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Church bell ringing as practised in the UK involves large-amplitude motions of both bell and clapper. A simulation model is
developed and validated against experimental measurements. It is shown that the clapper does not hit the bell with a single impact
but a long series of bounces, and this has important consequences for the decay profile of the bell vibration. Information relevant
to bell-ringers and bell-hangers is collected in a series of design charts derived from the simulation model. These charts can assist
in the diagnosis and correction of faults. Arising from the analysis of the bouncing clapper, a more general result is also presented
relating to the frequency bandwidth when any structure is excited by a small bouncing impactor, for example an impulse hammer
used in vibration testing.

1. Introduction

Church bells come under the general heading of tuned
percussion instruments. A well-tuned bell gives a clear sense
of a definite pitch when it is rung, because a few of the
lower natural frequencies have been carefully adjusted to
fall in harmonically related ratios (e.g., see Fletcher and
Rossing [1]). However, the role of these natural frequencies
in determining the sound of bells is not the topic of this
paper. Instead, some less thoroughly explored dynamical
aspects of the process of ringing church bells are investigated.
The results have some relevance to the sound of bells, but at
least as importantly, they shed light on how easily a ringer
can control a bell, and how a bell-hanger might go about
avoiding, or fixing, a problem. It should be emphasised from
the start that this paper exclusively concerns bells rung “full
circle,” not bells that are “chimed” as in a carillon or a
chiming clock.

Change-ringing on church bells, as practised mainly in
the UK, involves the ringing of complex sequences of notes
on bells that can weigh up to a tonne or more. The sequences
are based on mathematical permutation algorithms called
“methods” with strict rules, (e.g., see Wilson [2]). Bells suit-
able for change-ringing are suspended and rung in a way that
makes them very unusual among percussion instruments.

Each bell is supported on a pivot so that, for each note struck,
it can rotate through a full circle. The motion is controlled
by the ringer’s rope, which passes round a wheel fixed to
the bell. The bell rotates in opposite directions for alternate
strikes, called “handstroke” and “backstroke.” The typical
arrangements at the start of each are illustrated in Figure 1.
The bell starts from an inverted position, the ringer pulls
the rope, and the bell rotates through about 360◦. At some
time during the swing, the clapper strikes the bell. However,
there is not a single, clean impact as one might expect on
a xylophone or kettledrum, or indeed on a carillon bell. As
will be shown by experimental results in the next section,
the clapper bounces and undergoes a decreasing sequence of
multiple impacts. Usually it has come to rest against the side
of the bell by the time the swing is completed. Under normal
circumstances, the ringer pulls the rope again more or less
immediately to start the reverse swing and the next strike.

By making subtle changes in the amplitude of the swing
near the top of the circle, just before or just after the moment
when the swing stops and reverses, the ringer can make the
necessary timing adjustments for controlling the position of
the bell in the ringing sequence. As a result, the sound and
“ringability” of bells depend not only on the linear acoustics
of the modes and natural frequencies of the bells, but also on
the rotational dynamics of the bell and clapper, interacting
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Figure 1: Sketches of a typical bell and wheel arrangement at (a) handstroke and (b) backstroke. Note the role of the pulley in allowing the
ringer to initiate either stroke.

through impact each time the clapper strikes the bell surface.
This is the subject of this paper. Experimental measurements
on a relatively small bell in the laboratory, augmented by
more limited tests on larger bells in a church tower, will be
compared with the predictions of a numerical simulation.

The simulation program can be used for virtual design
investigations into questions of importance to bell-hangers
and ringers. Two quantities of interest are the bell angle at
which the first clapper strike occurs and the velocity with
which the clapper then strikes the bell. These affect the
loudness of the bell and the ease with which the ringer can
achieve accurate timing during change-ringing. Both these
quantities are determined by the first flight of the clapper
after it leaves the surface of the bell; they are not influenced by
the details of clapper bouncing. It has been shown in earlier
work (King et al. [3]) that under reasonable approximations,
this free flight of the bell and clapper is governed by just
two dimensionless parameters, formed from ratios between
three lengths: the equivalent pendulum lengths of the bell
and clapper and the offset between the pivot axes of bell and
clapper. This will be discussed in some detail in Section 3.1.
Plotting the behaviour in the plane of these two parameters
leads to useful design charts.

Other relevant issues are influenced by the bouncing
of the clapper. These include the frequency bandwidth of
the impact, determining how many bell modes are excited,
and the envelope of the vibration following the first strike.
These bring in two additional dimensionless parameters: the
clapper-to-bell mass ratio and the coefficient of restitution
on impact. Measurements of the coefficient of restitution
have been made on a range of bells, giving values that are
consistently very low; less than 10% of the initial energy
is recovered after the first bounce. It will be argued that
this low value is caused primarily by the energy used to
excite vibration of the bell, and an estimate of the excitation

bandwidth will be derived by a simple argument based on
energy conservation.

