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We present a theory for the regime of coherent interlayer tunneling in a disordered quantum Hall bilayer at total filling factor
one, allowing for the effect of static vortices. We find that the system consists of domains of polarized superfluid phase. Injected
currents introduce phase slips between the polarized domains which are pinned by disorder. We present a model of saturated
tunneling domains that predicts a critical current for the breakdown of coherent tunneling that is extensive in the system size. This
theory is supported by numerical results from a disordered phase model in two dimensions. We also discuss how our picture might
be used to interpret experiments in the counterflow geometry and in two-terminal measurements.

1. Introduction

In a quantum Hall bilayer at total Landau level filling νT =
1, Coulomb interactions induce a state with interlayer phase
coherence [1, 2]. This state is expected to be approximately
the Halperin [111] state [3], which can be understood as a
Bose-Einstein condensate of interlayer excitons [4, 5]. The
motion of excitons corresponds to counterflowing electrical
currents in the layers so that excitonic supercurrents can give
dissipationless electrical transport. The superfluid properties
of the [111] state have been demonstrated theoretically by
Wen and Zee [6, 7].

This counterflow superfluidity can be probed in tun-
neling experiments. In the tunneling geometry (Figure 1),
a current It is injected into the top layer at one corner and
removed from the bottom layer at the opposite corner. These
current flows may be written as superpositions of layer-
symmetric and layer-antisymmetric currents
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where the two components refer to currents in the two
layers. Thus, the tunneling experiment corresponds to a

flow of layer-symmetric current, with equal counterflow
currents ICF = It/2 injected by both the electron source
and drain. The symmetric component is transported by a
dissipationless edge state, which does not penetrate the bulk
due to an energy gap to charged excitations. However, the
bulk can carry the counterflow component as a charge-
neutral excitonic supercurrent. Since both these channels are
dissipationless, we expect dissipationless electrical transport.
In particular, a finite interlayer current I at negligible
interlayer voltage V has been predicted [8, 9]. This has
been recently confirmed by four-terminal measurements by
Tiemann and coworkers [10, 11]. This phenomenon can be
regarded as a form of the Josephson effect [7]. Note that
thermally activated quasiparticles and contact effects [12]
can give rise to complications in actual experiments.

The Josephson-like regime persists for interlayer currents
up to a critical value Ic. Above Ic, interlayer transport
becomes dissipative. Nevertheless, interlayer coherence can
still be detected in the interlayer IV characteristics of the
system. A strong peak is observed at zero bias in the
differential interlayer conductivity. This is followed at low
bias by a regime with negative differential conductivity
[13, 14]. This regime can be studied theoretically treating the
interlayer tunneling as a perturbation [15–17].
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Figure 1: Schematic diagram of tunneling experiment.

In this paper, we focus on the Josephson regime below
the critical current and present a physical picture of its
breakdown. We have previously presented, in a short paper
[18], a theory of this breakdown based on numerical results
on a one-dimensional model. The aim of the present paper is
to present numerical results for a two-dimensional model,
which directly demonstrate the breakdown mechanism in
a realistic geometry. The key motivation of our work is to
understand the observation [11] that the critical current
Ic is proportional to the sample area. (Area scaling is also
observed in the zero-bias peak of the interlayer conductivity
[19]. We will discuss this in Section 6.) The source and
drain contacts for the applied current are located at opposite
ends of the system. If one models this system as a clean
homogeneous bilayer using reasonable estimates of the
tunnel splitting, one finds that the injected current should
have tunneled across the bilayer within a few microns of
the source contact (λJ in (6)). Such a current profile would
suggest that the critical value of the interlayer current should
not depend on the sample length in the direction of the
current [12, 20, 21]. Put another way, the area scaling of
the critical current could only be explained by a clean
model of the bilayer if one accepts a tunnel splitting that is
anomalously small by several orders of magnitude [12].

A similar puzzle is found in the original observation
of dissipationless counterflow [22, 23] in the counterflow
geometry (Figure 3). Again, counterflow currents apparently
traverse the system over distances orders of magnitude
further than expected. We will return to this geometry in the
final section.

