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We introduce multiscale wavelet kernels to kernel principal component analysis (KPCA) to narrow down the search of parameters
required in the calculation of a kernel matrix. This new methodology incorporates multiscale methods into KPCA for transforming
multiscale data. In order to illustrate application of our proposed method and to investigate the robustness of the wavelet kernel in
KPCA under different levels of the signal to noise ratio and different types of wavelet kernel, we study a set of two-class clustered
simulation data. We show that WKPCA is an effective feature extraction method for transforming a variety of multidimensional
clustered data into data with a higher level of linearity among the data attributes. That brings an improvement in the accuracy of
simple linear classifiers. Based on the analysis of the simulation data sets, we observe that multiscale translation invariant wavelet
kernels for KPCA has an enhanced performance in feature extraction. The application of the proposed method to real data is also
addressed.

1. Introduction

The majority of the techniques developed in the field of
computational mathematics and statistics for modeling mul-
tivariate data have focused on detecting or explaining linear
relationships among the variables, such as, in principal com-
ponent analysis (PCA) [1]. However, in real-world applica-
tions the property of linearity is a rather special case and
most of the captured behaviors of data are nonlinear. In data
classification, a possible way to handle nonlinearly separable
problems is to use a non-linear classifier [2, 3]. In this
approach a classifier constructs an underlying objective func-
tion using some selected components of the original input
data. An alternative approach presented in this paper is to
map the data from the original input space into a feature
space through kernel-based methods [4, 5].

PCA is often used for feature extraction in high dimen-
sional data classification problems. The objective for PCA
is to map the data attributes into a new feature space that
contains better, that is, more linearly separable, features than
those in the original input space. As the standard PCA is

linear in nature, the projections in the principal component
space do not always yield meaningful results for classification
purposes. For solving this problem, various kernel-based
methods have been applied successfully in machine learning
and data analysis (e.g., [6–10]). The introduction of the
kernel allows working implicitly in some extended feature
space, while doing all computations in the original input
space.

Recently, wavelet kernels have been successfully used in
support vector machines (SVM) learning to classify data
because of their high flexibility [9, 11]. The Gaussian wavelet
kernel, one of the most common kernels used in practice,
has been used as either a dot-product kernel or a translation
invariant kernel. Besides them, many other possible wavelet
kernels are commonly used, including the cubic B-spline
wavelet kernel, Mexican hat wavelet kernel, or Morlet wavelet
kernel. Although kernel-based classification methods enable
capturing of nonlinearity of the data attributes in the feature
space, they are usually sensitive to the choices of parameters
of a given kernel [6]. Similarly, in kernel PCA (KPCA) [12,
13], optimization of kernel parameters is difficult. The search
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of hyperparameters via cross-validation methods could be
computationally expensive because of many possible choices
of parameter values [2]. This calls for the construction of
a new type of kernel that performs well as the feature
extraction method in KPCA.

Much current research has been focused on the devel-
opment of multiscale kernel methods, for example, [14–18].
These methods have been used in non-linear classification
and regression problems. For instance, [19] proposed a
multiscale kernel method in SVM to improve the Gaussian
radial basis function (RBF) by combining several terms of the
RBF kernel at different scales. In [19], evolutionary strategies
are used for searching the appropriate values of the kernel
parameters, but they are very time consuming. In [20], a
multiscale kernel method used in SVM improved classifi-
cation accuracy over the traditional single-scale SVM. Also
multiscale kernel methods have been proposed to support
vector regression, for example, [21–24].

Our work is different from those discussed above as
we focus on the construction of multiscale wavelet kernels
for KPCA in data classification. We propose to use the
multiscale kernels in the process of feature extraction rather
than in the classification step. This innovation aims at
extracting a set of better linear separable features so that a
simple classifier can be applied for classification. Our method
incorporates multiscale methods into KPCA, making wavelet
kernel PCA (WKPCA) performs well in extracting data
features. We do not search for optimal values of the kernel
parameters of a given kernel that are often obtained by
cross-validation methods. Instead, we focus on constructing
multiscale wavelet kernels that are parameter free. We aim to
investigate these kernels and to see how each of these kernels
performs in multiscale data classification.

This paper is organized as follows. In Section 2 we
provide a brief description of KPCA as a feature extraction
method. Sections 3 and 4 discuss the methods of con-
structing multiscale wavelet kernels. In Section 5 we discuss
the computational aspects of multiscale wavelet kernels.
In Sections 6 and 7 we discuss the results of the sim-
ulation experiments and an application to real data. In
Section 8 we report our conclusions and outline future
work.

