1). The population of interest is divided into
several compartments dictated by the epidemiological stages
(disease status), namely, susceptibles SH(t), who are not yet
infected by either HIV or schistosomiasis, schistosomiasis-
infected individuals IB(t), HIV-infected individuals not yet
displaying symptoms of AIDS IH(t), individuals infected
with HIV showing symptoms of AIDS AH(t), individuals
dually infected with schistosomiasis and HIV displaying
symptoms of schistosomiasis only IHB (t), individuals dually
infected with schistosomiasis and HIV displaying symptoms
of schistosomiasis and AIDS AHB (t), treated individuals
infected with HIV only, showing symptoms of AIDS AHTA(t),
and treated individuals dually infected with schistosomiasis
and HIV displaying symptoms of schistosomiasis and AIDS
AHTB

(t). Other important populations to consider in this
model are the susceptible snails Ss(t), infected snails Is(t),
miracidia population M(t), and the cercariae population
P(t). Individuals move from one class to the next as the
disease progresses and/or through dual infection. We further
make the following assumptions for the model.

(i) There is no vertical transmission of both infections in
humans.

(ii) Infected snails do not reproduce due to castration by
miracidia.

(iii) Seasonal and weather variations do not affect snail
populations and contact patterns.

(iv) Susceptible humans become infected with schis-
tosomiasis only through contact with free-living
pathogen in infested waters.

At any time, new recruits enter the human and snail
populations through birth/migration at constant rates ΛH

and ΛS, respectively. There is a constant natural death rate
μH in each human subclass. The force of infection associated
with HIV infection, denoted by λH , is given by

λH(t) =
βHc
[
IH + IHB + η

(
AH + AHB

)
+ κ
(
AHTA

+ AHTB

)]

NH
,

(1)

with βH being the probability of HIV transmission per sexual
contact, c is the effective contact rate for HIV infection to
occur, and η > 1 models the fact that individuals in the AIDS
stage and not on antiretroviral therapy are more infectious
since the viral load is correlated with infectiousness [42]. It is
assumed that individuals on antiretroviral therapy transmit
infection at the smallest rate κ (with 0 < κ < 1) because of
the fact that these individuals have very small viral load. It has
been estimated by an analysis of longitudinal cohort data that
antiretroviral therapy reduces per-partnership infectivity by
as much as 60% (so that κ = 0.4) [41]. Thus, the total human
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population NH(t) is given by

NH(t) = SH(t) + IH(t) + AH(t) + AHTA
(t)

+ IB(t) + IHB (t) + AHB (t) + AHTB
(t).

(2)

Susceptible individuals acquire schistosomiasis following
infection at a rate λP , where

λP = βPP(t)
P0 + εP(t)

, (3)

with βP being the maximum rate of exposure, ε is the
limitation of the growth velocity of cercariae with the
increase of cases, and P0 is the half saturation constant.
In the absence of the parasite, the functional response of
individuals susceptible to the pathogen (schistosomiasis) is
given by (λP/βP)[SH(t)+ IH(t)+AH(t)+AHTA

(t)], a modified
Holling’s type-II functional response (also known as the
Michaelis-Menten function when ε = 1), the response refers
to the change in the density of susceptibles per unit time
per pathogen as the schistosomiasis susceptible population
density changes. From the functional response, we note that
at low parasite density, contacts are directly proportional
to host density, but a maximum rate of contact is reached
at very high densities (saturation incidence). Individuals
infected with schistosomiasis have an additional disease-
induced death rate dB. Similarly, susceptible and infected
snails have a natural death rate μS, and the infected snails
have an additional disease-induced death rate dS. The total
snail population is given by NS(t) = SS(t) + IS(t).

Considering a schistosomiasis-infected individual, a
number (portion) NE of eggs leave the body through
excretion (faeces and urine) and find their way into the fresh
water supply where they hatch into free swimming ciliated
miracidium at a rate γ for individuals without AIDS. Given
the weakened immune system of AIDS individuals, they tend
to excrete more often, thus releasing more eggs which will
hatch into miracidia at a rate σγ, σ > 1. If the miracidium
reaches a fresh water with snails of a suitable species, it
penetrates at a rate λM , where

λM = βMM(t)
M0 + εM(t)

, (4)

and transforms into a sporocyst otherwise, the miracidia
die naturally at a rate μM . The infected snails release a
second form of free swimming larva called a cercariae which
is capable of infecting humans at rate θ. Some cercariae
also die naturally at a rate μP . Individuals infected with
schistosomiasis are infected with HIV at a rate δλH with δ >
1 since infection by schistosomiasis creates wounds within
the urethra as eggs are being released, which increases the
likelihood of HIV infection per sexual contact. Individuals
with HIV progress to the AIDS stage at a rate ρ. Individuals in
the AIDS stage have an additional disease-induced death rate
dA. We assume that antiretroviral therapy is given to AIDS
individuals who are ill and have experienced AIDS-defining
symptoms, or whose CD4+ T cell count is below 200/μL,
which is the recommended AIDS defining stage [42]. Thus,

AIDS patients are assumed to get antiretroviral therapy at a
constant rate α. Treated AIDS patients eventually succumb
to AIDS-induced mortality at a reduced rate modeled by
the parameter τ (0 < τ < 1). Individuals treated for
schistosomiasis are assumed to recover at a constant rate
ω, and ω1 denotes AIDS patients who have recovered from
schistosomiasis but are on antiretroviral therapy since the
latter is a life treatment. The model flowchart for the
interaction of the two diseases is shown in Figure 1 and
parameters described will assume values in Table 1.