Two less obvious questions about bell dynamics will also
be investigated. The first is the phenomenon of “ringing
right” versus “ringing wrong.” In both diagrams in Figure 1,
the clapper is shown resting against the side of the bell that
will be the trailing edge during the next swing, so that the
clapper catches up with the bell during the swing in order
to strike, and it ends up resting on the opposite side. This
then becomes the trailing edge for the next stroke. This is
“ringing right.” But sometimes the clapper will start on the
opposite side, the leading edge during the swing, so that the
bell catches up with the clapper rather than vice versa during
the swing. This is “ringing wrong” and is generally regarded
as an undesirable condition since it is harder for the ringer to
control the precise moment of striking. Some bells allow both
types to occur, depending on the initial setup, while others
allow only one or the other. The masses, rotational inertias,
and geometric configuration of the bell and clapper make the
difference, and it is useful to be able to predict the possible
behaviour of a bell from knowledge of these details. A design
chart for this purpose, in the parameter plane described
earlier, was produced in 1965 [3] based on calculations using
a PACE analogue computer of the time. This chart is revisited
using digital simulation. This confirms the accuracy of the
earlier results and adds significant additional detail.

The second issue to be investigated concerns “double
striking” or “double clappering,” when a listener is aware
of two (or more) strike sounds from the bell on each note.
Given that there are always in fact multiple strikes because of
clapper bouncing, the key question is why the effect is usually
not heard. It will be suggested that the answer relates to a
psychoacoustical phenomenon called “echo suppression.” A
simple perceptual test has been carried out to characterise
the conditions under which experienced ringers describe a
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Table 1: Measured parameters for the laboratory bell and the (old)
tenor bell of Great St Mary’s, Cambridge.

Lab GSM tenor

M (kg) 45.8 1378

m (kg) 1.65 24.2

Tb (s) 1.23 2.33

Tc (s) 0.95 1.76

Lb (m) 0.376 1.35

Lc (m) 0.224 0.770

a (m) 0.24 0.705

b (m) 0.25 0.589

Ib (kg m2) 4.1 1311

Ic (kg m2) 0.093 11.0

r (m) 0.10 0.179

φmax (degrees) 26 32

r/Lc 0.45 0.23

Lb/Lc 1.68 1.75

sound as a double strike, and this allows predictions to be
made of the conditions likely to produce this undesirable
phenomenon.

2. Experimental Results

2.1. Laboratory Bell. To see what actually happens when a
bell is rung, a small bell was mounted in the laboratory
on a makeshift “bell tower” so that it could be rung in
the conventional way. Some details of this bell are given in
Table 1. It is a bronze bell of conventional shape, having a
traditional wrought iron clapper with a spherical striking
ball. Sensors were used to give information about dynamic
interactions; accelerometers were attached to both bell and
clapper, and also a simple electrical circuit was designed in
which the bell-clapper contact acted as a switch, allowing
times of contact and noncontact to be detected directly.
Typical results are shown in Figure 2(a). The top trace shows
the signal from the bell accelerometer, the middle shows the
clapper accelerometer, and the lower trace shows the contact
detector; the higher level denotes “out of contact” and the
lower level “in contact.”

At the left-hand side of Figure 2(a), the clapper is out
of contact with the bell. At about t = 0.15 s, the clapper
first makes contact, and both accelerometer traces show
vibration starting at that moment. The contact trace and the
clapper accelerometer then show very clearly a sequence of
later impacts, with decreasing magnitude in the acceleration.
Inspection of the data on a greatly zoomed scale, not
reproduced here, reveals that the duration of the individual
contacts is typically in the range 200–500 μs. By about
t = 0.95 s, the clapper has ceased to bounce and is resting in
contact with the bell. This continues until about t = 1.3 s,
when the clapper lifts out of contact and is in flight ready for
the next impact on the next swing of the bell. The “fuzzy”
appearance of the contact signal near the moment of lift-
off is probably an electrical resistance artefact arising from
surface contamination when the contact pressure is very

light. Figure 2(b) shows corresponding measurements on the
next strike of the bell, in the reverse direction. The pattern is
similar but the details are somewhat different; in particular,
the time intervals between the first three bounces of the
clapper are longer. This will turn out to have a significant
implication for the perception of the sound of this bell, as
will be discussed in Section 4.3.

The bell acceleration in Figures 2(a) and 2(b) does not
show the complicated bouncing activity so clearly. The bell
vibrates after the first impact, modified in detail by the later
impacts. The bell vibration dies down somewhat during the
multiple bouncing, and then just after the time the clapper
has come to rest, the remaining vibration in the bell can be
seen to die away more rapidly. If the same bell is struck with a
single clean impact, as shown in Figure 2(c), the acceleration
trace shows a much longer and cleaner decay. This plot was
obtained by ringing the bell at low amplitude rather than
full-circle.