2. Kernel PCA

The KPCA aims, for a given data set {x1, . . . , xn : x j ∈
Rd for all j}, to capture the nonlinear relationships among
the data by mapping the original observations x1, . . . , xn ∈
Rd into a feature space F that is spanned by column vectors
Φ(x1), . . . ,Φ(xn), where the function Φ(·) maps xi into the
feature space, for each i = 1, . . . ,n [2, 3, 13]. The map
Φ(·) is usually determined by the Gaussian function, or
by a polynomial function, or by a reproducing kernel in
Hilbert space. Here, we focus on the wavelet kernels that
result in positive semidefinite kernel matrices. Assuming
that the data Φ(x1), . . . ,Φ(xn), in the feature space, are
centered (this assumption will be relaxed later), and view-
ing Φ(x1), . . . ,Φ(xn) as independent random vectors, for

xi ∈ Rd, the sample covariance matrix of these random
vectors can be written as (see [2]) follows:

C = 1
n

n∑

j=1

Φ
(

x j

)
Φ
(

x j

)�
. (1)

The aim of PCA applied to the covariance matrix C is to find
the eigenvalues λ and eigenvectors V of C. The aim of the
eigenvalue analysis is to choose eigenvectors V to be spanned
by Φ(x1), . . . ,Φ(xn), so that, the calculation of eigenvalues
and eigenvectors can be done through the so-called kernel
matrix K, which is defined by:

k
(

xi, x j

)
= Φ(xi) ·Φ

(
x j

)�
, 1 ≤ i, j ≤ n. (2)

The objective of the principal component extraction is to
project the transformed observation Φ(x) into the linear
space spanned by the normalized eigenvectors c̃l, for l =
1, . . ., n. As we focus only on Mercer kernels, C is a positive
semidefinite matrix and all its eigenvalues are positive. Thus,
the coefficients of the projected vector Φ(x) are given by

(
Φ(x) · c̃l

)
=

n∑

i=1

c̃ lik(xi, x), (3)

where c̃l = (c̃ l1, . . . , c̃ ln)
�

and l = 1, . . . ,n.
In the above derivation we assumed thatΦ(x1), . . . ,Φ(xn)

are centered. In practice, one needs to relax this condition.
Therefore, instead of using the kernel matrix K, one should
work with the centered version of K, which is given by the
following expression:

K∗ = K− 1nK−K1n + 1nK1n, (4)

where 1n is a matrix such that (1n)i j := 1/n, for 1 ≤ i, j ≤ n.
The details of the derivation of K∗ can be found in [2].

3. Multiscale Dot-Product Wavelet
Kernel Construction

In this section a method of constructing a dot-product
type wavelet kernel using multiple mapping functions is
proposed. For a single-scale kernel (i.e., only one translated
factor), the performance of KPCA in data classification may
be affected by both a choice of a kernel and a choice of
values of parameters of a kernel. The practical solution is
first to investigate what choices of kernel are appropriate for
the data, then to search for suitable kernel parameters of the
given kernel based on the selected kernel. When data appears
to be multiscale, for example, and exhibits nonstationarity in
mean or in data variance, then the use of single-scale KPCA
may not be a good choice as the feature extraction method in
data classification due to the complex structure of the data.

The construction of kernels based on multiple mapping
functions provides a framework for extending a single-scale
kernel to a multiscale kernel in KPCA. Let φi : x ∈ Rd →
φi(x) ∈ Fi, i ∈ {1, 2, . . . , g} be a nonlinear map and Fi be
the respective feature space, where x is a column vector and
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g is the total number of mapping functions. From φi, we
construct another mapping function φ̂i : x ∈ Rd defined as

φ̂i(x) :=

⎛
⎜⎜⎝0�, . . . , 0�︸ ︷︷ ︸

1,...,i−1

,φ�i (x), 0�, . . . , 0�︸ ︷︷ ︸
i+1,...,g

⎞
⎟⎟⎠

�

∈H , (5)