From the aforementioned model description and
assumptions, we establish the following deterministic system
of nonlinear differential equations

Model system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSH
dt

= ΛH + ωIB − (λH + λP)SH − μHSH ,

dIB
dt

= λPSH − δλHIB −
(
μH + ω + dB

)
IB,

dIH
dt

= λHSH + ωIHB − λPIH −
(
μH + ρ

)
IH ,

dAH

dt
=ρIH +ωAHB−λPAH−

(
μH +α+dA

)
AH ,

dAHTA

dt
= αAH + ωAHTB

− λpAHTA

−(μH + τdA
)
AHTA

,

dIHB

dt
= δλHIB+λPIH−

(
ρ+ω+μH +dB

)
IHB ,

dAHB

dt
=λPAH +ρIHB−

(
μH +ω+dA+dB

)
AHB ,

dAHTB

dt
= λPAHTA

+ αAHB

−(μH + ω + τdA + dB
)
AHTB

,

dM

dt
=NEγ

(
IB+IHB +σAHB +σAHTB

)
−μMM,

dSS
dt

= ΛS − λMSS − μSSS,

dIS
dt

= λMSS −
(
μS + dS

)
IS,

dP

dt
= θIS − μPP.

(5)

2.1. Model Basic Properties. In this section, we study the basic
properties of the solutions of model system (5), which are
essential in the proofs of stability.

Lemma 1. The equations preserve positivity of solutions.

Proof. Considering the human population only, the vector
field given by the right-hand side of (5) points inward on the
boundary of R8

+ \ {0}. For example, if AH = 0, then, A′H =
ρIH +ωAHB ≥ 0. In an analogous manner, the same result can
be shown for the other model components (variables). We
shall use the human population to illustrate the boundedness
of solutions for model system (5).
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Figure 1: Model flow diagram.

Lemma 2. Each nonnegative solution of model system (5) is
bounded in L1-norm.

Proof. Consider the human population only, and let L1
H ∈

L1; then, the norm L1
H of each nonnegative solution in NH

is given by max{NH(0),ΛH/μH}. Thus, the norm L1
H satisfies

the inequality N ′
H ≤ Λ − μHNH . Solutions to the equation

Q′ = Λ− μQ are monotone increasing and bounded by Λ/μ
if Q(0) < Λ/μ. They are monotone decreasing and bounded
above if Q(0) ≥ Λ/μ. Since N ′

H ≤ Q′, the claim follows and
in a similar fashion, the remaining model variables can be
shown to bounded.

Corollary 1. The region

Φ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
SH , IB, IH ,AH ,AHTA

, IHB ,AHB ,AHTB

)

∈ R8
+ : NH ≤ ΛH

μH
,

M ∈ R+ : M ≤ γΛHNE(1 + σ)
μMμH

,

(SS, IS) ∈ R2
+ : NS ≤ ΛS

μS
,

P ∈ R+ : P ≤ θΛS

μPμS

(6)

is invariant and attracting for system (5).

Theorem 1. For every nonzero, nonnegative initial value,
solutions of model system (5) exist for all time t > 0.

Proof. Local existence of solutions follows from standard
arguments since the right-hand side of (5) is locally Lips-
chitz. Global existence follows from the a priori bounds.

3. Analysis of the Submodels

Before analyzing the full model system (5), it is essential to
gain insights into the dynamics of the models for HIV only
and schistosomiasis only.

3.1. HIV-Only Model. We now consider a model for
HIV/AIDS only, obtained by setting IB = IHB = AHB =
AHTB

= M = SS = IS = P = 0, so that system in (5) reduces
to

HIV/AIDS only

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSH
dt

= ΛH −
(
λH + μH

)
SH ,

dIH
dt

= λHSH −
(
ρ + μH

)
IH ,

dAH

dt
= ρIH −

(
α + dA + μH

)
AH ,

dAHTA

dt
= αAH −

(
τdA + μH

)
AHTA

,

with, λH =
βHc
[
IH + ηAH + κAHTA

]

NH
,

NH = SH + IH + AH + AHTA
.

(7)

For system (7), it can be shown that the region

ΦH =
{(

SH , IH ,AH ,AHTA

)
∈ R4

+ : NH ≤ ΛH

μH

}
(8)

is invariant and attracting. Thus, the dynamics of the HIV-
only model will be considered in ΦH .

3.1.1. Disease-Free Equilibrium and Stability Analysis. Model
system (7) has an evident disease-free given by

U0H =
(
S0
H , I0

H ,A0
H ,A0

HTA

)
=
(
ΛH

μH
, 0, 0, 0

)
. (9)

Following the next generation approach and the notation
defined therein [43], matrices F and V for new infection
terms and the remaining transfer terms are, respectively,
given by

F =

⎡
⎢⎢⎢⎣

βHc βHcη βHcκ

0 0 0

0 0 0

⎤
⎥⎥⎥⎦,

V =

⎡
⎢⎢⎢⎣

μH 0 0

0 μH + ρ 0

0 0 μH + τdA

⎤
⎥⎥⎥⎦.

(10)
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Table 1: Model parameters and their interpretations.

Parameter Symbol Value Source

Recruitment rate for humans ΛH 100,000 yr−1 [40]

Natural mortality rate for humans μH 0.02 yr−1 [39, 40]

Natural rate of progression to AIDS ρ 0.125 yr−1 [40]

AIDS-related death rate dA 0.333 yr−1 [39]

Schistosomiasis-related death rate dB 0.00201 yr−1 Assume

Product of effective contact rate

for HIV infection and probability

of HIV transmission per contact βHc 0.011–0.95 yr−1 [39, 40]

Enhancement factor of schistosomiasis

to HIV infection δ 1.001 yr−1 [39]

Modification parameter σ 1.001 yr−1 [39]

Treatment rate α 0.33 yr−1 Assume

Recruitment rate for snails ΛS 10 yr−1 [39]

Natural mortality rate from snails μS 0.072 yr−1 Assume

Saturation constant for cercariae P0 107 [39]

Saturation constant for miracidia M0 108 [39]