More detail of the bell vibration is revealed by time-
frequency analysis as shown in Figure 3. These plots were
generated by short FFTs of overlapping segments of the
time data, using a Hanning window on each (see Hodges
et al. [4]). The two plots correspond directly to Figures
2(a) and 2(c). Both show the strongest response at the
same frequencies, representing resonant modes of the bell.
Analysis of the results in Figure 3(b) allows frequencies
and modal Q factors to be extracted; the three strongest
components are 624 Hz (Q = 1300), 981 Hz (Q = 1000),
and 1310 Hz (Q = 2000). The single-struck bell shows
clear and accurate exponential decay for each of the strongly
excited modes, modulated by some evidence of beating. This
arises because nearly all “resonances” of an axisymmetric
structure like the bell consist of pairs of modes varying with
azimuthal angle γ according to sinnγ and cosnγ with some
integer value n. In practice, the two modes are always slightly
separated in frequency because of inevitable departures from
perfect symmetry, leading to beating.

Figure 3(a) contains the same strong frequencies, but
with profiles through time that are more complicated. It also
shows more “clutter” in between the resonant frequencies
than Figure 3(b). This clutter is presumably caused by the
response to multiple impacts from the bouncing clapper,
together with some additional input from forces generated at
the bearings by the bell and clapper rotation. This bell has an
old-style clapper pivot, consisting of a leather strap around
a somewhat worn and rusty iron rod. This generates higher
and less steady friction forces than a modern bearing.

Figure 4 shows the decay profiles from Figures 3(a) and
3(b) at the resonant frequency 624 Hz. The single-struck bell
shows an exponential decay. The circle-rung bell shows an
irregular profile which more or less tracks this exponential
until about t = 0.8 s, the time when clapper bouncing ceases,
after which it shows a very rapid decay. Some comments
can be made about possible mechanisms underlying this
profile. First, there will be some energy loss associated with
each impact; possible mechanisms could include local plastic
deformation and air being squeezed out of the contact zone.
Second, each impact event will serve to redistribute energy
across the frequency spectrum. If energy is transferred from
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Figure 2: Measured results on the laboratory bell, showing in each case the outputs of the bell accelerometer (upper trace), clapper
accelerometer (middle trace), and contact detector (lower trace). Vertical scale is arbitrary, and traces are vertically separated for clarity. For
the contact signal, the lower level denotes “in contact” and the higher level “out of contact.” (a) Typical handstroke; (b) typical backstroke;
(c) result of a single impact during ringing down.

a slowly decaying low frequency mode to higher modes with
faster decay, the overall decay rate will be increased. These
effects will influence the somewhat irregular initial period
of decay. However, neither of these mechanisms can operate
once the clapper has come to rest. The strongest candidate for
the observed dissipation after that time is friction. Bending
vibration in the rather thick-walled bell will produce some
tangential surface motion and thus cause sliding against the
resting clapper. It is hard to see at the scale of the plot in
Figure 2, but the clapper accelerometer shows significantly
raised levels during the period of the rapid decay of the bell,
continuing for some 0.3 s.

It seems likely that the relatively long time during which
the clapper bounces plays an important, and somewhat
counterintuitive, role in the sound of the bell. The sound of
a church bell rung full circle is significantly different from

the sound of the same bell “chimed” with a clean impact,
for example when the bell is used as part of a clock chime.
This sound difference is influenced by factors not relevant
to this study, especially the Doppler effect of the moving
bell, but the behaviour just revealed surely plays a part. If
the clapper “stuck” to the bell surface immediately on first
impact, without the bouncing, the frictional damping effect
would come into play immediately and the sound would be
deadened. However, while the clapper is bouncing, the bell
sound is able to ring on roughly as it would if chimed; it
only switches to the faster decay when the clapper comes to
rest. The frictional sliding effect then damps the sound out
rather abruptly, in time for the next strike to be heard clearly
without much residual vibration from the previous strike.

The suggestion that at the end of each struck note there
is a period of frictional “scrubbing” between the clapper and



Advances in Acoustics and Vibration 5

Frequency (Hz)

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

1.2

0.5 1.5
0

0.2

0.4

0.6

0.8

1

1.2

T
im

e 
(s

)

−0.5

(a)

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2
0

0.2

0.4

0.6

0.8

1

1.2

T
im

e 
 (

s)

Frequency (Hz)

0 1000 2000 3000 4000−0.2

(b)

Figure 3: Time-frequency analysis of the bell accelerometer outputs from (a) Figure 2(a) and (b) Figure 2(c). The original time record is
reproduced at the left of each plot. Amplitude is plotted using logarithmically spaced contours, with a total dynamic range of 40 dB down
from the highest value.