where H is a Hilbert feature space being the direct sum
of Fi and φ̂i(x) is a column vector with dg entries for a
given x. Define a new map Φ∗ based on φ̂i(x) as Φ∗(x) :=
(φ̂1(x), . . . , φ̂g(x)). In this case, Φ∗ maps x into a dg × g 2-D
feature space. Using the map Φ∗ as a feature map in KPCA,
the original data set {x1, . . . , xn} ⊆ Rd is mapped into Φ̃∗ =
(Φ∗(x1), · · · ,Φ∗(xn)). As a result, Φ̃∗ has ng columns, a
number that is usually very large. The high dimension of
the feature map causes an intensive computation problem in
KPCA. One of the solutions to this problem is to reduce the
dimension of Φ∗. Instead of arranging Φ∗(x) in a matrix, we
arrange them into a vector which replaces Φ∗(x) by Φ(x) =∑g

i=1
√
αiφ̂i(x), where

√
αi is a weight coefficient applied to

the map φ̂i(x) and αi is a positive real value. For simplicity, αi
can be chosen as 1/g. Without loss of generality, we assume
that Φ(x) have zero means. For x, y ∈ Rd, using Φ(x) as the
feature map, the kernel function in KPCA becomes

k
(

x, y
)=

g∑

i=1

√
αjφ̂i(x)·

⎛
⎝

g∑

i=1

√
αiφ̂i

(
y
)
⎞
⎠
�

=
g∑

i=1

αiφi(x)·φi
(

y
)�

(6)

due to the fact that φ̂i(x) · φ̂ j(y)T = 0 for i /= j. If we denote

ki(x, y) = φi(x) · φi(y)T , then k(x, y) = ∑g
i=1 αiki(x, y).

Therefore, a single-scale kernel is just a special case of a kernel
with multiple mapping functions that takes g = 1 and αi = 1.

Using a mother wavelet function ψjk(·) with dilation
factor aj and translation factor bk, for j = 0, . . . J − 1 and
0 ≤ k ≤ N , as a set of basis functions of the mapping
function φi(x), and taking αi = 1/aj , the kernel function in
(6) can be rewritten as

k
(

x, y
) =

d∏

i=1

J−1∑

j=0

N∑

k=0

1
aj
ψ

(
xi − bk
aj

)
· ψ
(
yi − bk
aj

)
. (7)

We call the kernel function in (7) the multiscale dot-product
wavelet kernel (MDWK). The MDWK is a special case of
the dot-product wavelet kernel when the dilated translated
versions of a mother wavelet function are chosen as multiple
mapping functions. In kernel-based methods, it is required
that the constructed kernel must be a Mercer kernel, that is,
it must have a positive semidefinite kernel matrix [3].

Theorem 1. Letψ(x) be a mother wavelet function, let aj , bk ∈
R+ denote the dilation and translation factors, respectively, then
for any x, y ∈ Rd and a finest resolution level J , the dot-product
wavelet kernel function

k
(

x, y
) =

d∏

i=1

J−1∑

j=0

N∑

k=0

1
aj
ψ

(
xi − bk
aj

)
· ψ
(
yi − bk
aj

)
, (8)

is a Mercer kernel defined on Rd × Rd.

The proof of this theorem is provided in the Appendix.
As a special case, we obtain the single-scale dot-product

wavelet kernel (SDWK)

k
(

x, y
) =

d∏

i=1

ψ
(
xi − b
a

)
ψ

(
yi − b
a

)
, (9)

where a ∈ R+ and b ∈ R.

4. Multiscale Translation Invariant Wavelet
Kernel Construction

Another type of the single-scale kernel is a distance function
called translation invariant (TI) kernel [11]. The TI kernel is
defined as k(x, y) = Φ(x − y), where x, y ∈ Rd. However, for
a TI kernel to be used as a kernel in KPCA, again, one has to
show that the kernel matrix constructed from the TI kernel is
positive semidefinite. To show this, we notice that kj(x, y) =
∏d

i=1ψj((xi − yi)/a), where a is a single-scale parameter. A
kernel defined as

k
(

x, y
) = 1

g

g∑

j=1

kj
(

x, y
) = 1

g

g∑

j=1

d∏

i=1

ψj

(
xi − yi
a

)
(10)

is also a Mercer kernel if kj(x, y) are Mercer kernels, for
all j = 1, . . . , g. In order for a multiscale wavelet kernel
to be a Mercer kernel, the single-scale kernel based on a
given mother wavelet function must be a Mercer kernel. A
family of TI wavelet Mercer kernels often used in machine
learning is Gaussian wavelet kernels described as follows.
Let ψ(x) = (−1)pC2p(x) exp(−x2/2) be a Gaussian mother
wavelet function, where C2p(x) exp(−x2/2) is the 2p th step’s
differential coefficient of the Gaussian function, then the TI
Mercer kernel using this Gaussian mother wavelet function
is

k
(

x, y
) =

d∏

i=1

(−1)pC2p

(
xi − yi
a

)
exp

(
−
(
xi − yi

)2

2a2

)
.