Limitation of the growth velocity ε 100 [39]

Number of eggs excreted by humans NE 500 [39]

Mortality rate for cercariae μP 0.504 yr−1 [39]

Mortality rate for miracidia μM 0.65 yr−1 Assume

Snail disease induced death rate dS 0.08 yr−1 Assume

Rate at which eggs successfully

become miracidia γ 0.835 yr−1 [39]

Rate at which sporocysts successfully

become cercariae θ 0.9 yr−1 [39]

Modification parameter κ 0.4 [41]

Modification parameter η 1.25 Assume

Modification parameter τ 0.001 Assume

Rate of recovery from schistosomiasis ω,ω1 0.56 Assume

It follows from (10) that the reproduction number of the
system (7) is given by

RA = βHc
[
ρκα +

(
μH + τdA

)(
ηρ + α + μH + dA

)]
(
μH + ρ

)(
μH + dA

)(
μH + α + dA

) . (11)

The threshold quantity RA measures the average number of
new secondary cases generated by a single individual in a
population where the aforementioned HIV control measures
are in place. An associated epidemiological threshold which
is the basic reproductive number R0, obtained using the same
technique of the next generation operator [43], by consid-
ering model system (7) in the absence of HIV intervention
strategies, is given by

R0A =
βHc
(
μH + dA + ηρ

)
(
μH + ρ

)(
μH + dA

) . (12)

This disease threshold quantity R0A measures the average
number of new infections generated by a single infected

individual in a completely susceptible population where
there are no HIV intervention strategies. Using Theorem 2
in [43], the following result is established.

Lemma 3. The disease-free equilibrium U0H of system (7) is
locally asymptotically stable (LAS) if RA < 1 and unstable if
RA > 1.

3.1.2. Sensitivity Analysis of HIV-Only-Induced Reproductive
Number. To avoid repetition we refer the reader to a detailed
analysis of the reproductive number for model system (7), in
the work of Bhunu et al. [44].

3.1.3. Global Stability of HIV/AIDS Model. We claim the
following result.

Lemma 4. The disease-free equilibrium (U0H) of model
system (7) is globally asymptotically stable (GAS) if RA < 1
and unstable if RA > 1.
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Proof. The proof is based on using a comparison theorem
[45]. Note that the equations of the infected components in
system (7) can be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dIH
dt

dAH

dt

dAHTA

dt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [F −V]

⎡
⎢⎢⎢⎣

IH

AH

AHTA

⎤
⎥⎥⎥⎦

− βHc
[

1− SH
NH

]
⎡
⎢⎢⎢⎣

1 η κ

0 0 0

0 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

IH

AH

AHTA

⎤
⎥⎥⎥⎦,

(13)

where F and V , are as defined earlier in (10). Since SH ≤ NH ,
(for all t ≥ 0) in ΦH , it follows that

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dIH
dt

dAH

dt

dAHTA

dt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ [F −V]

⎡
⎢⎢⎢⎣

IH

AH

AHTA

⎤
⎥⎥⎥⎦. (14)

Using the fact that the eigenvalues of the matrix F − V
all have negative real parts, it follows that the linearized
differential inequality system (14) is stable whenever RA < 1.
Consequently, (IH , AH , AHTA

) → (0, 0, 0) as t → ∞. Thus,
by a comparison theorem [45] (IH , AH , AHTA

) → (0, 0, 0) as
t → ∞, and evaluating system (7) at IH = AH = AHTA

= 0
gives SH → SH

0 for RA < 1. Hence, the DFE (U0H) is GAS
for RA < 1.

3.1.4. HIV-Only Equilibrium. Expressed in terms of the equi-
librium value of the force of infection λ∗H , this equilibrium is
given by

U∗
1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S∗H =
ΛH

μH + λ∗H
,

I∗H =
ΛHλ

∗
H(

μH + λ∗H
)(
μH + ρ

) ,

A∗H =
ρλ∗HΛH(

μH + λ∗H
)(
μH + ρ

)(
μH + α + dA

) ,

A∗HTA
= αρλ∗HΛH(

μH + λ∗H
)(
μH + dA

)(
μH + ρ

)(
μH + α + dA

) .
(15)

The local bifurcation analysis is based on the centre manifold
approach [46] as described by Theorem 4.1 in [47], stated
in the appendix for convenience (also see [43] for more
details). To apply the said Theorem 10 in order to establish
the local asymptotic stability of the endemic equilibrium, it
is convenient to make the following change of variables: SH =
x1, IH = x2, AH = x3, and AHTA

= x4, so that NH =
∑4

n=1 xn.

We now use the vector notation X = (x1, x2, x3, x4)T . Then,
model system (7) can be written in the form dX/dt = F =
( f1, f2, f3, f4)T , where

x′1(t) = f1 = ΛH − βHc
(
x2 + ηx3 + κx4

)
∑4

n=1 xn
x1 − μHx1,

x′2(t) = f2 = βHc
(
x2 + ηx3 + κx4

)
∑4

n=1 xn
x1 −

(
μH + ρ

)
x2,

x′3(t) = f3 = ρx2 −
(
μH + α + dA

)
x3,

x′4(t) = f4 = αx3 −
(
μH + τdA

)
x4.