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

Time (s)

A
m

pl
it

u
de

 (
dB

)

−10

−20

−30

Figure 4: Time decay traces from Figure 3(a) (solid line) and
Figure 3(b) (dashed line) for the frequency bin centred on 624 Hz.

the bell may be important for the wear that occurs over
time at the striking points on the bell. Bells are made of
alloys with very low damping, which generally goes with high
hardness (because both are determined by the mobility of
dislocations). After an initial “running in” period of a new
bell, one would not in fact expect plastic deformation to
occur on every strike because work hardening and residual
stresses will have been generated at the points of actual
contact, just enough to keep them under the elastic limit of
the material, a process known as elastic shakedown (see e.g.,
Johnson [5]). Although at first sight it seems reasonable that
the constant hammering of the clapper against the bell would
be responsible for the visible wear patch, in fact, frictional
wear seems a stronger candidate. Note that matters are
quite different for a carillon bell; the frictional effect is then

negligible and impact is presumably the main mechanism for
generating a wear patch, as has been investigated by Fletcher
et al. [6] and Klemenc et al. [7].

2.2. Tests on Other Bells. When the results illustrated in
Figure 2 were first obtained, some scepticism was expressed
about whether the clapper bouncing was normal behaviour
or whether it only happened on atypically small bells like
the one tested. To investigate, tests were carried out on two
of the bells in Great St Mary’s church in Cambridge. From
a ring of 12 bells, the tenor (the largest bell) and the fifth
bell were selected to give a large and a medium-sized bell
to complement the results on the small laboratory bell. It
was not possible to install the full range of instrumentation;
fitting accelerometers safely on these large bells in a way that
allowed full-circle ringing proved impractical. However, the
electrical contact measurements could be made simply and
safely.

This electrical measurement is sufficient to demonstrate
that multiple clapper bouncing occurs during normal ring-
ing with both bells. Example results are shown in Figure 5.
The smaller bell in Figure 5(a) shows bouncing for over
1 s following the initial impact, while the tenor bell in
Figure 5(b) shows almost 2 s of bouncing. The small labo-
ratory bell had about 0.8 s of bouncing on both handstroke
and backstroke, as revealed by Figure 2. It seems that larger
bells exhibit the effect more, not less, than the small bell.
Bouncing obviously needs to be taken into account in any
realistic model of the dynamical behaviour of tower bells.

3. Theoretical Modelling

3.1. Governing Equations. The system to be analysed is
shown in Figure 6. The bell (plus its supporting hardware)
has mass M and moment of inertia Ib about its bearing, and
the centre of mass lies a distance a from its swing axis. The
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Figure 5: Output from the contact detector for (a) the fifth and (b) the tenor bell from the old ring at Great St Mary’s church in Cambridge.
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Figure 6: Diagram of a bell and clapper to define notation. The
profile is based on measurements of the laboratory bell, but the
plot takes a rather coarse form because of the sparseness of these
measurements.

clapper has mass m and moment of inertia Ic about its pivot,
and the centre of mass lies a distance b from its swing axis.
The bell and clapper swing axes are separated by a distance
r, which is shown positive in Figure 6 but is sometimes
made negative by hanging a bell in a different configuration.
Motion is described by two generalised coordinates: the angle
θ between the bell’s axis and the downward vertical and the
angle φ between the clapper and the bell’s axis. Effects from
the mass of the rope and the ringer’s rope force are neglected.
Damping in the pivots is also ignored. Finally, the small-
amplitude vibration of the bell and clapper is ignored in this
modelling of the dynamics of the ringing process, although it
will be seen later that the energy involved in vibration enters

the problem indirectly through the value of the coefficient of
restitution.

The potential energy of the system is

V = Mga[1− cos θ] + mgr[1− cos θ]

+ mgb
[
1− cos

(
θ + φ

)]
,

(1)

where g is the acceleration due to gravity. Noting that the
centre of mass of the clapper has velocity components in
Cartesian axes

vg =
⎡

⎣
rθ̇ cos θ + b

(
θ̇ + φ̇

)
cos
(
θ + φ

)

rθ̇ sin θ + b
(
θ̇ + φ̇

)
sin
(
θ + φ

)

⎤

⎦, (2)

the kinetic energy is

T = 1
2

(
Ib −Ma2)θ̇2 +

1
2
Ma2θ̇2 +

1
2

(
Ic −mb2)

(
θ̇ + φ̇

)2

+
1
2
m
∣
∣
∣vg
∣
∣
∣

2
,

(3)

which simplifies to

T = 1
2
Ibθ̇

2 +
1
2
Ic
(
θ̇2 + φ̇2 + 2θ̇φ̇

)
+

1
2
mr2θ̇2

+ mrb
(
θ̇2 + θ̇φ̇

)
cosφ.

(4)

Applying Lagrange’s equation gives the two equations of
motion

[
Ib + Ic + mr2 + 2mrb cosφ

]
θ̈ +

[
Ic + mrb cosφ

]
φ̈

−mrbφ̇
(

2θ̇ + φ̇
)

sinφ + Mga sin θ + mgr sin θ

+ mgb sin
(
θ + φ

) = Qθ ,

(5)

Ic
(
θ̈ + φ̈

)
+ mrbθ̈ cosφ + mrbθ̇2 sinφ

+ mgb sin
(
θ + φ

) = Qφ,
(6)
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where Qθ , Qφ are the appropriate generalised forces. During
free flight of bell and clapper, these generalised forces are
zero, but during contact between clapper and bell, there is a
contact force that must be expressed through the generalised
forces. This will be discussed in the next subsection.