(11)

Different values of p give different Gaussian mother wavelet
functions. In particular, when p = 0,C2p(x) = 1, then this
Gaussian wavelet function is a Gaussian function, and when
p = 1,C2p(x) = x2 − 1, then this Gaussian wavelet function
is the so-called Mexican hat mother wavelet [25].

Morlet mother wavelet has been recently used in signal
classification and compression [26]. We present a TI wavelet
Mercer kernel based on the Morlet mother wavelet function
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because this mother wavelet as kernel has not been used
in either support vector regression or SVM. The proof that
this kernel is a Mercer kernel and the investigation of the
performance of this kernel in KPCA are needed for using this
type of wavelet kernel.

Theorem 2. Morlet mother wavelet function is ψ(x) =
cos(5x) exp(−x2/2). The Mercer kernel using this Morlet
mother wavelet function is

k
(

x, y
) =

d∏

i=1

cos

(
5
(
xi − yi

)

a

)
exp

(
−
(
xi − yi

)2

2a2

)
. (12)

The proof of this theorem is provided in the Appendix.
In general, a single-scale kernel, for example, the Gaus-

sian kernel, is a smooth kernel and thus may not be able
to capture some local behaviors of data. Wavelet kernels
are more flexible than other types of kernels, for example,
polynomial kernels or the Gaussian kernel. This is why the
mother wavelet functions are adopted as kernels. Moreover,
multiscale wavelet kernels combine multiple single-scale
wavelet kernels at different scales. They are more flexible
than single-scale wavelet kernels because both large and small
scales are used in the kernel functions.

5. Computation of Multiscale Wavelet Kernels

In this section, we discuss the computational issue of
kernel matrix of multiscale wavelet kernel that needs to be
addressed for KPCA. For a given data set, {x1, . . . , xn : x j ∈
Rd for all j}, we first calculate the sample standard deviation
of the data with coordinate number l, denoted by σl, for
l = 1, . . . ,d. The data with coordinate number l are then
divided by σl to remove the potential effect of different scales
of the observations. Before PCA is applied, a kernel matrix K
obtained from either the dot-product type of function (7) or
the translation invariant type of function is computed. In the
computation of the kernel matrix of the MDWK described
in (7), the values of aj and bk and their indexes j and k
are selected in this paper as follows. The values of aj are in
powers of 2, that is, aj ∈ {1, 20.25, . . . , 20.25 j , . . . , 20.25(J−1)} for
a given level J , which is 6 in this paper.

For each aj , the sequence bk is selected as bk = ku0aj , as
suggested in [27]. Here, u0 controls the resolution of bk and
is set to be 0.5. The range of k is the set {0, 1, . . . , 10} which
is determined by the border of the mother wavelet function
used in this paper. For the MTIWK, one does not need to
specify the values of bk, and the values of aj are chosen to be
the same as the ones in the MDWK. The multiscale kernel
functions are constructed via a semiparametric method
because we do not calibrate the kernel parameters. Instead,
we use the dilated and translated versions of a mother wavelet
function, with the parameters in powers of 2. In this paper
we used the following mother wavelet functions, Gaussian
mother wavelet function, Morlet mother wavelet function,
and Mexican hat mother wavelet function.

As we said earlier in kernel-based methods, it is impor-
tant that the constructed kernel matrix is positive semidefi-
nite. The kernel matrix K based on the SDWK defined in (9)

is always positive semidefinite [3]. The MDWK defined in (7)
is also a Mercer kernel as the linear combination of Mercer’s
kernels is a Mercer’s kernel [19]. A single-scale TI kernel is a
Mercer kernel if it satisfies the Fourier condition [3], which
implies that the kernel matrix is positive semi-definite. In
order that a multiscale TI wavelet kernel is a Mercer kernel,
the single-scale TI kernel based on a given mother wavelet
function must be a Mercer kernel. The Gaussian kernel
and Mexican hat kernel are Mercer kernels. Therefore, the
multiscale TI Gaussian kernel and the multiscale TI Mexican
hat kernel are Mercer kernels.

6. Simulation Experiments

The purpose of simulation experiments is to explore the per-
formance of our proposed method in applications to noisy
multiscale data under different levels of the signal to noise
ratio.