(16)

The Jacobian matrix of system (16) at U0 is given by

J(U0H)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

−μH −βHc −ηβHc −κβHc
0 βHc −

(
μH + ρ

)
ηβHc κβHc

0 ρ −(μH + α + dA
)

0

0 0 α −(μH + τdA
)

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(17)

from which it can be shown that the HIV/AIDS-induced
reproduction number is

RA = βHc
[
κρα +

(
μH + τdA

)(
ηρ + α + μH + dA

)]
(
μH + ρ

)(
μH + dA

)(
μH + α + dA

) . (18)

If βH is taken as a bifurcation parameter and by solving for
βH when RA = 1, we obtain

βH = β∗H =
(
μH + ρ

)(
μH + dA

)(
μH + α + dA

)

c
[
κρα +

(
μH + τdA

)(
ηρ + α + μH + dA

)] .
(19)

Note that the linearized system of the transformed model
(16) with βH = β∗H has a simple zero eigenvalue, which
allows the use of Castillo-Chavez and Song result [47] to
analyze the dynamics of (16) near βH = β∗H . It can be
shown that the Jacobian of (16) at βH = β∗H has a right
eigenvector associated with the zero eigenvalue given by u =
[u1,u2,u3,u4]T , where

u1 = −βHc
(
u2 + ηu3 + κu4

)

μH
, u2 > 0,

u3 = ρu2

α + dA + μH
, u4 = αu3

μH + τdA
.

(20)

The left eigenvector of J(U0H) associated with the zero
eigenvalue at βH = β∗H is given by v = [v1, v2, v3, v4]T , where

v1 = 0, v2 = ρv3

μH + ρ − β∗Hc
, v3 > 0, v4 = κβHcv2

μH + τdA
.

(21)
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Computation of the Bifurcation Parameters a and b. The
application of Theorem 10 (see the appendix) entails the
computation of two parameters a and b, say. After some
little algebraic manipulations and rearrangements, it can be
shown that

a = −2β∗HcμHv2

ΛH
(u2 + u3 + u4)

(
u2 + ηu3 + κu4

)
< 0.

(22)

Furthermore,

b = c
(
u2 + ηu3 + κu4

)
v2 > 0. (23)

This sign of b may be expected in general for epidemic
models because, in essence, using β as a bifurcation param-
eter often ensures b > 0 [43]. Since a < 0 (which
excludes any possibility of multiple equilibria and hence
backward bifurcation), model system (16) has a forward
(or transcritical) bifurcation at RA = 1, and consequently,
the local stability implies global stability. This result is
summarized below.

Theorem 2. The endemic equilibrium U∗
1 is locally asymptot-

ically stable for RA > 1.

3.2. Schistosomiasis-Only Model. In the absence of HIV/
AIDS in the community (obtained by setting HIV/AIDS-
related parameters to zero from system (5)) schistosomiasis-
only model is given by

Schistosomiasis-only model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSH
dt

=ΛH +ωIB−
(
λP+μH

)
SH ,

dIB
dt
=λHIB −

(
μH +ω+dB

)
IB,

dM

dt
=NEγIB − μMM,

dSS
dt
=ΛS − λMSS − μSSS,

dIS
dt
=λMSS −

(
μS + dS

)
IS,

dP

dt
=θIS − μPP,

with, λP = βPP(t)
P0 + εP(t)

,

λM = βMM(t)
M0 + εM(t)

.

(24)

For system (24), it can be shown that the region

ΦB =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(SH , IB) ∈ R2
+ : NH ≤ ΛH

μH
,

M ∈ R+ : M ≤ γΛHNE(1 + σ)
μMμH

,

(SS, IS) ∈ R2
+ : NS ≤ ΛS

μS
,

P ∈ R+ : P ≤ θΛS

μPμS

(25)

is invariant and attracting. Thus, the dynamics of schistoso-
miasis-only model will be considered in ΦB.

3.2.1. Disease-Free Equilibrium and Stability Analysis. Model
system (24) has an evident disease-free given by

U0B =
(
S0
H , I0

B,M0, S0
S, I0

S ,P0
)
=
(
ΛH

μH
, 0, 0,

ΛS

μS
, 0, 0

)
.

(26)

Following van den Driessche and Watmough [43], the
reproduction number of the model system (24) is given by

RB =
√√√√
(

βpNEγΛH

μMμHP0
(
μH + ω + dB

)
)(

βMθΛS

μPμSM0
(
μS + dS

)
)

=
√
RHRS

(27)

where RH = βpNEγΛH/μMμHP0(μH + ω + dB) represents
the snail-man initial disease transmission and RS =
βMθΛS/μPμSM0(μS + dS) is the man-snail initial disease
transmission.

The threshold quantity RB measures the average number
of new secondary cases generated by a single individual in
a population where there is schistosomiasis treatment. An
associated epidemiological threshold, R0B , obtained using
a similar technique of the next generation by considering
model system (24) in the absence of schistosomiasis treat-
ment is given by

R0B =
√√√√
(

βpNEγΛH

μMμHP0
(
μH + dB

)
)(

βMθΛS

μPμSM0
(
μS + dS

)
)

=
√
R0HR0S ,

(28)

where R0H = βpNEγΛH/μMμHP0(μH + dB) represents the
snail-man initial disease transmission and R0S = βMθΛS/
μPμSM0(μS +dS) is the man-snail initial disease transmission.
Using Theorem 2 in [43], the following result is established.

Theorem 3. The disease-free equilibrium U0B is locally as-
ymptotically stable whenever RB < 1 and unstable otherwise.

Impact of Schistosomiasis Treatment in the Community. Here,
the reproductive number RB is analyzed to determine
whether or not treatment of schistosomiasis patients (mod-
eled by the rate ω) can lead to the effective control of
schistosomiasis in the community. It follows from (27) that
the elasticity [48] of RB with respect to ω can be computed
using the approach in [49] as follows:

ω

RB

∂RB

∂ω
= − ω

2
(
μH + ω + dB

) < 0. (29)
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The sensitivity index of the reproduction number is used
to assess the impact on the relevant parameters to disease
transmission. That is, the elasticity measures the effect a
change in ω, say, has as a proportional change in RB, and
from (29), we note that an increase inω will lead to a decrease
in RB, thus (29) suggests that an increase in treatment
of schistosomiasis patients does have a positive impact in
controlling schistosomiasis in the community (assuming full
compliance to the therapy, no treatment failure, and no
development of resistance).

