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Reliable identification of copy number aberrations (CNA) from comparative genomic hybridization data would be improved
by the availability of a generalised method for processing large datasets. To this end, we developed swatCGH, a data analysis
framework and region detection heuristic for computational grids. swatCGH analyses sequentially displaced (sliding) windows of
neighbouring probes and applies adaptive thresholds of varying stringency to identify the 10% of each chromosome that contains
the most frequently occurring CNAs. We used the method to analyse a published dataset, comparing data preprocessed using
four different DNA segmentation algorithms, and two methods for prioritising the detected CNAs. The consolidated list of the
most commonly detected aberrations confirmed the value of swatCGH as a simplified high-throughput method for identifying
biologically significant CNA regions of interest.

1. Introduction

Correlating specific genomic copy number aberrations
(CNA) with disease is an important and challenging first
step in biomarker discovery [1]. Detecting CNAs that define
genomic regions of interest using array comparative genomic
hybridisation (aCGH) requires precise integration of probe
signal amplitude, size (i.e., width) of copy number imbalanc-
ed region, and frequency of imbalance across a sample set, all
referenced to relevant clinico-pathologic features.

There are two broad methods of aCGH data interpreta-
tion for biomarker discovery. The first, exemplified by the R
Bioconductor package cghMCR [2], identifies regions show-
ing the most frequent CNAs within a sample set, ranked
by average signal amplitude. This approach to prioritization
may under-call low prevalence high-level CNAs, such as
homozygous deletions or gene amplifications that occur in
small subsets of the samples analysed. The second method,

targeted gene identification, exemplified by the genome
topography scanning (GTS) algorithm [3] and Genomic
Identification of Significant Targets in Cancer (GISTIC)
module [4], is designed to localize regions of copy number
imbalance most likely to be of functional significance. The
GTS method models CNAs using parameters of signal
intensity, region width and recurrence across a sample set,
moderated by gene content. While this approach is able to
identify significant regions of imbalance in heterogeneous
samples, it relies on prior knowledge. GISTIC calculates the
background rate of random chromosomal aberrations and
identifies regions that are aberrant more often than would be
expected by chance, with greater weight given to high ampli-
tude events. Although gaining favour, a recent report notes
GISTIC has trouble identifying relevant minimal regions of
interest within larger tracts of CNA [5].

There are currently few open source methods for con-
solidating aCGH data across a set of samples. In addition,
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there are particular difficulties with handling large data sets
derived from very high-density oligonucleotide-based aCGH
platforms, where there may be a need to review many distinct
significant regions of interest. To address these issues,
we developed sliding windows adaptive thresholds CGH
(swatCGH), a new computational framework for simplifying
aCGH data analysis. swatCGH is a heuristic method based
on strengths of the major existing approaches. It provides
a robust systematic approach, which effectively automates
the aCGH analysis process in order to identify CNA regions
of interest and improve the reliability of candidate gene
identification.

The framework is based on the analysis of average signal
amplitude, region width and frequency of CNA occurrence,
and enables these parameters to be identified as independent
or associated events, including sample subset analysis by
agglomerative hierarchical clustering. For each chromosome,
swatCGH preferentially identifies regions that display the
largest average signal intensity in the greatest proportion of
the sample cohort.

The stages of swatCGH were designed to accommodate
technical factors that may confound aCGH data analysis,
particularly methods of signal intensity preprocessing, such
as background correction, normalization, and classification
of probe copy number states following segmentation [6, 7].
The R Bioconductor [8] based method enables application of
multiple preprocessing configurations, probe segmentation
algorithms, and classification strategies, in order to provide
the most robust definition of significant CNA regions of
interest. Uniquely, the approach also allows comparison and
consolidation of analyses resulting from the various prepro-
cessing methods used.

Here, we provide a detailed description of swatCGH. We
exemplify the approach using a previously published aCGH
dataset based on an analysis of 38 glioblastoma multiforme
(GBM) samples using Agilent 44 K oligonucleotide arrays
(GSE7602) [3]. The dataset had previously been analysed by
GTS, leading to identification of functional redundancy be-
tween CDKN2A and CDKN2C tumour suppressor genes
in GBM. We analysed the dataset by swatCGH, using data
preprocessed with each of the four most frequently cited
segmentation algorithms; circular binary segmentation from
the package DNAcopy [9, 10], an adaptive weights smooth-
ing method from the package GLAD [11], an homogeneous
hidden Markov model (HomHMM) provided by the package
aCGH [12], and a biologically tuned HMM (BioHMM) from
the package snapCGH [13]. By consolidating data from the
four analyses, we identified the most robust CNA regions of
interest in the dataset. Based on our comparison of methods
for prioritizing detected CNAs, we present results as a sum-
marized list ranked by mean signal intensity, with web-style
summary pages to facilitate data verification and efficient
selection of candidate genes. In addition, the detailed report
of all parameters analysed allows for thorough assessment of
other potential regions of interest that are not recorded on
the ranked list. By comparing our findings with the previous
GTS study [3], we conclude that our heuristic framework
offers a simplified high-throughput approach to defining
novel genomic loci of potential clinical relevance.