6.1. Simulation Design

6.1.1. Clustered Data. We consider two-class two-
dimensional clustered data, denoted by D = {xi, yi :
i = 1, . . . ,n}, where xi = (xi,1, xi,2) represents the data of
Cluster 1, yi = (yi,1, yi,2) represents the data of Cluster 2,
and n is the total number of data points of each cluster. The
simulation model is given by the following expressions:

xi,1 = x0,1 + σrxei, xi,2 = x0,2 + σrxei,

yi,1 = y0,1 + σsyei, yi,2 = y0,2 + σsyei,
(13)

where (x0,1, x0,2) and (y0,1, y0,2) are the coordinates of the
centers of Cluster 1 and Cluster 2, respectively; σrx and σsy
are the signal-to-noise ratio of each dimension of Cluster
1 and Cluster 2, respectively. The added underlying noises
ei ∼ N(0, 1), and are independent and identically distributed
for both clusters.

6.2. Data Classification. In this section, we discuss the results
on how the WKPCA method performs in data classification.
As we aim for linearly separable features, we apply the linear
classifier, that is, Fisher linear discriminate (FLD), for our
classification problems, to see if linearity of data is improved
after feature extraction. The feature extraction methods by
PCA, by single-scale WKPCA with respect to different values
of kernel parameter a, and by multiscale WKPCA are consid-
ered. The Gaussian function, the Mexican hat mother wavelet
function and the Morlet mother wavelet function are used for
constructing kernels. Also, the following set of values of the
kernel parameter a, that is, a ∈ {1, 20.25,, 20.5, 20.75, 2, 21.25}, is
selected for the single-scale WKPCA. The multiscale wavelet
kernels are constructed using all the values of aj belonging to
the set {1, 20.25,, 20.5, 20.75, 2, 21.25} for all multiscale wavelet
kernels. In order to evaluate the performance of the feature
extraction methods, the average classification accuracy rate
of the single-scale WKPCA, which is calculated over all
values of the parameter a used in the single-scale WKPCA, is
compared to both the multiscale WKPCA and conventional
PCA.
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(c) Morlet kernel and homogeneous clustered data
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Figure 1: Classification accuracy rates of the different types of feature extraction methods: PCA (blue plots), STIWK PCA (green plots),
MTIWK PCA (red plots) and MDWK PCA (black plots), for clustered data. The green plots correspond to the mean value of the classification
accuracy rates of STIWK which are calculated over all values of the parameter a used in the STIWK.

6.2.1. Homogeneous Clustered Data. The training data and
the test data are simulated using the simulation model
described in Section 6.1.1. The values of the model param-
eters for simulating both of the training data sets and both
of the test data sets are as follows: x0,1 = 0, x0,2 = 5,
y0,1 = 4, y0,2 = 0, and n = 100. In the case of σrx = σsy ,
the simulated clustered data are homogeneous between the
clusters. We consider 25 different values of σrx . Each pair of
σrx and σsy is denoted by (σrx , σsy), where for r = 1, 2, . . . , 25
and s = 1, 2, . . . , 25, for simulating the training data and the
test data. The values of σrx and σsy , are taken as σ1

x = σ1
y = 0.1,

σ2
x = σ2

y = 0.3, σ3
x = σ3

y = 0.5, . . ., and σ25
x = 5, respectively.

Figures 1(a) and 1(c) show the classification accuracy
rates for the PCA method and for WKPCA method
with different choices of the types of wavelet kernel and
with respect the different values of σx. In Figure 1(a),

the feature extraction by the conventional PCA in data
classification of the simulated homogeneous clustered data
performs similarly as of the feature extraction by WKPCA
method. Although 20 extended features are used for clas-
sification, feature extraction by WKPCA methods do not
improve the classification accuracy rates in homogeneous
clustered data classification. This result implies that the
KPCA-based feature extraction method does not enhance
the accuracy of the data classification when the kernel-
based feature extraction method plus a linear classifier
method are applied to linear separable data. The PCA and
WKPCA perform similarly in the case of using Mexican hat
kernel. Figure 1(c) shows that the feature extraction methods
by PCA and MTIWK PCA have similar performance in
data classification, however the feature extraction method
by multiscale dot-product KPCA has worse performance
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than either the method by PCA or MTIWK PCA. The
single-scale wavelet KPCA has the worst performance in
data classification. With the increase of data variation, the
MTIWK PCA behaves more robustly as a feature extraction
method because it has the best performance among the other
methods.