3.3. Global Stability of the Disease-Free Equilibrium. We shall
use the following theorem of Castillo-Chavez et al. [50] in the
sequel.

Theorem 4 (see [50]). If system (5) can be written in the form

dX

dt
= F(x,Z),

dZ

dt
= G(X ,Z), G(x, 0) = 0,

(30)

where X ∈ Rm denotes (its components) the number of
uninfected individuals, Z ∈ Rn denotes (its components) the
number of infected individuals including latent and infectious,
and U0 = (x∗, 0) denotes the disease-free equilibrium of
the system. Assume that (i) for dX/dt = F(X , 0), X∗ is
globally asymptotically stable, (ii) G(X ,Z) = AZ − Ĝ(X ,Z),
Ĝ(X ,Z) ≥ 0 for (X ,Z) ∈ D , where A = DZG(X∗, 0) is
an M-matrix (the off-diagonal elements of A are nonnegative)
and D is the region where the model makes biological
sense. Then the fixed point U0 = (x∗, 0) is a globally
asymptotic stable equilibrium of model system (5) provided
RB < 1.

Applying Theorem 4 to model system (5) yields

Ĝ(X ,Y)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ĝ1(X ,Y)

Ĝ2(X ,Y)

Ĝ3(X ,Y)

Ĝ4(X ,Y)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

βPP

(
ΛH

P0μH
− SH

P0 + εP

)

βMM

(
ΛS

M0μS
− SS

M0 + εM

)

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(31)

Since S0
H(= ΛH/μH)(1/P0) ≥ SH/(P0 + εP) and SS(= ΛS/

μS)(1/M0) ≥ SS/(M0 + εM), it follows that Ĝ(X ,Y) ≥ 0. We
summarise the result in Theorem 5.

Theorem 5. The disease-free equilibrium (U0B) of model sys-
tem (24) is globally asymptotically stable (GAS) if RB < 1 and
unstable if RB > 1.

3.3.1. Schistosomiasis-Only Equilibrium. Model system (24)
has an endemic equilibrium denoted by U∗

2 , where

U∗
2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S∗∗H = ΛH

μH + ω + λ∗∗P
,

I∗∗B = ΛHλ
∗∗
P(

μH + ω + λ∗∗P
)(
μH + ω + dB

) ,

M∗∗ = NEγΛHλ
∗∗
P

μM
(
μH + ω + λ∗∗P

)(
μH + ω + dB

) ,

S∗∗S = ΛS

μS + λ∗∗S
,

I∗∗S = ΛSλ
∗∗
M(

μS + λ∗∗M
)(
μS + dS

) ,

P∗∗ = θΛSλ
∗∗
S

μP
(
μS + λ∗∗S

)(
μS + dS

) ,

with λ∗∗P = βPP∗∗

P0 + εP∗∗
, λ∗∗M = βMM∗∗

M0 + εM∗∗ .

(32)

The local asymptotic stability of the endemic equilibrium
U∗

2 can also be analyzed using the centre manifold theory.
In this case, the Jacobian matrix of the system at U0B is given
by

J(U0B)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μH 0 0 0 0 −βPΛH

P0μH

0 −(μH +ω+dB
)

0 0 0
βPΛH

P0μH

0 NEγ −μM 0 0 0

0 0 −βMΛS

M0μS
−μS 0 0

0 0
βMΛS

M0μS
0 −(μS + dS

)
0

0 0 0 0 θ −μP

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(33)

If βP is taken as a bifurcation parameter, and solving for βP
when RB = 1, we obtain

βP = β∗P =
μMμHP0

(
μH + ω + dB

)

NEγΛHRS
. (34)

The linearized system of the the model with βP = β∗P has a
simple zero eigenvalue. Therefore, it can be shown that the
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above Jacobian has a right eigenvector given by w = [w1,w2,
w3,w4,w5,w6]T , where

w1 = −β∗PΛHR0Sw3

P0μ
2
H

, w2 = μPβ
∗
PΛHw3

θ
(
μH + ω + dB

) , w3 = w3,

w4 = −βMΛSw3

M0μ
2
S

, w5 = βMΛSw3(
μS + dS

)
M0μS

, w6 =R0Sw3.

(35)

The left eigenvector of J(U0B ) associated with the zero eigen-
value at βP = β∗P is given by z = [z1, z2, z3, z4, z5, z6]T , where

z1 = 0 = z4, z3 > 0, z2 = NEγz3

μH + ω + dB
,

z5 = μMM0μSz3

βMΛS
, z6 = β∗PΛHNEγz3

P0μHμP
(
μH + ω + dB

) .
(36)

Computation of the bifurcation coefficients a and b yields

a = −2z3w
2
3

(
NEγR

2
Sβ
∗
PΛH

(
β∗P + εμH

)
(
μH + ω + dB

)
P2

0μ
2
H

+
NEγθβ

∗
PΛHβMΛS

(
βM + εμS

)
(
μH + ω + dB

)(
μS + dS

)
P0μHM

2
0μ

2
S

)
< 0,

b = NEγRSΛSz3w3(
μH + ω + dB

)
P0μS

> 0.

(37)

Thus, the following result is established.

Theorem 6. The unique endemic equilibrium U∗
2 is locally

asymptotically stable for RB > 1.

Since a < 0, local stability of U∗
2 implies its global stabil-

ity.

4. HIV/AIDS and Schistosomiasis Model

Model system (5) has evident disease-free (DFE) given by

U0 =
(
S0
H , I0

B, I0
H ,A0

H ,A0
HTA

, I0
HB

,A0
HB

,A0
HTB

,M0, S0
S, I0

S ,P0
)

=
(
ΛH

μH
, 0, 0, 0, 0, 0, 0, 0, 0,

ΛS

μS
, 0, 0

)
.