These equations of free motion can be used in their
full complexity for numerical calculations, but in order to
understand the dominant aspects of the underlying physics,
it is useful to note that they can be simplified if some
reasonable approximations are made. The mass and moment
of inertia of the bell are invariably much greater than those of
the clapper; for the bells studied here, Table 1 shows a mass
ratio of 28 : 1 for the small laboratory bell and 57 : 1 for the
Great St Mary’s tenor. Equation (5) consists of an additive
combination of terms proportional to these various masses
and moments of inertia. If the terms involving m and Ic are
neglected, this equation takes the far simpler form

Ibθ̈ + Mga sin θ ≈ Qθ = 0. (7)

It is now useful to cast (6) and (7) into a nondimensional
form. Define

Lb = Ib
Ma

, Lc = Ic
mb

, (8)

where Lb, Lc are the lengths of the equivalent simple
pendulums with periods of small oscillation matching those
of the bell and clapper separately. These periods Tb,Tc are
given by

Tb = 2π

√
Lb
g

, Tc = 2π

√
Lc
g
. (9)

Now, introduce a nondimensional time-like variable based
on the bell’s period

τ = t

√
g

Lb
. (10)

Combining these substitutions, the equations during free
flight of the bell and clapper become

θ′′ + sin θ ≈ 0,

θ′′ + φ′′ +
Lb
Lc

sin
(
θ + φ

)
+

r

Lc
θ′2 sinφ +

r

Lc
θ′′ cosφ = 0,

(11)

where prime denotes differentiation with respect to τ. This
form makes it clear that the free motion depends only on
two dimensionless parameters: Lb/Lc and r/Lc. Both are easy
to estimate for bells in situ in a tower; r can be measured
directly, and periods of small oscillation can be determined
by timing a few cycles, then (9) can be used to obtain
Lb, Lc. The behaviour in the plane determined by these two
parameters will be discussed in Section 4.

3.2. Contact Force and Coefficient of Restitution. The mod-
elling just described is uncontroversial and represents the
underlying physics of the swinging bell and clapper quite

accurately. However, the modelling of the detailed forces and
deformations occurring near the contact during an impact is
far less simple. Fortunately, it is not necessary to represent
these details accurately in order to obtain a satisfactory
simulation model for the purposes of this paper. As is clear
from the results of Figure 2, the contact time during a single
bounce of the clapper is always very short compared to
the time scales characterising bell and clapper motion. The
contacts last less than 1 ms, and this means that provided the
correct transfer of energy and momentum is modelled, each
impact could be treated as an instantaneous event.

However, for the purposes of numerical simulation, such
an instantaneous event is not convenient. It is far more
reliable to use an approach that gives a finite contact force
and a continuous variation of the dynamical quantities θ̇, φ̇
through the impact. To this end, the contact interaction
between clapper and bell can be modelled as a simple linear
contact spring with a stiffness k defined so that the stored
potential energy in the spring is

1
2
k
(
φ − φmax

)2 for φ > φmax, (12)

where φmax is the maximum value of φ before contact occurs.
There is a corresponding form for negative φ < −φmax.
During the first part of each contact, the clapper compresses
this spring, then it bounces back as the spring extends again.
Within the terms of the model developed in the previous
subsection, the bouncing behaviour is then very simple; the
relative motion of clapper and bell during contact occurs
at the “contact resonance” frequency determined by the
stiffness k together with the mass of the clapper. As first
explained by Rayleigh when talking about the impact of a
piano hammer with a string [8], the time of contact is then
simply a half-period of this contact resonance oscillation.
The reason is that after a half period, the spring force would
become tensile (φ < φmax), so in practice this is the moment
when loss of contact occurs.

To model the observed short contact time, a very large
value of k is required. However, when k becomes sufficiently
big, the actual value ceases to matter from the perspective
of the predicted motion of bell and clapper; the overall
result converges to what would have been obtained with
an instantaneous contact using energy and momentum
considerations. The choice of k for simulation purposes can
thus be based on computational considerations rather on a
need to represent the detailed physics accurately. If the value
is too big, it can cause problems of excessive computation
time because the time step has to be short enough to
resolve the contact resonance oscillation. A convenient value
was determined using convergence experiments; the lowest
stiffness compatible with reproducing the instantaneous
bouncing behaviour was chosen.