6.2.2. Heterogeneous Clustered Data. From the discussion in
Section 6.2.1, we notice that WKPCA as a feature extraction
method does not outperform the conventional PCA method
for homogeneous clustered data. For some wavelet kernels,
for example, SDWK or MDWK based on the Morlet mother
wavelet function, the WKPCA as the feature extraction
method performs worse than the conventional PCA. This is
because (1) the data in each coordinate of the clusters appears
to be approximately single-scale, thus the conventional PCA
as the feature extraction method becomes appropriate for
this type of data; (2) the homogeneous clustered data can be
treated as linearly separable data with large data variation.
Therefore using a nonlinear method of feature extraction
does not enable an improvement of the performance of
feature extraction. From our experiments, we observe that
the performance of the WKPCA with Mexican hat kernel is
approximately equal to the PCA.

In order to demonstrate the application of WKPCA as a
feature extraction method in the classification of multiscale
data, we simulate the training data and the test data using
the simulation model described in Section 6.1.1. To simplify
the problem, we fix the value of σsy to be 5 for s = 1, 2, 30
and take different values for σrx . The rest of values of the
model parameters remain the same as those of Section 6.2.1,
except the values of σrx , which are taken as σ1

x = 0.1, σ2
x =

0.2, . . . , and σ30
x = 3, respectively.

In Figure 1(b), one can see that the feature extrac-
tion method by the conventional PCA for heterogeneous
clustered simulation data has worst performance, and
the feature extraction method by the multiscale WKPCA
performs better for the same simulation data. Also, for
the data sets with σx larger than 1.5, MTIWK in KPCA
performs better than MDWK. The average classification
accuracy rates (in green) when STI wavelet kernel with a =
1, 20.25, 20.5, 20.75, 2, 21.25, respectively, is used in WKPCA, are
all lower than those when the multiscale wavelet kernel is
used in WKPCA. In Figure 1(d), MTIWK in KPCA is more
robust as a feature extraction method than MDWK PCA
and SDWK PCA. The conventional PCA is even better than
WKPCA with Morlet dot-product kernel, that is, MDWK
and SDWK.

6.2.3. Performance Evaluation Based on Monte Carlo Simula-
tion. The multiscale WKPCA with TI kernels outperforms
the conventional PCA, STIWK PCA, and MDWK PCA.
However, the results of classification accuracy rates are
based only on one training data set and one test data set
for each pair of (σx, σy). In order to further evaluate the
performance of WKPCA as the feature extraction method,
we use the Monte Carlo simulation method to estimate
the average classification accuracy rates and their sample

standard deviation using the simulation model presented in
Section 6.1.1.

The values of σx are taken as 0.1, 0.3, . . ., and 2.9, with
the other model parameters remaining the same as the ones
in Section 6.2.2. For each simulation model setup with a
different value of σx, the average classification accuracy rate
and its sample standard deviation are computed for different
types of kernel. Choice of feature extraction method is made
from the following: PCA, the multiscale WKPCA with either
the Gaussian kernel or the Mexican hat kernel, and the
single-scale WKPCA with either the Gaussian kernel or the
Mexican hat kernel, and with different values of parameter a
of the kernel (i.e., a = 1, 20.25, 20.5, 20.75, 2, 21.25). In the case of
the multiscale WKPCA, both the dot-product kernel and the
TI kernel are considered. Only the TI kernel is investigated
for single-scale WKPCA. For each simulation model setup,
m = 100 simulations are run, each having a different value of
the random seed, to produce m training data sets and m test
data sets.

Besides a choice of the kernel and the determination of
kernel parameters, feature dimension is also an important
issue. The classification accuracy for a given data set may
depend on a choice of feature dimension, requiring an
investigation of how classification accuracy is related to the
feature dimension. Estimates of the average classification
accuracy rate and its sample standard deviation are obtained
by applying the Monte Carlo method. The results of the
average classification accuracy rates for a different number
of retained features are reported in Figures 2(a)–2(f). The
results of the change in behavior of the sample standard
deviation for the average classification accuracy rate are
presented in Figures 3(a)–3(f). Data classifications using
both the FLD classifier and the feature extraction by PCA
plus the FLD classifier have the worst performance for the
simulated heterogeneous clustered data. Data classification
using the multiscale WKPCA as feature extraction method
shows the best performance. The feature extraction method
using the multiscale WKPCA is less affected by the data
variances than the feature extraction methods by PCA and
the single-scale WKPCA.