(38)

Following van den Driessche and Watmough [43], the
reproduction number of the model is

RHB = max{RA, RB} (39)

with RA and RB defined as earlier in Section 3 above. Using
Theorem 2 in [43], the following result is established.

Theorem 7. The disease-free equilibrium U0 is locally asymp-
totically stable whenever RHB < 1 and unstable otherwise.

4.1. Sensitivity Analysis. In this section we investigate the
effects of HIV/AIDS on schistosomiasis and vice versa, in
the presence and absence of the aforementioned intervention
strategies.

Impact of Schistosomiasis on HIV/AIDS in the Absence of
Control Measures. To analyze the effects of schistosomiasis
on HIV/AIDS and vice versa in the absence of control
measures for either HIV/AIDS or schistosomiasis, we begin
by introducing the following notation; in the absence of
antiretroviral therapy (α = 0) the reproductive number is
denoted by R0A and also in the absence of schistosomiasis
treatment (ω = 0), RB = R0B . Thus, to express R0B in terms
of R0A , we solve for μH and obtain

μH =
−(φ1R0A + φ2

)
+
√
φ3R

2
0A + φ4R0A + φ5

2R0A
, (40)

where

φ1 = ρ + dA,

φ2 = −βHc,
φ3 =

(
ρ − dA

)2,

φ4 = 2βHc
(
dA + ρ

(
2η − 1

))
,

φ5 =
(
βHc
)2
.

(41)

Let
√
φ3R

2
0A + φ4R0A + φ5 = φ6R0A + φ7, then, (40) becomes

μH =
(
φ6 − φ1

)
R0A +

(
φ7 − φ2

)

2R0A
. (42)

Substituting (42) into the expression for R0B , we have

R2
0B =

4R0SR
2
0AβPNEγΛH

μMP0

[((
φ6 − φ1

)
R0A +

(
φ7 − φ2

))2 + 2dAR0A

((
φ6 − φ1

)
R0A +

(
φ7 − φ2

))] . (43)

Differentiating R0B partially with respect to R0A yields

∂R0B

∂R0A
=

4R0SR0AβPNEγΛH

(
R0A

(
φ7 − φ2

)(
φ6 − φ1 − dA

)
+
(
φ7 − φ2

)2
)

μMP0R0B

[((
φ6 − φ1

)
R0A +

(
φ7 − φ2

))2 + 2dAR0A

((
φ6 − φ1

)
R0A +

(
φ7 − φ2

))]2 . (44)
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Now, whenever (44) is greater than zero, an increase in
HIV/AIDS cases results in an increase of schistosomiasis
cases in the community. If (44) is equal to zero, this implies
that HIV/AIDS cases have no effect on the transmission
dynamics of schistosomiasis. Setting R0B = 1 and expressing
μH as the subject of formula, we have

μH =
−dBθ1R0B +

√(
θ1dBR0B

)2 + 4θ2

2θ1R0B
, (45)

where θ1 = μMP0 and θ2 = μMP0βPNEγΛHR0S . Consider√
(θ1dBR0B )2 + 4θ2 = θ3R0B + θ4 such that (θ3 − dBθ1)R0B +

θ4 > 0. Then, R0A expressed in terms of R0B reads

R0A =
2θ1βHc

(
κR2

0B + θ4R0B

)

h1R
2
0B + h2R0B + h3

, (46)

where

h1 = (θ3 − dBθ1)2 + 4ρdAθ2
1 + 2θ1(θ3 − dBθ1)

(
ρ + dA

)
> 0,

h2 = 2θ4(θ3 − dBθ1) + 2θ1θ4
(
ρ + dA

)
> 0,

h3 = θ2
4 > 0,

κ1 = θ3 + θ1
(
2ηρ + 2dA − dB

)
> 0.

(47)

Partially differentiating R0A with respect to R0B yields

∂R0A

∂R0B
= (κ1h2 − θ4h1)R2

0B + 2κ1h3R0B + θ4h3(
h1R

2
0B + h2R0B + h3

)2 . (48)

Thus, whenever κ1h2 ≥ θ4h1, (48) is strictly positive
meaning that schistosomiasis enhances HIV infection as a
damaged urethra has increased chances of HIV entering
the blood stream. The relationship between the HIV/AIDS
basic reproduction number and the schistosomiasis basic
reproduction number is illustrated graphically in Figure 2
using parameter values from Table 1.

The graph in Figure 2 shows that an increase in the
schistosomiasis-induced basic reproduction number results
in an increase of the HIV/AIDS-induced basic reproduc-
tion number, suggesting that infection by schistosomiasis
enhances the chances of HIV infection per sexual contact.
This is as a result of the eggs of the parasites causing
injury in the reproductive organs which enhance the trans-
mission of sexually transmitted diseases such as HIV/AIDS
and Gonorrhoea [51]. Thus, schistosomiasis control has a
positive impact in controlling the transmission dynamics of
HIV/AIDS.

Impact of Schistosomiasis Treatment on HIV/AIDS. Express-
ing R0B in terms of RB, we obtain

R0B =
(
μH + ω + dB

)
RB(

μH + dB
) . (49)

Substituting (49) into (46) yields

R0A =
2βHcθ1RB

[(
μH + ω + dB

)(
θ4
(
μH + dB

)
+
(
μH + ω + dB

)
κ1RB

]
(
μH + ω + dB

)2
h1R

2
B +
(
μH + dB

)(
μH + ω + dB

)
h2RB +

(
μH + dB

)2
h3

. (50)

Partially differentiating R0A with respect to ω, we have

∂R0A

∂ω
= −2βHcθ1k3

k4
[Θ− 1], (51)

where Θ = k1k2/k3k4, with

k1 =RB
[(
μH + dB

)
h2 + 2ζh1RB

]
,

k2 = ζRB
[(
μH + dB

)
θ4 + ζκ1RB

]
,

k3 =RB
[(
μH + dB

)
θ4 + 2ζκ1RB

]
,

k4 = ζRB
[
ζh1RB +

(
μH + dB

)
h2
]

+ h3,

ζ = (μH + ω + dB
)
.