The resolution of this puzzle lies in the presence of
disorder. We shall see (Figure 2) that in the presence of
static phase disorder (pinned vortices), the supercurrent
profile can be pinned by disorder. The time-independent
supercurrents can then penetrate into the sample over indef-
initely large distances, limited only by the finite size of the
sample. In fact, we find that dissipation only appears when
supercurrents completely fill the sample. This mechanism
gives a critical current (11) which is proportional to the
area of the sample. The magnitude of this critical current
agrees with experiments, using reasonable estimates of the
parameters [18].

This paper is organized as follows. We will discuss the
origin of disorder in the bilayer in Section 2. Then, in
Section 3, we will introduce the phase Hamiltonian for the
excitonic superfluid that describes the interlayer-coherent
phase of the quantum Hall bilayer. In Section 4, we discuss
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Figure 2: Spatial distribution of tunneling currents (left column)
and interlayer voltages (right column), in a lattice model of 200 ×
20 sites, with current injection at the two lower corners. The injected
counterflow currents are I/I0 = 15, 30, 45, 60 for the four pairs of
plots. Dark colours, left column: high current. Dark colours, right
column: low voltage. tξ2/ρs = 0.6. Results are averaged over 500
realizations; tunneling currents are summed over blocks of 3 × 3
sites.

how quenched vortices in the superfluid affect the ground
state of the system and its response to injected currents.
Then, in Section 5, we present the results of a numerical
simulation of the bilayer in the tunneling configuration to
support the prediction of our theory. In the final section, we
discuss how our picture can be used to interpret experiments
for the bilayer in other configurations.

2. Model of Disorder

Weak disorder, such as a spatially varying tunneling splitting,
does not affect the tunneling properties of the system
dramatically [24]. A tunneling mechanism based on a
disordered edge has been proposed by Rossi et al. [25].
However, such a theory predicted linear scaling with the
sample length but not its area.

We consider here a bilayer with charge disorder in
the bulk. One common source for this disorder is the
electrostatic potential due to disordered dopant layers. We
expect the incompressible quantum Hall phase to occupy
only a fraction of the sample, with the remainder occupied
by puddles of compressible electron liquid. Thus, the
incompressible phase forms a network of channels separating
puddles of size ξ ≈ dd ≈ 200 nm, the distance to the dopants.
We suppose that the width of the channels is of the order
of the magnetic length �B ∼ 20 nm. This coherent network
model was first studied in the context of the quantum Hall
bilayer by Fertig and Murthy [26].
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Figure 3: Schematic diagram of a counterflow experiment with
a short circuit to complete current loop for counterflow. Iloop

measures current through the short circuit. Diagram depicts the
Josephson regime where the loss of counterflow current through
tunneling means that Iloop = 0. The current-carrying region
penetrates to the right as the injected current I is increased,
eventually reaching the other end at Ic.

In a quantum Hall superfluid, excess charge nucleates
vortices in the exciton superfluid [16, 17, 26–28]. For a
balanced bilayer with individual layer fillings ν1 = ν2 = 1/2
these vortices are merons of charge ±e/2. (In an unbalanced
bilayer, the charges are [29] ±ev1(2).) In previous work [27],
we have studied how the vortex density is determined by
a competition between the superfluid energy cost of the
vortex and the charging energy of each puddle. We found
that the bilayer can be strongly disordered in the current
experimental regimes. This suggests that the random field
due to the pinned vortices has an exponentially decaying
correlation function in space.

The above scenario provides a specific physical model
for quenched vortices with short-ranged correlations in the
exciton superfluid. The theory we present below depends on
the existence of trapped fractional e/2 charges to create these
vortices but does not depend crucially on the details of the
disorder distribution. Our results should be valid as long as
the vortices are dense enough that their separation (∼ξ) is
smaller than the clean tunneling length scale λJ (6).