The usual virtual work argument for calculating gener-
alised forces can be applied to expression (12), with the result
that

Qθ = 0, Qφ = −k
(
φ − φmax

)
, for φ > φmax. (13)

An interesting consequence of (11) and (13) can be deduced
immediately. The measurements in Figures 2(a) and 2(b),
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function of Lb/Lc for the special case of bells hung with r = 0.
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to be confirmed by simulation results to be shown shortly,
reveal that during normal ringing, whether “right” or
“wrong,” the clapper “sticks to the bell” during the early
part of the downswing. At some stage, it lifts off the bell
surface into free flight. The angle θ at which this occurs
can be called the lift-off angle, and it shows an interesting
pattern of behaviour. This is revealed most clearly for the
case r = 0. For ringing right with θ initially having a positive
value just below 180◦, a sticking clapper will have φ = φmax, a
constant value. In order to satisfy both of (11) including the
nonzero generalised force suggested by (13), the value of this
generalised force needs to be

Qφ = Lb
Lc

sin
(
θ + φmax

)− sin θ. (14)

The moment of lift-off is defined by this generalised force
changing sign from compressive to tensile, and so with a little
rearrangement, the lift-off angle θr must satisfy

tan θr = sinφmax

Lc/Lb − cosφmax
. (15)

The corresponding angle θw for ringing wrong follows from
assuming that φ = −φmax, and so

θw = 180− θr (16)

when the angles are expressed in degrees. The two lift-off
angles are plotted as a function of Lb/Lc in Figure 7.

There is another important issue concerning contact
modeling. As will be confirmed by results to be shown later,
it is important to take some account of the energy lost
during impact. This can be done using a simple approach
due to Stronge [9]; the values (13) are applied during the
compression phase of contact, but during the rebound phase
the stiffness is reduced to Rk, where R is a factor less than

unity. This reduction factor directly represents the fraction of
stored energy in the contact spring which is lost. During the
rebound phase, the generalised forces are given by (13) but
with the stiffness replaced by the reduced value. The factor
R is the energy-based coefficient of restitution introduced by
Stronge to resolve paradoxical predictions of earlier theories
[10].

To use this contact model for numerical simulations, a
suitable value of R is needed, so a simple experiment was
carried out. As in the ringing tests described earlier, the
measurement method was first developed on the laboratory
bell and then applied to additional tower bells. Four bells
were tested: the tenor, fifth and third at Great St Mary’s,
and the tenor at the Church of Our Lady and the English
Martyrs in Cambridge. This set covered the common range
of sizes of tower bells and also included clappers of two types:
traditional ones made of wrought iron and more modern
ones made of SG (spheroidal graphite) cast iron.

The test procedure was simple. An accelerometer was
fitted to the clapper using a clamping device, as in the
ringing tests described earlier. With the bell stationary in the
“up” position, the clapper was lifted a small distance off the
surface of the bell and dropped. The accelerometer signal was
recorded by a PC-based data logger and numerically inte-
grated to give a velocity signal. Each impact between clapper
and bell was visible as a jump in the velocity, and these jumps
were measured for the first few impacts. The jumps could
be determined reliably, but the absolute velocities before and
after impact could not because of difficulties associated with
the instrumental hardware and with numerical integration.
Absolute calibration of the sensor was not necessary, because
the coefficient of restitution can be estimated using only
ratios of the velocity jumps, as will now be shown.

Suppose that in the initial impact the clapper falls with
velocity v0 (defined positive downwards) and rebounds from
the stationary bell with velocity −v1. In the absence of
friction at the clapper pivot, it will arrive back for the second
impact with velocity v1 and rebound with velocity −v2. The
first two measured velocity jumps are then

Δv1 = v0 + v1, Δv2 = v1 + v2. (17)

Later velocity jumps can be similarly labelled
Δv3, Δv4, and so forth. The factor R defined previously
is the ratio of kinetic energies after and before the impact, so
that

R =
(
v1

v0

)2

. (18)

Then,

Δv1 = v0

(
1 +

√
R
)
. (19)

Some assumption must now be made about the propor-
tion of energy lost in the second impact. At first sight, it
seems natural to assume that this is the same fraction as in
the first impact, which would give

Δv2 = v1

(
1 +

√
R
)
= v0

√
R
(

1 +
√
R
)

, (20)
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Figure 8: Ratios of velocity jumps at adjacent pairs of impacts, for
low-amplitude bounces against a stationary bell as described in the
text. The labelling of the horizontal axis indicates the relevant pair
of impacts: 1 and 2, 2 and 3, and so on. Data from five different bells
are combined. Circles show the mean of each group.

so that R could be estimated from

Δv2

Δv1
=
√
R or R =

(
Δv2

Δv1

)2

. (21)

However, the effective coefficient of restitution that is being
used for the bell simulation model is a rather more slippery
quantity than this argument acknowledges; the observed
pattern of velocity jumps on the real bells is quite different.
The results are summarised in Figure 8 for all five bells tested
and for a range of drop heights of the clapper on each bell.
Every individual velocity jump ratio is shown as a star, and
the mean of each set is shown as a circle. The ratio Δv2/Δv1

was always quite small and quite consistent in value, whereas
Δv3/Δv2 and subsequent ratios were much more variable
and generally significantly bigger, in many cases bigger than
unity. It is remarkable how similar the five bells were in this
respect. Bell size and clapper material seem to produce no
clear effect.