(52)

Since R0A is a decreasing function of ω, schistosomiasis
treatment will have a positive impact on the dynamics of
HIV/AIDS if Θ > 1, no impact if Θ = 1, and a negative
impact if Θ < 1. We summarize the result in lemma 5.

Lemma 5. Schistosomiasis (bilharzia) treatment for model
system (5) only, will have

(i) a positive impact on schistosomiasis and HIV/AIDS
coinfection control if Θ > 1,

(ii) no impact on schistosomiasis and HIV/AIDS coinfec-
tion control if Θ = 1,

(iii) a negative impact on schistosomiasis and HIV/AIDS
coinfection control if Θ < 1.

The synergy between HIV and other diseases such
as schistosomiasis provides more opportunities to combat
HIV/AIDS by treating its coinfections with these other
diseases.

4.2. Global Stability of the Disease-Free Equilibrium (U0). We
shall use the following theorem of Castillo-Chavez et al. [50]
in the sequel.
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Theorem 8 (see [50]). If system (5) can be written in the form

dX

dt
= F(x,Z),

dZ

dt
= G(X ,Z), G(x, 0) = 0,

(53)

where X ∈ Rm denotes (its components) the number of
uninfected individuals, Z ∈ Rn denotes (its components) the
number of infected individuals including latent, infectious, and
so forth, U0 = (x∗, 0) denotes the disease-free equilibrium
of the system. Assume that (i) for dX/dt = F(X , 0),X∗ is
globally asymptotically stable, (ii) G(X ,Z) = AZ − Ĝ(X ,Z),
Ĝ(X ,Z) ≥ 0 for (X ,Z) ∈D , where A = DZG(X∗, 0) is an M-
matrix (the off-diagonal elements of A are nonnegative) and
D is the region where the model makes biological sense. Then
the fixed point U0 = (x∗, 0) is a globally asymptotic stable
equilibrium of model system (5) provided RHB < 1.

Applying Theorem 8 to model system (5) yields

Ĝ(X ,Y)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ĝ1(X ,Y)

Ĝ2(X ,Y)

Ĝ3(X ,Y)

Ĝ4(X ,Y)

Ĝ5(X ,Y)

Ĝ6(X ,Y)

Ĝ7(X ,Y)

Ĝ8(X ,Y)

Ĝ9(X ,Y)

Ĝ10(X ,Y)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δλHIB + βP

(
P(t)ΛH

P0μH
− P(t)SH(t)

P0 + εP(t)

)

λPIH + NH

(
1− SH

NH

)

λPAH

λPAHTA

−λPIH − δλHIB

−λPAH

−λPAHTA

0

βM

(
MΛS

M0μS
− MSS

M0 + εM

)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(54)

The fact that Ĝ4(X ,Y) < 0, Ĝ5(X ,Y) < 0, and Ĝ6(X ,Y) <
0 implies that Ĝ(X ,Y) may not be greater or equal to zero.
Consequently, U0 may not be globally asymptotically stable
for RHB < 1. This suggests the possible existence of multiple
equilibria.

4.3. Endemic Equilibria and Its Stability. For model system
(5), there are three possible endemic equilibria: the case
where there is HIV only, the case where there is schistosomi-
asis only (which have been discussed in Section 3), and the
case when both schistosomiasis and HIV coexist.
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Figure 2: Relationship between the HIV/AIDS and the schistoso-
miasis basic reproduction numbers.

4.3.1. Interior Endemic Equilibrium. This occurs when both
infections coexist in the community. The interior equilib-
rium is given by

U∗
3 =

(
S∗∗∗H , I∗∗∗B , I∗∗∗H ,A∗∗∗H ,A∗∗∗HTA

, I∗∗∗HB
,A∗∗∗HB

,

A∗∗∗HTB
M∗∗∗, S∗∗∗S , I∗∗∗S ,P∗∗∗

)
.

(55)

The local asymptotic stability of this endemic equilibrium
can be analyzed using the centre manifold theory similar
to the analysis of U∗

1 and U∗
2 , but it is not done here to

avoid repetition. Thus, we claim the following result for the
stability of U∗

1 and U∗
2 .

Theorem 9. If RHB > 1 with RB > 1 and RA > 1, then, the
endemic equilibrium point U3 is locally asymptotically stable
whenever RHB > 1.

5. Numerical Simulations

In order to illustrate the results of the foregoing analysis,
numerical simulations of the full HIV-schistosomiasis model
are carried out, using parameter values given in Table 1.
The scarcity of data on HIV schistosomiasis codynamics
limits our ability to calibrate, but, for the purpose of
illustration, other parameter values are assumed. These
parsimonious assumptions reflect the lack of information
currently available on the coinfection of the two diseases.
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Figure 3: Numerical results of model system (5) showing time series plots of infectives either singly infected with HIV or dually infected
with HIV and schistosomiasis for both cases (i.e., either displaying clinical symptoms of AIDS or not), using various initial conditions and
parameter values from Table 1.

Figure 3 depicts the effects of schistosomiasis on the
dynamics of HIV in the community. The time series plots
in Figure 3 suggest that the presence of schistosomiasis in
the community might increase the prevalence of HIV/AIDS.
These numerical results are in agreement with our analytical
results. We note that IH and AH are not reflecting the disease-
free equilibrium, and the convergence is simply due to scale.