2. Materials and Methods

2.1. Overview of Key Features of swatCGH Framework.
swatCGH may be viewed as an aCGH informatics pipeline,
in which the input comprises aCGH raw data files, experi-
mental details, an array layout file, and a set of configurations
describing the parameters to be used in the analysis. Because
of the computational requirements of the methods, we
used the high-throughput facilities of CamGrid, Cambridge
University’s federated computational grid, based on Condor
middleware [14]. To permit automated distribution of the
analysis, separate R jobs were generated, to perform discrete
steps of preprocessing, segmentation, region definition, and
reporting.

swatCGH has three important distinctive features. First,
in order to reduce noise, we identified CNAs based on signal
intensities of groups of neighbouring probes. We identified
significant CNA regions of interest across a sample set, based
on windows of fixed numbers of probes ranging from 3 to
20. For each window, we measured the percentage of samples
within the set which showed the same aCGH copy number
classification, a value referred to as the probe window
score (PWS). We undertook sequential reanalysis following
window displacement by one probe along the length of
each chromosome, (i.e., using sliding windows). Data for
all PWS across a sample set provides a measure of the
overall prevalence of each CNA within the set. Second, we
determined the most frequently occurring regions of interest
across a sample set for each chromosome separately. Placing
PWS in genome position order along a chromosome, we
applied varying thresholds to the frequency of CNA occur-
rence across the sample set, in order to identify the most
frequently occurring 10% of CNAs. Accordingly, chromo-
somes showing a relatively high frequency of CNAs required
more stringent thresholds to identify the most commonly
occurring 10% regions of interest. We refer to this process
as applying adaptive thresholds (AT), an approach that
enables identification of lower prevalence abnormalities that
may nevertheless be highly significant in sample subgroups.
Third, based on findings reported below, the identified CNA
regions of interest were ranked by mean signal intensity
(similar to cghMCR, [2]), ensuring that significant poorly
annotated regions of the genome were not neglected.

Further details of these features of swatCGH are pro-
vided in the following sections. The published dataset used
for exemplification (GSE7602) was chosen because it was
derived from a relatively large number of well-characterised
tumour samples, was based on a high-density oligonucleo-
tide microarray platform, and had previously been analysed
by GTS [3].

2.2. swatCGH Framework Applied to a Computational Grid.
Supplementary Figure S1 presents an overview of our aCGH
data processing framework, illustrating the integration
of swatCGH into Condor CamGrid. Detailed descriptions
of all R scripting methods are available online at doi:10.1155/
2012/876976 (http://www.path.cam.ac.uk/research/investiga-
tors/coleman/swatCGH/). swatCGH is initiated on a local
Condor submission node, with aCGH data being imported,
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compressed, and prepared for grid submission. Next, a
single Condor job submits data to CamGrid for Batch
mode R preprocessing using snapCGH. Essentially, this stage
comprises data import, background subtraction, and norma-
lization within arrays. Thereafter, a data interdependent
Condor process is performed on a per segmentation method,
per chromosome basis. This stage utilizes Condor’s own
directed acyclic graph manager (DAGMan) to schedule the
linked jobs. The DAGMan stage is composed of three sepa
rate jobs, each defined by a single R script. First, array data
is partitioned into separate autosomes, then imputation,
segmentation, and classification of aCGH states is perform-
ed. Second, probe window scoring for a range of probe
window sizes is undertaken. Third, swatCGH generates
web-style reports of identified contiguous regions of interest.
Following Condor DAGMan completion, a postprocessing
stage finalizes the analysis by removing temporary files and
consolidating the separate chromosomes into a fully linked
report that describes CNA across the genome.

To ensure access to all required R Bioconductor libraries,
we used a shared copy of R, served to CamGrid from a host
running a chirp server. To enable the use of R batch mode
on CamGrid the necessary process of generating discrete R
scripts for each executed Condor job was undertaken via
the use of template files. The process of turning a template
file into a job specific script file was undertaken within the
swatCGH shell wrapper, using sed, the Unix stream editor.
While our implementation of the swatCGH framework
utilized Condor CamGrid due to its local availability, we
consider that modification of the framework for use with
other distributed computational facilities and schedulers
(e.g., Globus) would be a straightforward matter, due to the
use of simple text configuration and template files.