There is a simple interpretation of this pattern. It suggests
that a lot of energy is lost on the first impact because it is
converted into vibrational energy of the bell—this is, after all,
the purpose of the clapper striking the bell. At later impacts,
the clapper encounters a bell that is already vibrating with
significant velocity normal to the surface at the striking
point, in a phase that is effectively random because it is
determined by the vibration frequencies, independent of the
time between impacts. The bell surface may be approaching
or receding from the clapper at the moment of impact, and
clapper bounce as observed by the attached accelerometer
will be correspondingly enhanced or reduced.

There is obviously no such thing as a single coefficient
of restitution that applies to all impacts; the first impact
must be treated differently. This suggests an alternative way
to interpret the measured velocity jump ratios to estimate R

for the first impact. To achieve an estimate at the opposite
extreme to (21), it could be assumed that the second impact
(and all subsequent ones) is lossless, so that v2 = v1. Then,

Δv2 = 2v1 = 2v0

√
R, (22)

from which it follows that

Δv2

Δv1
= 2

√
R

1 +
√
R

or R = (Δv2/Δv1)2

[2− (Δv2/Δv1)]2 . (23)

The mean value of Δv2/Δv1 over all tests on all bells was 0.35.
Using (21) then gives an estimate R ≈ 0.12, while using (23)
gives R ≈ 0.045. The true answer is somewhere between the
two, probably closer to the second estimate, but in any case, it
is clear that almost all the energy of the initial clapper motion
is absorbed at the first impact, and a very low value of R
should be used in simulations.

There is a final twist in this story. The value of R just
estimated is only relevant to the first impact. Later impacts
will have less energy loss into vibration, but they could only
be treated accurately if the bell vibrations were explicitly
taken into account so that the true relative velocity of bell and
clapper could be determined at each impact. In the simplified
analysis based on the equations developed in the previous
subsection, vibration is not modelled except through the
value of R, and in practice, the same value will be used for all
impacts. This obviously conflicts with the results of Figure 8,
but fortunately the value of R is so low, in the range 0.05–
0.1, that the use of the same R for later impacts will not
make much difference to the dynamical interactions, since
so little energy is left after the first impact. Simulations for
the purpose of sound synthesis might need to consider this
question more carefully, but for the present purpose the
approximation is thought to be adequate.

3.3. Energy Loss to Vibration at Impact. The measurements
just described suggest a rather low value of R of the order
of 0.1 or less for the first bounce of the clapper against the
bell. This behaviour was tentatively explained in terms of the
vibration of the bell (and perhaps the clapper). The bell is
more or less quiescent before the first impact, so it seems
reasonable that significant energy might be transferred to
vibration. As a slight digression from the main thrust of this
paper, a simple analysis can be used to assess whether this
argument can account for the otherwise unexpectedly low
value of R. The analysis will turn out to have applications
to a wider class of problems than just bell-ringing.

For simplicity, the first impact of the dropped clapper
against the stationary bell can be modelled as follows. Treat
the clapper head as a mass m with initial velocity v0, which
rebounds from the bell with velocity −v1. The contact force
will be a short pulse applied to the bell, with total impulse I
satisfying

I = m(v0 + v1). (24)

If that impulse was a perfect delta function, it would evoke
the standard impulse response of a linear vibrating system,
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giving a velocity at the contact point that can be written in
the form

v(t) = I
∑

n

u2
n(x0) cosωnt, (25)

where un(x0) is the magnitude at the impacted point x0 of the
nth mode shape of the bell, with natural frequency ωn. The
mode shapes are assumed to be mass normalised, so that

∫

u2
n(x)dm = 1, (26)

where
∫ · · ·dm denotes the appropriate mass-weighted inte-

gral over the system, as used in the calculation of the kinetic
energy. Note that this normalisation gives un the dimension
(mass)−1/2. Mode amplitudes with this normalisation are
directly measurable; they are the natural result of carrying
out experimental modal analysis (Ewins [11]). Damping has
been ignored in (25) because the impact duration is so short
that any energy dissipation during the contact time will be
negligible.

The actual force pulse is not a delta function but has
some finite duration. This has the effect of applying a low-
pass filter to the mode sum (25). The details are governed by
the Fourier transform of the pulse shape, but the result can
be visualised approximately as a truncation of the modal sum
to neglect natural frequencies higher than the inverse of the
pulse duration.

The mode shape factor in (25) is related to the effective
mass Mn of that mode at that particular point, defined as the
mass that, if given the velocity of that point, would have the
same total kinetic energy as the vibrating bell. Specifically,

Mn = 1
u2
n(x0)

. (27)

In terms of these effective masses, each mode excited
by the impulse acquires initial velocity I/Mn and kinetic
energy I2/(2Mn). Now, an upper limit on the total energy
“absorbed” into vibration of the bell can be found by
supposing that there is no actual dissipation during the
impact, and thus applying conservation of kinetic energy
through the impact

1
2
mv2

0 =
1
2
mv2

1 +
∑

n

I2

2Mn
. (28)