6. Summary and Conclusion

While schistosomiasis is the second most prevalent neglected
tropical disease after hookworm infection (192 million cases
worldwide) [5], HIV on the other hand which has killed
more than 25 million people since first recognized in 1981
currently affects 33.4 million people, with deaths due to
HIV/AIDS-related illnesses standing at about 2 million
in 2008 [6]. A mathematical model for investigating the
coinfection of schistosomiasis and HIV/AIDS is derived.
Comprehensive and qualitative mathematical techniques
were used to analyze steady states of the model. The disease-
free equilibrium is shown to be locally asymptotically stable
when the associated epidemic threshold known as the basic
reproduction number for the model is less than unity. Center
manifold theory is used to show that the schistosomiasis-only
and HIV/AIDS-only endemic equilibria are locally asymp-
totically stable when the associated reproduction numbers
are greater than unity. The impact of schistosomiasis and its
treatment on the dynamics of HIV/AIDS is also investigated.
Numerical results are provided to illustrate some of analytical
results.

In this study, the impact of schistosomiasis and its
treatment on the transmission dynamics of HIV/AIDS in

the community is investigated by formulating a mathe-
matical model that incorporates both key epidemiolog-
ical parameters of both schistosomiasis and HIV/AIDS.
Mathematical and numerical analysis of the model sug-
gests that schistosomiasis may increase the prevalence of
HIV/AIDS in the community. Analysis of the impact of
schistosomiasis treatment has shown that the impact of
this form of treatment depends on the sign of a certain
threshold parameter Θ, and for Θ > 1, schistosomiasis
treatment will have a positive impact, for Θ = 1, no
impact, and for Θ < 1, a negative impact on controlling
the co-interaction of the two diseases. We, however, note
that from schistosomiasis and HIV/AIDS epidemiology,
realistic parameter values always yield 1 < Θ. Consequently,
schistosomiasis treatment will always have a positive impact
on the control of both schistosomiasis and HIV/AIDS
codynamics. Thus, schistosomiasis treatment can reduce the
burden of schistosomiasis and HIV/AIDS coinfection in
areas of extreme poverty, especially among the rural poor
and some disadvantaged urban populations since it is less
expensive and usually available in government clinics and
hospitals. This outcome highlights the fact that global public
health challenges require comprehensive and multipronged
approaches to dealing with them. Current efforts that focus
on a single infection at a time may be losing substantial
rewards of dealing synergistically and concurrently with
multiple infectious diseases [7].

Appendix

In order to establish the conditions for the existence of a
bifurcation, we use Theorem 10 proven in [47].
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Theorem 10. Consider the following general system of ordi-
nary differential equations with a parameter φ:

dx

dt
= f
(
x,φ
)
, f : Rn ×R −→ R, f ∈ C2(Rn ×R),

(A.1)

where 0 is an equilibrium of the system that is f (0,φ) = 0 for
all φ, and assume that

(A1) A = Dx f (0, 0) = ((∂ fi/∂xj)(0, 0)) is linearization of
system (A.1) around the equilibrium 0 with φ evalu-
ated at 0. Zero is a simple eigenvalue of A, and other
eigenvalues of A have negative real parts,

(A2) matrix A has a right eigenvector u and a left eigenvector
v corresponding to the zero eigenvalue.

Let fk be the K th component of f and

a =
n∑

k,i, j=1

vkuiuj
∂2 fk
∂xi∂xj

(0, 0),

b =
n∑

k,i=1

vkui
∂2 fk
∂xi∂φ

(0, 0).

(A.2)

The local dynamics of (A.1) around 0 are totally governed by a
and b.

(i) a > 0, b > 0. When φ < 0 with |φ| 	 1, 0 is
locally asymptotically stable, and there exists a positive
unstable equilibrium; when 0 < φ 	 1, 0 is unstable
and there exists a negative and locally asymptotically
stable equilibrium.

(ii) a < 0, b < 0. When φ < 0 with |φ| 	 1, 0 is unstable
and when 0 < φ 	 1, asymptotically stable, and there
exists a positive unstable equilibrium.

(iii) a > 0, b < 0. When φ < 0 with |φ| 	 1, 0 is unstable,
and there exists a locally asymptotically stable negative
equilibrium; when 0 < φ	 1, 0 is stable, and a positive
unstable equilibrium appears.

(iv) a < 0, b > 0. When φ changes from negative to positive,
0 changes its stability from stable to unstable. Cor-
respondingly, a negative equilibrium becomes positive
and locally asymptotically stable.

Computations of a and b. For system (16), the associated
nonzero partial derivatives of F associated with a at the

disease-free equilibrium is given by

∂2 f2
∂x2∂x3

= ∂2 f2
∂x3∂x2

= −β∗Hc
(
1 + η

)
μH

ΛH
,

∂2 f2
∂x2

2
= −2β∗HcμH

ΛH
,

∂2 f2
∂x2∂x4

= ∂2 f2
∂x4∂x2

= −β∗Hc(1 + κ)μH
ΛH

,

∂2 f2
∂x2

3
= −2β∗HcημH

ΛH
,

∂2 f2
∂x3∂x4

= ∂2 f2
∂x4∂x3

= −β∗Hc
(
η + κ

)
μH

ΛH
,

∂2 f2
∂x2

4
= −2β∗HcκμH

ΛH
.

(A.3)

From (A.3), it follows that

a = −2β∗HcμHv2

ΛH
(u2 + u3 + u4)

(
u2 + ηu3 + κu4

)
< 0.

(A.4)

For the sign of b, it is associated with the following nonvan-
ishing partial derivatives of F:

∂2 f2
∂x2∂β

∗
H
= c,

∂2 f2
∂x3∂β

∗
H
= cη,

∂2 f2
∂x4∂β

∗
H
= cκ, (A.5)

from which it follows that

b = c
(
u2 + ηu3 + κu4

)
v2 > 0. (A.6)

Thus, a < 0 and b > 0 and from Theorem 10 item (iv), the
result follows.
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