2.3. Classification of Segmented Chromosomal Regions. We
apply a 5-point classification scheme to array probes within
segmented regions, comprising: high level loss; loss; normal
copy; gain; high-level gain/amplification. In classification
score tables, these states are represented by −2, −1, 0, 1,
and 2, respectively. Classification is undertaken using the
nudSegmentation algorithm (snapCGH and BayesCGH Bio-
conductor packages), which states that segments are copy
number abnormal if their absolute computed fluorescence
ratios are greater than the difference between the middle
fifty of the distributions of normalised observed fluorescence
ratios and the middle fifty of the predicted values, multiplied
by an appropriate factor change (we used a default value of
75% factor change difference). nudSegmentation separates
high-level CNA from single copy gain or loss based on
region width, the upper limit of which was set at 10 probes
(approximatly 700 Kb on the Agilent 44 K platform).

2.4. Algorithm for Determining CNA Prevalence. Figure 1
illustrates the processes involved in probe window scoring,
using a hypothetical array experiment (Figure 1(a)) com-
prising 6 samples (A–F) hybridised to a 20 probe platform
(probes numbered 1–20), where grey shaded horizontal bars
indicate regions of gain. We define a continuous region
of unbroken CNA, in which all probes are consensually

imbalanced, as a contiguous region of interest (CRI). To
identify CRIs, we first construct a classification score table
(Figure 1(b)), in which probe gain is denoted by 1 and no
change by 0. Had there been loss, deletion, or amplification,
scores of −1, −2, or 2 would have been recorded. Figure 1(c)
illustrates probe window scoring for the smallest window
size of three probes. Each window receives a score that
indicates the proportion of samples in which the same aCGH
classification (gain or loss) is seen for all probes within the
window. In this exercise, gain is combined with amplification
and loss with deletion. For example, no sample shows gain of
all probes in the first window (probes 1 to 3), hence 3PWS 1–
3 = 0%. The rectangle slides one probe down, and samples
A, D, and E all now share consensus gain for probes 2–4,
hence 3PWS 2–4 = 50%. The process repeats until all probe
windows have received a score (Figure 1(d)), after which a
prevalence plot (Figure 1(e)) summarises the discrete regions
of gain identified. The plot (Figure 1(e)) is intersected with
an AT in order to select CRIs that occur above a given
frequency within the sample set. In general, AT values are
set for each chromosome to identify the 5% that contains the
most commonly occurring copy number gains and the 5%
that contains the most commonly occurring copy number
losses. Within each CRI, we define the smallest region of
probes showing the most frequent concordant CNA across
the sample set. Such a region is referred to as a minimum
region of interest (MRI). By definition, a CRI will contain
at least one MRI, although it may contain more than one
MRI. For CRIs that show no variation in frequency of CNA
between probes, the MRI and CRI will be the same.

We compute PWS for window sizes ranging from 3 to
20 probes, corresponding to approximately 210 Kb ∼ 1.4 Mb
on the Agilent 44 K platform. Calculating CNA recurrence
across probe windows effectively provides technical replica-
tion that smoothes point fluctuations introduced by techni-
cal error, non-specific binding, or copy number variations
affecting discrete oligonucleotide probes. We consider that
PWS from larger window sizes will more robustly reflect
recurrent CNAs within a sample set, and be less susceptible
to noise. swatCGH therefore requires that CNA regions of
interest detected in larger window sizes are also present in
internal smaller windows, at equal or higher frequencies of
recurrence. This process is exemplified in Supplementary
Figure S2, for the deletion mapping of the CDKN2A locus
on chromosome 9, based on the published GBM dataset [3].
Here, analysis using a 20 probe size window shows a discrete
region of loss on 9p. Reanalysis with 5-probe windows and
3-probe windows confirms the significance of the CNA and
focuses the MRI to 21.73 Mb–22 Mb.

2.5. Chromosome-Specific Adaptive Thresholds Delimit Re-
gions of Interest. Considering each chromosome separate-
ly, we apply decreasing ATs to delineate the 5% of the chro-
mosome that contains most frequently occurring regions
of copy number gain and the 5% that contains most freq-
uent regions of copy number loss (10% overall CNA).
This strategy normalizes the CNA detection process across
chromosomes and for different segmentation algorithms,
and allows lower chromosome specific prevalence CNA to
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Figure 1: Illustration of the probe window scoring method. Panel (a) is a hypothetical aCGH experiment (samples A–F, probes 1–20).
Horizontal bars are regions of copy number gain. Panel (b) is the same information in classification table format. Panel (c) shows scoring of
the classification table for the first three of the 3-probe windows. Panels (d) and (e) summarise the scoring, with the graph plotting for each
probe window (x axis) the percentage of samples showing the same aCGH classification (i.e., probe window score). This identifies two CRIs
(probes 2–10 and 12–19). The MRIs within each region are shaded in panel (d).
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be determined. Supplementary Figure S2D illustrates appli-
cation of an 80% AT to gate CNA regions of interest on chro-
mosome 9. We use the following rules for selecting the ATs,
which are applied independently to regions of copy number
gain and copy number loss on each chromosome. (1) We
select the lowest threshold that results in approximately 5%
CNA; (2) computing % CNA across the chromosome, ATs
are selected in sequence from 80% to 20%, in decreasing 10%
steps. If an AT results in 0% CNA, the next higher threshold is
accepted, even if CNA > 5%; (3). Where the lowest stringency
threshold (i.e., 20% frequency across the sample set) results
in 0% CNA, the chromosome is deemed to be without CNA.