3. Phase Model

In the previous section, we have outlined a model of disorder
which induced quenched vortices in a quantum Hall state.
To describe this exciton superfluid with quenched vortices,
we start with an effective Hamiltonian for the phase θ of the
superfluid. We separate out the component, θ0, of the phase
field that is due to the quenched vortices. The remaining
component, φ ≡ θ − θ0, would have no vorticity in the
ground state but may acquire vorticity in the presence of
injected currents and other external perturbations. It can be
shown that the effective Hamiltonian can be written as a
random field XY model

Heff =
∫ [

ρs
2

(∇φ
)2 − t cos

(
φ + θ0)

]
dDr, (2)

which describes the low-energy phase fluctuations of a
bilayer containing pinned vortices. This form is a simple
extension of the form for a clean model [8]. The first term

describes the superfluid stiffness to phase twists, while the
second describes the interlayer tunneling. We will assume
that the quenched phase field θ0 has a correlation length of ξ .

In the Josephson regime, there is no quasiparticle flow at
zero temperature. All currents are accounted for by superflow
and coherent tunneling. The counterflow supercurrent den-
sity above the ground state, jCF, and the interlayer tunneling
current density, Jt, are related to the phase field by

jCF = eρs
�
∇φ, Jt = et

�
sin
(
φ + θ0). (3)

A time-varying superfluid phase φ(t) gives rise to an
interlayer voltage difference V via the Josephson relation

V = �φ̇

e
. (4)

Therefore, a state with a finite interlayer current at zero
interlayer voltage is time-independent, corresponding to a
local minimum of the energy (2). The stationary equation
is simply the continuity equation stating that the loss of
counterflow current is accounted for by interlayer tunneling
∇ · jCF = Jt. This can be written as

−ρs∇2φ + t sin
(
φ + θ0) = 0. (5)

All states with zero interlayer voltage obey this equation. The
dependence on the injected current arises as the boundary
conditions at the source and drain specifying the injected
counterflow component jCF. In terms of the phase field, this
is a boundary condition on∇φ.

We expect that the counterflow current injected at the
boundary will decay into the sample because interlayer
tunneling will recombine electrons and holes across the two
layers, as depicted in Figure 3. In the clean case (θ0 = 0),
one expects [20, 30] the static solution to show all the
injected counterflow current tunneling across the bilayer
over a “Josephson length” of

λJ =
√
ρs
t
. (6)

This length scale is estimated to be of the order of a few
microns using realistic parameters.

Since the phase angle is compact, this implies a maxi-
mum injected current density of ρs|∇φ| ∼ πρs/λJ . For higher
injected currents, phase slips enter and propagate through
the system. This gives rise to a time-varying phase and hence
a nonzero interlayer voltage via the Josephson relation (4).

Note that this picture of current penetration into the
clean system gives a penetration depth as a microscopic
length scale independent of the injected current. We will
see below that the disordered system behaves qualitatively
differently—the current can penetrate into an indefinitely
large area of the system. The reason is that injected phase slips
are pinned by disorder, and therefore, a static solution to (5)
can persist to higher injected currents. In the next section, we
will discuss this picture of pinning.
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4. Pinned Superfluid

We will now review the heuristic theory of pinning presented
in our previous work [18] in order to provide the context
to interpret our simulation results. The quenched vortices
play a crucial role for the critical current. They pin any
injected supercurrents and sustain dissipationless states. This
is reminiscent of how disorder pins magnetic flux in super-
conductors [31–33] or charge in charge-density waves [34].
However, we emphasize that there is a significant difference
in the bilayer compared with these other systems. In the
superconductor, the depinning force arises from the Lorentz
force on the flux lines due to the bulk transport current. In
charge-density-wave systems, depinning originates from the
electric field in the bulk which is an insulator when the charge
density cannot slide. In the quantum Hall bilayer, depinning
arises from the injected charge current which is applied only
at the sample boundary. Thus, in this case, the critical current
will depend on how the depinning “forces” are transmitted
through the system. In such a geometry, it is not immediately
obvious how the critical current Ic would scale with the area
of the whole sample.