7. Application to Epileptic EEG
Signal Classification

In order to demonstrate how the proposed methods perform
when applied to real data, we use a set of EEG signals
coming from healthy volunteers and from patients dur-
ing seizure-free intervals. EEG signals are typically multi-
scale and nonstationary in nature. The database is from
the University of Bonn, Germany (http://epileptologie-
bonn.de/cms/front content.php?idcat=193), and has five
sets, denoted as sets A, B, C, D, and E. We use only the sets
A and E in our illustration. Set A consists of the signals taken
from five healthy volunteers who were relaxed and in the
awake state with eyes open. Signals in the set E were recorded
from within the epileptogenic zone and contains only brain
activity measured during seizure intervals. Each data group
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Figure 2: Average classification accuracy rates when FLD classifier is used only (cyan plots) and when a feature extraction method plus FLD
classifier is used for 100 Monte Carlo simulations. The considered different types of feature extraction methods are PCA (blue plots), STIWK
PCA (green plots), MTIWK PCA (red plots), and MDWK PCA (black plots) for the data simulated with different values of σx .
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Figure 3: Sample standard deviations of average classification accuracy rates when FLD classifier is used only (cyan plots) and when a feature
extraction method plus FLD classifier is used for 100 Monte Carlo simulations. The considered different types of feature extraction methods
are PCA (blue plots), STIWK PCA (green plots), MTIWK PCA (red plots), and MDWK PCA (black plots) for the data simulated with
different values of σx .
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contains 100 single-channel scalp EEG segments of 23.6
second duration and each sampled at 173.61 Hz.

The problem we consider is the classification of normal
signals (i.e., set A) and epileptic signals (i.e., set E). Since we
deal with extremely high dimensional data (i.e., d = 4097),
in order to make our classification task be computationally
efficient, we first extract the signal features by calculating
the wavelet approximation coefficients of each signal in data
sets A and E. These signals are normalized before applying
the wavelet transform using the Symlet 8 wavelet. We use
the high-level wavelet decompositions due to the concerns of
sparsity and the goal of obtaining high signal discrimination
power. The samples of extracted features are shown in
Figure 4. Note that the coefficients of wavelet approximation
around the two edges do not provide useful information
for signal classification as those are affected by the edges
of signals when the wavelet transform is applied. Only the
coefficients of wavelet approximation within the central
portion are considered as they are not affected by signal
boundaries and have higher discrimination power compared
to those around the edges. For example, at decomposition
level 10, we obtained a set of three-dimensional features
as the input of kernel PCA. Such low-dimensional feature
in wavelet domain may not be sufficient to capture signal
time-variability. Therefore, we consider additional two cases,
that is, level 9 and level 8 wavelet decompositions. We select
7 and 11 features, which are corresponding to the wavelet
approximation coefficients that ranges from the 8 to 14 and
from 10 to 20 (within the central portion), respectively, for
level 9 and 8 wavelet decompositions. We did not try a
smaller level than 8 as it gives a very high dimensional feature
set and the selection of features becomes difficult for those
small levels.

As the input signals are normalized before the wavelet
analysis, we eliminate the differences of the signal energy
between groups. The high variability of extracted features
reflects a high signal variability in original time domain. As
we can see, the extracted features of normal signals are more
fluctuated than the epileptic ones. This fact is coincided with
the clinical findings about the rhythms of epileptic signals,
which are more regularly fluctuated, that is, tends to be
more deterministic. For all three cases that we considered,
the WKPCA coupled with different kernels is applied to
the wavelet approximation coefficients of signals and up to
20 principal components are extracted from WKPCA. The
obtained results of classification accuracy, using different
types of wavelet kernel and simple classifiers, are reported
in Figure 5. As the high level of wavelet decomposition
can only capture a very fine version of the signal, a level
10, which only gives the three-dimensional features, is not
enough to capture signal time variability among groups.
Although signal features are extended in PC space, it is
important to retain the discriminative features from the
original signals. Our study suggests that a level that slightly
smaller than maximum allowed level is necessary to balance
the trade-off between the classification performance and
the sparsity of the input feature vector. The results shown
in Figure 5 also suggest that classification performance for
this considered data set does not obviously depend on the

choice of kernel. Among all three cases considered, the best
performance is obtained by using TI WKPCA with FLD
classifier, which confirms our findings on the improvement
of linearity of features using multiscale wavelet kernels. Thus,
a non-linear classifier such as 1-NN may not necessarily
outperform a linear classifier like FLD when WKPCA is
used as a feature extraction method. This is because the
linearity was improved by using the WKPCA and the 1-NN
classifier performs better for clustered features than linear
features. The classification accuracy is less affected by the
feature dimension in PC space when the FLD classifier is
used. However, TI WKPCA with 1-NN classifier achieves a
higher accuracy when low-dimensional features are used for
classification. This may suggest that it is beneficial to use the
classification scheme that uses the multiscale wavelet KPCA
plus a simple classifier including both linear and non-linear.
The considered example demonstrates the applicability of
the proposed method to multiscale data, and the proposed
method could serve as an alternative approach to non-linear
signal classification problems.