Figure 2 uses the GBM dataset to demonstrate the process
of selecting CNA regions of gain on chromosome 7 (EGFR
locus; Figures 2(a), 2(b), and 2(c)), while also illustrating
aspects of swatCGH graphical output. An example of detect-
ing CNA regions of loss is given in Supplementary Figure S3
(chromosome 9; CDKN2A). In Figure 2, panel (a) shows a
chromosome overview plot, which summarises chromosome
CNAs, and represents the starting point for identification of
regions of interest. The overview plot is composed of three
parts. The upper panel is the median aCGH profile of all
arrays, where purple margins are 95% confidence intervals.
The centre panel is a sample recurrence chart, which shows
probe window score by chromosome position (using 3-probe
windows), and indicates the frequency of CNAs across the
sample set. The ideogram axis is at the centre (row c), with
the frequency of CNAs for individual probe windows being
shown by narrow bars above and below. Probe windows
showing copy number gain are in green above the ideogram
(in row b), while windows showing copy number loss are in
red below the ideogram (in row d). Where adjacent 3-probe
windows show the same frequency of CNA, they merge to
form longer bars.

Aligning the median aCGH plot (upper panel in
Figure 2(a)) with the frequency of recurrence across samples
(middle panel in Figure 2(a)) provides a useful method for
readily identifying CNAs most likely to be significant. In the
analysis shown in Figure 2(a), an AT of 80% was required,
hence the gated CRIs represent probe window spans that are
gained or lost in ≥80% of the sample cohort. These gated
CRIs are summarised as thick green bars for gain (row a)
and thick red bars for loss (row e). All CRIs are numerically
indexed, for subsequent cross referencing. For example,
chromosome 7 copy number gain CRI#3 (containing the
EGFR locus) is shown in detail in Figure 2(b). Finally, the
lower panel in Figure 2(a) is a frequency plot of high-
level CNAs (gains and losses), maximally scaled to 25%
of the sample set. In swatCGH analysis, plots of CRIs by
genome location, and sample-based views of all indentified
MRIs are generated by default and presented as web-style
reports. Supplementary Figure S4 provides a genome wide
overview of CNAs in the 38 sample GBM data set following
segmentation by DNAcopy.

2.6. Reviewing Significant Regions of Interest. A major diffi-
culty in aCGH analysis is identifying CNAs that are most
likely to target genes of functional importance. To assist

rapid selection of such regions, swatCGH produces web-style
summary pages for each chromosome, for each method of
data segmentation, at a selected range of probe window sizes.
Summary pages provide links to all processed data, support-
ing verification of the selected regions. The reports provided
comprise chromosome overview, copy number karyograms,
sample clustering by regions, regional probe classifications,
and supporting data in tabular format. Unsupervised hierar-
chical clustering is undertaken using the classified aCGH call
scores within the gated CRIs for each chromosome, in order
to demonstrate any sample-dependent CNA patterns. The
fact that the top 10% most frequently occurring CNAs are
defined for all chromosomes ensures a detailed CNA profile
for each sample and prevents significant low recurrence
CNAs from being missed. This approach is likely to enrich for
genes or genomic regions that mediate phenotype variation
across clinico-pathological subgroups. Finally, swatCGH
generates a table of CRI data ordered by genome position,
with each row representing a discrete region. Rows are
serially indexed, and maintain the indexed order of CRIs
shown in the chromosome overview plots (Figure 2(a) and
Supplementary Figure S3A). Following a region hyperlink
reveals the aCGH classification of all probes in the region, as
illustrated for one CRI in Figure 2(b). In addition, hyperlinks
to on-line genome databases are also provided (Figure 2(c)).

3. Results

3.1. Comparison of CNA Detection following Four Segmenta-
tion Algorithms. All parameters relevant to swatCGH anal-
ysis of the GSE7602 dataset are provided in a single plain
text file (Supplementary Text File 1). We demonstrated the
performance of swatCGH by analysing the published GBM
aCGH data, following the application of the segmentation
algorithms DNAcopy, GLAD, HomHMM, and BioHMM
(using developer-recommended default parameters), scoring
window sizes of 3–20 probes. CRIs in individual chromo-
somes were identified based on adaptive thresholds of 20%–
80% of the samples analysed, in order to identify the 10%
most frequently occurring CNAs.