We will borrow from the Fukuyama-Lee theory [34] of
disordered charge density waves and the Imry-Ma theory
[35] for ferromagnets in random fields. We recall the form
of the ground states of the random field XY model, (2), in
the weak disorder regime ξ � λJ relevant for the bilayer.
In this regime, it is energetically costly for the phase φ to
follow the random field θ0 which varies over the scale of the
correlation length ξ . The ground state consists of domains of
polarized phase. These domains cannot be arbitrarily large,
because the energy cost of the mismatch between the phase
and random field grows with the domain size. The energy
cost for a phase twist that varies over the scale l is Es(l) ∼
ρslD−2 in D dimensions. The typical tunneling energy of a
polarized region of size l is obtained by summing random
energies in the range ±tξD for its (l/ξ)D correlation areas,
giving Et(l) ∼ tξD(l/ξ)D/2. The phases will twist when Et(l)
exceeds Es(l). Therefore, the ground state consists of domains
of size Ld determined by

Es(Ld) ∼ Et(Ld). (7)

This “Imry-Ma scale” for the domain is

Ld ∼
(

ρs
tξD/2

)2/(4−D)

=
(

λ2
J

ξD/2

)2/(4−D)

. (8)

In this ground state of polarized domains, the average
coarse-grained phase over a domain is chosen such that the
tunneling energy Ht of each domain is minimized. Since
δHt/δφ(r) is the tunneling current at position r, the total
tunneling current over the domain vanishes.

In two dimensions, Ld = λ2
J /ξ . We see that in the

experimentally relevant regime of λJ � ξ , this new disorder-
induced length scale is much larger than the Josephson
length. This is the length scale controlling current penetra-
tion into the sample. However, as we see below, this should
not be interpreted simply as a renormalized length scale for
how far counterflow currents penetrate into the sample.

Consider now the effect of an injected counterflow which
imposes a phase twist at the boundary. The phase will
therefore twist away from its equilibrium configuration. We
assume that the domain at the boundary remains polarized
at short distances and so will rotate uniformly on the scale
of Ld. This generates a tunneling current which reduces the
counterflow current. The residual counterflow currents will
be transmitted further into the sample, causing the domains
there to rotate in a similar way.

This picture allows us to average over each domain. The
total tunneling current in a domain consists of a similar
random sum to that for the tunneling energy, Et , and is given
by Id f (φ), where

Id = eEt(Ld)
�

= eρs
�
LD−2

d , (9)

φ is the deviation of the coarse-grained phase from its
equilibrium value, and the range of f (φ) is typically [−1, 1].
To minimize the region pushed out of equilibrium by the
injected current, each domain will rotate so as to minimize
the counterflow current transmitted into the sample. This
maximizes the tunneling current and is achieved if we choose
| f | ∼ 1. Thus, we argue that forcing at a boundary leads to
a self-organized critical state, in which the driven part of the
system is saturated at the threshold | f | ∼ 1. This means that
the area St of the system driven out of equilibrium to provide
coherent tunneling is simply proportional to the number
of domains necessary to carry the injected current I . Each
domain can support a current of Id, and so

St(I)
LDd

≈ I

Id
. (10)

The critical current is reached when all domains in the
sample are saturated: S = St(Ic) for a 2D sample of area S.
Therefore, the critical current for a sample of area S is

Ic ∼ Id
S

LDd
= eρs

�

S

L2
d
. (11)

This formula also applies to the 1D case with S being the
sample length.

5. Numerical Results

We will now present numerical results to support the theory
in the previous section. Our numerical results are obtained
using the dissipative model

−λφ̇ = δHeff

δφ
= −ρs∇2φ + t sin

(
φ + θ0

)
, (12)

whose stationary solutions φ̇ = V = 0 are the local minima
of (2). This is performed on a lattice model. The phase
field θ0

i at site i is uncorrelated with the phase field at any
other site. This corresponds to taking the lattice spacing to
be the correlation length ξ of the original continuum model.
The natural unit of current is I0 = eρs/�. The results that
we present below are the results for a 200 × 20 lattice,
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averaged over 500 realizations of the disorder. For this
illustration, we take the ratio of the tunneling strength to the
superfluid stiffness to be tξ2/ρs = 0.6. This corresponds to
a Josephson depth λJ of the order of a lattice spacing and
a domain size Ld of 2 lattice spacings. Although this is not
deep in the weak-disorder regime considered in the previous
section, our results appear to support the conclusions in that
section.