8. Conclusion and Discussion

This paper introduced a wavelet kernel PCA, in order to
better capture data similarity measures in the kernel matrix.
Multiscale wavelet kernels were constructed from a given
mother wavelet function to improve the performance of
KPCA as the feature extraction method in multiscale data
classification. Based on analysis of the simulation data sets
and the real data, we observed that the multiscale translation
invariant wavelet kernel in KPCA has enhanced performance
in feature extraction. The multiscale method for constructing
a wavelet kernel in KPCA improves the robustness of
KPCA in data classification as it tends to smooth out the
locally modulated behavior caused by some types of mother
wavelet. The application to real data was demonstrated
through an EEG classification problem and the obtained
results show the improvement of linearity after applying
the multiscale WKPCA. Therefore, a simple linear classifier
becomes suitable for classifying extracted features. This work
focused on two important aspects: the first one was the
construction of Mercer type wavelet kernel for kernel PCA
and the second one was the investigation of the applicability
of the proposed method.

The multiscale wavelet kernels proposed for the applica-
tion in KPCA may also be useful for other kernel based meth-
ods in pattern recognition, such as support vector regression,
kernel discriminant analysis, kernel density estimation, or
curve fitting. Many kernel-based statistical methods require
the optimization of kernel parameters, which is usually com-
putationally expensive for high dimensional data. Because
of this, the use of multiscale kernels is impractical as
the computational cost is dramatically increased with the
increase of the number of kernel parameters of a multiscale
kernel. Instead, multiscale wavelet kernels enable to narrow
down the search for the values of kernel parameters. This
is because a linear combination of a set of multiple kernel
functions constructed from a mother wavelet function is
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Figure 4: The plots of coefficients of wavelet approximation of sample EEG signals at various wavelet decomposition level, that is, 10, 9, and
8.
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Figure 5: The classification accuracy with respect to different numbers of principal components retained under Gaussian and Mexican hat
TI wavelet kernels, using the coefficients of wavelet approximation at various decomposition level. The classifiers used are FLD and 1-NN.
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considered in this approach. It aims at capturing the multi-
scale components of the data. However, since the multiscale
wavelet kernels are nonparametric, the performance of the
kernel based methods using the multiscale wavelet kernels
may not lead to an optimal solution to the problem.

Appendix

A. Proof of Theorem 1

Let x1, . . . , xn ∈ Rd and r1, . . . , rn ∈ R. It is sufficient to prove
that the kernel matrix K is positive semi-definite. Since
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(A.1)

Therefore, the kernel defined in (7) is a Mercer kernel. This
completes the proof.

B. Proof of Theorem 2

Proof. By the Fourier condition theorem in [3], it is sufficient
to prove that

k̂(w) = (2π)−d/2
∫

Rd
exp

(− jwx
)
k(x)dx ≥ 0, (B.1)

for all w, where

k(x) =
d∏

i=1

cos
(

5xi
a

)
exp

(
− x2

i

2a2

)
. (B.2)

Before we prove this fact, we first introduce the complex
Morlet wavelet transform for a given signal s(t). It is generally
depicted as follows [28]:

s̃(a, τ) =
∫∞

−∞
s(t)
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where (1/
√
a) exp(− jk0((t − τ)/a) − (t − τ)2/2a2) is the

dilated and translated version of the complex Morlet mother
wavelet function exp(− jk0t) exp(−t2/2) and τ, a ∈ R+ are

the translation and dilation factors, respectively. By taking
s(t) = cos(wnt) and setting a = k0/w, (B.3) becomes
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If we set τ = 0,wn = 5/a, and t = xi in (B.4), then we have
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Observe that by substituting (B.2) into (B.1) we get

k̂(w) = (2π)−d/2
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Using the results in (B.4) and (B.5), k̂(w) becomes

k̂(w) = 2−d/2
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2
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Therefore, the TI wavelet kernel constructed using the Morlet
mother wavelet function is a Mercer kernel. This completes
the proof.
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