Using unfiltered data for the 38 GBM samples, we
observed that BioHMM and HomHMM led to detection
of a greater number of discrete CRIs than DNAcopy or
GLAD (Table 1, italic columns). However, while BioHMM
and HomHMM led to identification of percentages of the
genome showing CNA that were similar to the 10% target
of adaptive thresholding (10.96% and 8.89%, resp.), the
CRIs detected following DNAcopy and GLAD represented
25.17% and 31.08%, respectively. The latter methods identify
relatively large CRIs and more stringent ATs led to <10% of
the genome being detected as showing CNAs. Interestingly,
when comparing the ratios of the sizes of the DNA regions
identified as showing copy number gain to those showing
copy number loss, BioHMM led to detection of a greater
proportion of gain (ratio 2.03), while DNAcopy led to pref-
erential identification of loss (0.64). GLAD and HomHMM
led to detection of similar intermediate ratios of gain to loss
(1.62 and 1.55, respectively).
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Table 1: Comparison of regions of interest identified by swatCGH following four methods of DNA segmentation. The values shown are
derived from 3-probe window analysis of the GBM dataset, using adaptive thresholding to limit CNAs to 10% of the genome. For each
segmentation method data is provided for regions of copy number gain, regions of copy number loss, and for the total CNA. Italic columns
represent findings for CRIs using unfiltered data, while roman columns represent data for MRIs filtered for significance using amplitude-
based prioritization (P < 0.1).

All regions Filtered regions (P < 0.1)
Number CRIs Proportion CNA Number CRIs Proportion CNA

BioHMM

Gain 253 7.34% 69 1.33%
Loss 227 3.62% 44 0.56%
Total 480 10.96% 113 1.89%
Gain : Loss 2.03 2.40

GLAD

Gain 66 18.91% 11 1.04%
Loss 65 12.17% 7 0.18%
Total 131 31.08% 18 1.22%
Gain : Loss 1.55 5.67

DNAcopy

Gain 99 9.81% 13 0.81%
Loss 118 15.36% 19 0.99%
Total 217 25.17% 32 1.80%
Gain : Loss 0.64 0.82

HomHMM

Gain 275 5.48% 46 0.93%
Loss 216 3.39% 24 0.29%
Total 491 8.87% 70 1.23%
Gain : Loss 1.62 3.20

3.2. Amplitude-Dependent Prioritization of Detected CNAs.
We investigated two approaches to prioritization of the
regions of interest derived from swatCGH analysis. First, we
filtered MRIs using a modification of the signal amplitude
dependent method of Aguirre et al. [2]:

f (x) = e−(x−μ)2/(2σ2)

σ
√

2π
. (1)

Briefly, a probability density function (1) was computed
using a permutation approach from mean signal intensities
(μ) with scale parameter (σ) for each probe window size
employed, with sampling size in the probability distribution
being weighted for chromosome length. MRIs were filtered
for regions demonstrating a statistically significant deviation
in mean signal intensity (mean log 2 ratio across all
arrays, P < 0.1). The number of CRIs that contained a
significant MRI is shown in Table 1, roman columns. For
data preprocessed by all DNA segmentation methods, we
observed generally proportional reductions in the number
of CRIs detected, compared to those identified from the
unfiltered data. Interestingly, however, all segmentation
methods now led to detection of similar percentages of
the genome showing CNAs (1.22%–1.89%; Table 1 roman
columns).

The regions of interest identified from 3-probe window
data are shown in Supplementary Tables S1A (copy number
gain) and S1B (copy number loss), ordered by significance
value of MRIs. These data illustrate the value of AT setting

in identifying lower prevalence CNAs. For example, using
Supplementary Table S1A DNAcopy data as reference, the
80% AT value required to achieve ∼5% CNA gain on
chromosome 7 (SEC61G, 89%) would entirely eliminate
gains determined on chromosome 4 (CHIC2) that had
a maximal prevalence of 32% and required 20% AT to
achieve 5% CNA. While all segmentation methods led to
identification of chromosomes 7 and 9 as the regions of most
frequent copy number gain and loss respectively, there were
discrepancies in the regions lower in the ranked lists. For
example, BioHMM and GLAD led to identification of gain
on chromosome 1, while HomHMM led to detection of gain
on chromosomes 8 and 17. Similarly, only BioHMM led to
identification of loss on chromosome 4, while other methods
led to detection of loss on chromosome 1. Intersection of the
methods suggest chromosomes 3, 4, 5, 7, and 20 are the most
common sites of copy number gain, while chromosomes 1, 9,
10, 11, 13, and 14 are the most common sites of copy number
loss. DNAcopy led to identification of this CNA profile
most closely (summarized in Supplementary Figure S5).
Figure 3 shows CNA on three of these target chromosomes
using the copy number karyogram format of DNAcopy
analysis. At high resolution, all segmentation methods led to
mapping of the top copy number loss MRI to the CDKN2A
locus (chromosome 9; 21.87 Mb). DNAcopy led to mapping
the top copy number gain MRI to RP4-791C19, a clone
located mid-way between SEC61G and EGFR. The remaining
methods led to mapping the top region of gain precisely to
SEC61G (chromosome 7; 54.9 Mb).
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7
9