The boundary conditions for (2) are determined by
the current flows through the sample [12]. We consider a
tunneling geometry in which, as seen in Figure 2, a current
It is injected into the top layer at the bottom left corner and
removed from the bottom layer at the bottom right corner.
As already discussed in (1), the counterflow component of
the currents corresponds to equal counterflow currents ICF

injected by both the electron source and drain.
The ground state of the system is found by evolving from

a random state using the dissipative dynamics (12) with the
boundary condition of no injected current. From (3), this
corresponds to n̂ ·∇φ = 0 everywhere on the boundary with
n̂ being the normal to the boundary. To model the current
injection in a tunneling experiment, we then slowly increase
the counterflow current at the source and drain sites (1 and
2) to the final values ξn̂ · ∇φ|1 = −ξn̂ · ∇φ|2 = I/I0. For
the low values of the injected current I , the dynamics reach
a static solution, corresponding to the Josephson regime
with vanishing interlayer voltages. At higher currents, these
time-independent solutions break down and the phase winds
continuously in time. This corresponds to the breakdown of
the d.c. Josephson regime and the appearance of a state with
finite interlayer voltages.

We expect that the counterflow current injected at the
boundary will decay into the sample, because interlayer
tunneling will recombine electrons and holes across the two
layers. We find that the manner in which this occurs is
qualitatively different in clean and disordered bilayers. As
mentioned in Section 1, the penetration depth of the injected
current is simply the Josephson length λJ in the clean case.
We see in Figure 2 that for the disordered case, the current
penetrates further and further into the sample as we increase
the injected current from the two ends. We see from the
border of the regions with finite tunneling (∇ · jCF /= 0) that
the counterflow region increases linearly in area (St) with the
injected current. This is consistent with the prediction (10)
for St as a function of the injected current from our theory.

At a high enough injected current (I/I0 � 50), the current
profiles from the contacts (lower left and right corners) will
meet in the middle of the lattice. Beyond this point, further
increases in current cannot be accommodated by coherent
tunneling and an interlayer voltage develops.

We emphasize that this interpretation of the threshold
for the breakdown of the stationary solutions is qualitatively
different from the clean case. In the clean model, the
breakdown can be understood in terms of the injection of
phase solitons at the boundary [20, 36] when the injected
current exceeds the superflow that can be supported by
a static phase twist |∇φ| ∼ π/λJ . These phase solitons
propagate through the sample. Thus, the phase at any point
varies in time, and the system develops an interlayer voltage

by the a.c. Josephson effect. In this language, we can say
that these injected solitons can be pinned by disorder so that
stationary solutions exist even when there are many solitons
in the system.

6. Discussion

We have so far focused our discussion on the bilayer in
the tunneling geometry. Finally, we will discuss how two
other experimental situations can be interpreted in our
theory. The first setup is the transport in the bilayer in a
counterflow geometry, where the source and drain contacts
are on the same side of the bilayer, while the other end is
short-circuited to allow the current to flow from the top
layer to bottom without the need for tunneling. This is
depicted schematically in Figure 3. This was first investigated
by Tutuc et al. [22] and Kellogg et al. [23]. A large current
(Iloop in figure) was found passing through the short circuit
that join the top and bottom layers. This seems to imply that
there is no leakage by tunneling across hundreds of microns.
As we discussed in Section 1 for the case of the tunneling
geometry, a realistic estimate of the tunneling rate based
on a clean bilayer predicts that the injected current would
have tunneled across the bilayer within a micron and that no
current should remain at the far end.