10

Figure 3: Representative swatCGH copy number karyograms. The results shown are for chromosomes 7, 9, and 10, using data segmented by
DNAcopy. Red bars at the bottom of each ideogram indicate regions of copy number loss, while cyan bars signify high-level loss. Green bars
at the top of each ideogram represent regions of copy number gain, while yellow bars represent high-level gain. The purple bars on either
side of each ideogram denote the CRIs identified by swatCGH analysis. Arrowheads locate MRIs identified as significant using amplitude
based prioritization (P < 0.1).

3.3. Gene-Centred Prioritization of Detected CNAs. The
second method used to prioritize the MRIs derived from
swatCGH was a modified version of GTS [3], which mod-
erates average signal intensity by frequency of occurrence
across a sample set and also incorporates weighting for gene
density:

ARI = log 2
(

MRI signal intensity
)
× recurrence, (2)

RIC = Number of genes per MRI
Number of probes per MRI

, (3)

AFI = (RIC× ARI)
ARI

, (4)

GDW = AFI× ARI. (5)

For this approach, we generated values for average aberration
recurrence index (ARI; mean aberration log 2 ratios multi-
plied by recurrence, (2)) and aberration focality index (AFI)
as originally described [3]. To estimate regional information
content for AFI calculation, we determined the regional
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information content (RIC), being the number of genes
present within an MRI divided by the number of probes
comprising the MRI (3). The product of ARI and AFI (4)
gave a prioritization score, gene density weighting (GDW),
which reflected not only average signal intensity but also
recurrence and information content (5). This gene-centred
prioritization method was applied first to the list of MRIs
filtered by the amplitude-dependent prioritization method
(i.e., those in Supplementary Table S1) and resulted in the
reordering shown in Supplementary Table S2.

Using this modified GTS approach, BioHMM and GLAD
again led to identification of SEC61G as the top gained locus,
while HomHMM led to SEC61G being placed second,
behind SKAP2. DNAcopy did not lead to identification of
SEC61G gain, instead EGFLAM was identified as the top
gained locus. In addition, the lower placed loci were reorder-
ed. The majority of the segmentation methods now led
to elevation of EGFLAM (chr 5), EDN3 (chr 20), and
CHIC2 (chr 4) above minor placed chromosome 7 loci,
which dominated in the list ranked only by amplitude
(Supplementary Table S1). Changes were also seen in the
ranking of regions of copy number loss. Whereas regions on
chromosomes 9 and 10 dominated, CDKN2C and FAF1 now
ranked above CDKN2A after analysis following GLAD and
DNAcopy segmentation.

We next applied the gene-centred prioritization method
to the unfiltered MRI list, to test whether any MRIs had been
excluded by the initial amplitude-based filtering step. We
selected the top 10 MRIs identified from unfiltered data pro-
cessed by each segmentation method, for comparison with
data from the previous analysis (i.e., the data shown in
Supplementary Table S2). Of the 80 MRIs so selected
(Supplementary Table S3), 34 would have been excluded by
amplitude-dependent filtering (i.e., P > 0.1). In addition
to previously reported region listings, BioHMM now led to
identification of copy number gain at loci on chromosomes
16 (CDH11; IRX5) and 17 (MAPT), and copy number losses
at loci on chromosomes 1 (NPH4) and 15 (SPRED1).
DNAcopy led to identification of gains on chromosomes 2
(Y RNA), 16 (CDH11, CDH9, and IRF8) and 17 (MAPT),
and losses on chromosomes 13 (SLITRK5; CYSLTR2), 14
(EGLN3; NPAS3), 15 (SPRED1), and 18 (TCF4; SNORA73).
GLAD led to identification of gains on chromosomes 16
and 12, and losses on chromosomes 12, 13, 15, and 18,
while HomHMM led to identification of additional gains
on chromosomes 3 (TPRG1), 8 (EXT1), and 1 (FCRL5;
NBPF15) and losses on chromosomes 12 (NAV3) and 11
(DSCAML1).

Based on these observations, we conclude that prioritiza-
tion by amplitude favours the highest frequency CNAs that
also display largest signal amplitude within the sample set,
for example, gains on chromosome 7 and losses on chromo-
somes 9, and 10, regardless of whether the regions are gene-
coding. In contrast, prioritization by recurrence-moderated
average signal intensity, weighted for gene density, favours
either gene dense regions, or large genes in smaller regions
of imbalance, where the ratio of genes to probes will be dis-
proportionately low.

3.4. Integration of Ranked Regions of Interest. Finally, we
combined all previous analyses to identify the most consis-
tently detected CNAs in the dataset. For each of the two
prioritization methods, we consolidated regions detected
by the four segmentation algorithms into a consensus list
of MRIs, requiring at least two segmentation methods to
independently flag a region (Supplementary Figure S6). The
gene-centred prioritization analysis used for this exercise was
performed using data previously filtered by the amplitude-
based prioritization method (Supplementary Table S2). We
identified regions present in both lists to produce an overall
set of 35 MRIs that we consider most robustly describes
CNAs in the dataset (Supplementary Table 4). We performed
agglomerative hierarchical clustering based on probes in the
35 CRIs that encompassed the 35 MRIs, using data that
had been segmented with DNAcopy. CRIs were required to
be detected above an AT of 40%, hence the CHIC2 locus
was excluded. The sample set clustered into three subgroups
(Figure 4). Notable characteristics included chromosome 3
gains in Group A, gross CNA on chromosome 11 in Group
B, and losses on chromosome 10 in Group C. At locus
level resolution (based on the MRIs), we observed CDKN2A
loss across all groups, GRID1 loss predominantly in Group
C, and elevated frequency of CDKN2C loss in group A
(See Figure 4 key). The region of chromosome 7 spanning
MEOX2 (15.7 Mb) to EGFR (55.1 Mb) was generally gained
in all groups. There was increased frequency of Claudin and
SUMO1 gain in Group A, FGF10 gain in groups A and B, and
striking heterogeneity of PDGFD copy number in group B.

3.5. Initial Comparison with GISTIC. In a parallel analysis,
we determined the proportion of genome deemed to show
CNA by GISTIC for each of the four segmentation methods.
The findings are provided in Supplementary Table S5 and
may be compared directly with those in Table 1. Whereas the
italic columns of Table 1 report the number of CRIs and the
proportion of genome in CNA by swatCGH, Supplementary
Table S5 reports the number of genes and proportion of
genome called in CNA as determined from “wide peak
intervals”. For swatCGH the average total proportion of
genome in CNA was 1.5% (range 1.2–1.9%). The equivalent
value by GISTIC was 2.8% (0.35–3.9%), with HomHMM
generating an outlier value of 0.35%. The broader regions of
CNA identified by GISTIC resulted in a list of∼400 candidate
genes. In contrast, for swatCGH the prioritized CRI list was
between 18 and 113 significant regions, resulting in a list
of ∼200 candidate genes across all segmentation methods
(Supplementary Table S4).

4. Discussion

swatCGH was designed as a simplified approach to selecting
CNA regions of interest from aCGH data. This open source
method enables consolidation of data across a sample set
and can accommodate the large information content of
high-resolution analyses, where theoretical limits extend
beyond millions of probes by thousands of samples as
defined by R data frame properties (see R documentation at
http://cran.r-project.org/). The method incorporates sliding
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Grp. A Grp. B Grp. C

(1) Chr 3 CRI gain #2 Claudin locus

(2) Chr 3 CRI gain #4 Sumo1 locus

(3) Chr 5 CRI gain #3 FGF10 locus

(4) Chr 11 CRI loss #6 Unknown

(5) Chr 11 CRI loss #4 RAB39 locus

(6) Chr 10 CRI loss #1 USP6NL locus

(7) Chr 10 CRI loss #2 HSD17B7P2 locus

(8) Chr 7 CRI gain #3 EGFR locus

(9) Chr 7 CRI gain #2 RAPGEF5 locus

(10) Chr 7 CRI gain #4 KRIT1 locus

(11) Chr 7 CRI gain #1 MEOX2

(12) Chr 14 CRI loss #2 NOVA1

(13) Chr 20 CRI gain #1 Cystatin locus

(14) Chr 9 CRI loss #1 CDKN2A locus

(15) Chr 10 CRI loss #4 MAPK8 locus

(16) Chr 10 CRI loss #3 Unknown

(17) Chr 10 CRI loss #5 POLR3A locus

(18) Chr 10 CRI loss #6 GRID1

(19) Chr 10 CRI loss #8 Unknown

(20) Chr 1 CRI loss #2 CDKN2C; FAF1

(21) Chr 13 CRI loss #5 CYSLTR2

(22) Chr 11 CRI loss #3 PDGFD

(23) Chr 11 CRI loss #5 Unknown

(24) Chr 20 CRI gain #2 EDN3 locus
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Figure 4: Hierarchical clustering based on selected CRIs. Each column represents a sample, while each row represents a CRI. The key
provides details of each CRI, including the index number given during swatCGH processing. Shading denotes the proportion of probes in
each CRI that demonstrated copy number gain (orange) or copy number loss (blue).