In our theory, this situation can be simulated by solving
(12) with injected counterflow current at one end only, say
the left end of Figure 2. We expect the tunneling domains to
saturate successively from this end, and the current profile
is the same as that found in Figure 2 for this side of the
sample. There will be no current flow on the right side. In
other words, we expect to see zero current in the short-circuit
loop (Iloop = 0) in the Josephson regime. As we increase the
injected current I to Ic, the current-carrying region reaches
the other end of the sample. Any further currents will pass
through the short circuit. For an ideal loop, we expect Iloop =
I − Ic. However, the short circuit itself should have a finite
resistance. Therefore, the presence of a nonzero Iloop implies a
small interlayer voltage at the end of the sample. In the phase
theory, the Josephson relation (4) means that the superfluid
phase must wind in time. Thus, a static solution to (12)
becomes impossible anywhere in the system, and the whole
sample develops an interlayer voltage. We expect that the
phase dynamics will be complex and chaotic. The nature of
the steady state would depend on details of the damping
mechanisms. This provides a zero-temperature picture of
the counterflow geometry and is consistent with the recent
experiments of Yoon et al. [37], in which the loop current
Iloop is negligible for tunnel currents below a critical value.
A broadly similar scenario for these experiments has been
recently suggested by Gilbert [38]. We should keep in mind
that at finite temperatures, there may be in-plane resistances
associated with the flow of vortices and thermally activated
quasiparticles. Thermal effects have been considered by many
authors [26, 39]. Most recently, Hyart and Rosenow have
modeled this with a decoherence rate that crosses over from
a thermally activated form at high temperatures to a power
law form at lower temperatures [40].
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The second situation we wish to discuss is the two-
terminal measurements of zero-bias interlayer conductance,
G(0), by Finck et al. [19]. Within our theory, this could be
interpreted as the dissipative regime (i.e., no static solutions
for the phase) above the critical current. We note that
these measurements were performed close to the phase
boundary between the excitonic superfluid with interlayer
coherence and the incoherent ν = 1/2 liquids. We expect the
critical current to vanish near the phase boundary [11, 18].
Therefore, it is easy to exceed the critical current in this
region of the phase diagram. Then, we see in Figure 2 that a
nonzero interlayer voltage develops across the whole sample,
and the tunneling current exists over the whole sample. In
other words, G(0) should be proportional to the area of the
sample, as seen by Finck et al. We point out that whereas this
interpretation gives an intrinsic zero-temperature source of a
finite conductance, there may be other sources of dissipation.
Even below Ic there could be a finite dissipation due to
contact resistances and thermally activated vortex motion
[39, 40]. Fluctuations in the pinning energies could also lead
to very weakly pinned regions in large samples [41], which
may lead to dissipation below Ic even at T = 0.

In summary, we have presented a theory of the Josephson
regime of coherent tunneling in a disordered quantum Hall
bilayer with static pinned vortices. We find that in the
tunneling geometry, there are two current-carrying regions
emanating separately from the source and drain contacts. In
these regions, coherent tunneling is saturated. All injected
counterflow current is lost by tunneling by the edge of these
regions. The area of the saturated region St grows linearly
with the injected current I . This linear relation is predicted
by our theory and is confirmed by the numerical results
presented here. This is analogous to the Bean critical state
for flux penetration into a disordered superconductor.

This picture tells us that the system reaches the critical
current when the whole sample is saturated with coherent
tunneling. This results in a critical current that is extensive
for sufficiently large samples that contain many domains of
polarized phase. In contrast, the clean limit [12] sees area
scaling for Ic only for small samples (small compared to the
Josephson length).

Theoretically, our results are qualitatively different from
clean theories [12] because of the existence of these pinned
polarized domains. The size Ld of these domains is a
disorder-induced length scale that emerges in our theory (8).
This scale has no counterpart in the clean system. It would,
therefore, be useful if this length scale can be probed in
experiments. We note that for the area-scaling formula (11)
to apply, the sample should be large enough to include many
complete domains. For sample dimensions smaller than Ld,
the system should cross over to a regime where Ic scales with
the square-root of the sample dimension [18]

Ic ∼ eρs
�

√
Lx
Ld

Ly

Ld

(
quasi-1D: Lx � Ld � Ly

)

∼ eρs
�

√√√LxLy

L2
d

(
for Lx,Ly � Ld

)
.

(13)

This crossover provides an experimental probe of the domain
size Ld.
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