windows, as signal intensities estimated from groups of
neighbouring probes are less likely to be subject to noise per-
turbation than discrete probes. Adaptive thresholds applied
on a per chromosome basis increase the probability of iden-
tifying lower prevalence abnormalities that may contribute
to significant patterns of disease heterogeneity, paralleling an
aim of GTS, but in contrast to methods such as GISTIC,
that are weighted towards oncogene detection. Selection of
prioritized candidate targets is not computed by integration
across probe window sizes. Instead, users are able to select

a results panel based on a window size most appropriate
for the array probe density used, and review outcomes for a
range of probe window sizes by navigation through the web-
based CNA reports. In our approach, the process for ranking
CNA regions of interest is driven by mean signal intensity,
preventing omission of significant nonannotated regions of
the genome, and supporting inclusion of important lower
prevalence abnormalities. The overall method is robust,
systematic, and customizable, with all parameters specified
in a single text file. The reporting of all analysis steps
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undertaken enables ready evaluation of all genomic loci, not
just those in the ranked lists.

In applying swatCGH to a GBM test dataset, we observed
considerable differences in the CRIs detected after data was
preprocessed with four different segmentation algorithms
most likely reflecting differences in arithmetic approaches
to segmentation used by each algorithm. Interestingly,
BioHMM, HomHMM, and GLAD led to preferential detec-
tion of copy number gain compared to copy number loss.
This may be related to the empirically observed technical bias
that can occur following aCGH normalisation, which pro-
duces a reduction in the dynamic range of global signal
intensity in regions of copy number loss, compared to
regions of copy number gain [15]. Interestingly, DNAcopy
led to identification of a greater amount of loss than gain,
associated with detection of more loss and less gain than the
other segmentation methods, consistent with observations in
the original description of the method [9], and most likely
reflects the approach used for change point detection.

The most significant MRIs identified following pro-
cessing by all four segmentation algorithms were generally
similar (Supplementary Tables S1–S4). Indeed, DNAcopy,
BioHMM, and HomHMM all led to the identification of a
large majority of our final list of 35 consensus MRIs (Supple-
mentary Table S4). The two methods used to prioritize MRIs
had effects on the resulting ranked gene lists. The published
analysis of the dataset used GTS, augmented by prioritization
of CNAs based on a combination of focality, amplitude,
and recurrence across the sample set [3]. This led to the
biologically important novel observation that CDKN2C is a
frequently deleted tumour suppressor gene in GBM. When
we analysed the data set using a prioritization method based
on signal amplitude alone, CDKN2C loss was also highly
ranked following data segmentation with DNAcopy (ranked
4th) and GLAD (ranked 2nd), although not following
segmentation with BioHMM or HomHMM. Reordering
the amplitude-prioritized data by GTS-based gene density
weighting led to elevation of CDKN2C in ranked lists of
data segmented by DNAcopy (new rank 2nd) and GLAD
(new rank 1st), indicating that gene density weighting has
the potential to add value in some settings. However, we
also observed limitations of the GTS-based approach when
considering copy number gain in the dataset. Using the signal
amplitude method of prioritizing regions of interest, the top
region of gain identified after BioHMM, HomHMM, and
GLAD was SEC61G, while the top region identified after
DNAcopy was RP4-791C19, which maps midway between
SEC61G and EGFR. However, when the GTS-based method
was applied to the ranked genes, the RP4-791C19 locus was
not identified in the DNAcopy segmented dataset, as it is
nongene coding. This observation illustrates how methods of
interpreting CGH data that weight importance by genomic
content are critically dependent on accurate probe mapping
and annotation.

The agglomerative hierarchical clustering function of
swatCGH detects significant relationships between regions of
interest across samples. In the data set analysed, we identified
a cluster (Group A) in which there was enrichment for
CDKN2C deletion in association with the more widespread

deletion of CDKN2A, mirroring the original published
observation [3]. The relevant cluster group was also defined
by gain of chromosome 3 loci in the absence of CNAs on
chromosomes 10 and 11, features that may contribute
further to the phenotype of tumours in the cluster.

In conclusion, swatCGH is a distributed high-through-
put aCGH data analysis heuristic that facilitates identifica-
tion of CNA regions of interest suitable for further genetic
and functional investigations.
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[11] P. Hupé, N. Stransky, J. P. Thiery, F. Radvanyi, and E. Barillot,
“Analysis of array CGH data: from signal ratio to gain and
loss of DNA regions,” Bioinformatics, vol. 20, no. 18, pp. 3413–
3422, 2004.

[12] J. Fridlyand, A. M. Snijders, D. Pinkel, D. G. Albertson, and A.
N. Jain, “Hidden Markov models approach to the analysis of



12 Advances in Bioinformatics

array CGH data,” Journal of Multivariate Analysis, vol. 90, no.
1, pp. 132–153, 2004.

[13] J. C. Marioni, N. P. Thorne, and S. Tavaré, “BioHMM: a
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