Substituting I from (24) and defining

λ = v1

v0
(29)

gives the quadratic equation

1 = λ2 + (1 + λ)2
∑

n

m

Mn
(30)

which has a trivial solution λ = −1, leaving the solution of
interest as

λ = 1− K

1 + K
, (31)

where

K =
∑

n

m

Mn
. (32)

If the impulse was a delta function, the infinite sum (32)
would give K → ∞, because the masses Mn are finite for
almost all n; the typical value is of the same order as the
actual total mass of the system. But it is clear from this
analysis that K cannot in fact be significantly greater than
unity if the clapper mass is really to rebound. For a clean
rebound, λ needs to be positive, or at least can only be very
slightly negative. If the clapper is still moving forward after
the impact faster than the mean speed imparted to the bell,
it will meet the bell surface again almost immediately, and
these multiple contacts should probably be combined and
regarded as a single event. The case K = 1 also corresponds
to the maximum energy that can be put into vibration of
the bell, because all the kinetic energy in the initial clapper
motion is transferred to bell vibration. This limit on K
imposes a limit on the truncation of the sum (32), in other
words it sets a minimum length for the pulse duration. The
effective masses Mn can be calculated or measured, for a bell
or any other structure, using standard methods. Within this
simple approximation, the pulse length must be such as to
truncate the series before the mode that would take

∑
1/Mn

above the value 1/m.
More accurately, this argument could be applied with

an assumed pulse shape, such as a half-cycle sine wave as
used by Rayleigh [8]. Following through the same analysis,
incorporating the appropriate low-pass filter derived from
the pulse shape, and evaluating the expression corresponding
to (32) as a function of the width of the pulse would
lead to a minimum possible value for the pulse width of
a clean rebound. Of course, the pulse can always be made
longer than this minimum value, for example, by putting
a soft spring at the contact point as with the felt facing of
piano hammers, but it cannot be made shorter than this
value however carefully the surface hardness and the contact
geometry might be refined, provided a clean bounce is to
occur.

Beyond the application to bell-ringing, this result is
relevant to the issue of choosing an impulse hammer to
measure vibration response of a structure: to excite modes
a long way up the modal series, a hammer must be chosen
that is very light compared to the mass of the structure, since
increasing the hammer mass acts as a low-pass filter. Another
familiar feature is that when pushing to the limit in this
way with a light hammer and a hard tip, the experimenter’s
tapping technique has to be good because the hammer has
very little tendency to bounce off of its own accord; all the
energy has gone into vibration of the tested structure. Indeed,
impacts using miniature hammers with hard tips are very
prone to multiple contacts; perhaps the reason is that they
have K > 1, making multiple contacts almost inevitable. A
cure would be to use a slightly heavier hammer.

It is straightforward to apply the prediction of this simple
argument to the behaviour of the laboratory bell discussed
in Section 2.1. The bouncing-clapper tests suggested an
initial energy reduction ratio R of the order of 0.1 or less.
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That corresponds to a velocity ratio λ of the order of√
0.1 = −0.32, and so from (31), the expected value of K

is approximately 0.5 or (probably) greater. The clapper mass
is about 1/30 the total mass of the bell. The effective modal
mass of a mode driven near an antinode would be expected
to be roughly around 1/3 the actual total mass, giving a ratio
m/Mn of the order of 0.1. So, we might expect not many more
than about 5 modes of the bell to be strongly excited, and
certainly no more than about 10. The time-frequency plot in
Figure 3(a) gives quite good confirmation of this estimate. It
shows three strongly excited modes, plus a few less strong
responses at higher frequencies. Bearing in mind that the
rigid-body swinging motion, with a frequency close to zero
compared to the acoustic modes, must be counted among the
strongly excited modes, an aggregate number of the order of
5 is indeed obtained: surprisingly close agreement given the
crude nature of the approximations used.

4. Simulations

4.1. Preliminary Results. Equations (5), (6), and (13) deter-
mine the motion of the system. They are too complicated to
expect analytical solutions even without impact events, but
they can be solved straightforwardly by standard numerical
procedures. In this study, the Matlab routine ODE45 was
used; this proved satisfactory for all the test cases tried, once
suitable values were established for the tolerance parameters
required by ODE45 to specify the precision of solution. The
coupled equations (5) and (6) first need to be manipulated
to separate θ̈, φ̈. Although the equations are nonlinear, these
two quantities occur only in linear combinations in the
two equations, so at each time step a pair of simultaneous
equations can be solved using the current values of all other
variables. The two second-order equations are then readily
separated into four first-order ones, the form required by
ODE45.

For each run, the bell is initialised in a stationary
position close to the vertical, but far enough from it that
it immediately starts to fall; the angle θ was initialised at
171◦ for all simulations unless stated otherwise. The exact
value of this initial angle turns out not to be critical for
the main conclusions of this study: some remarks on this
will be made in Section 4.4 when the initial angle will be
deliberately varied. The clapper is initially at rest against
one side or the other of the bell; both cases merit study to
investigate whether sustained “ringing right” or sustained
“ringing wrong” is possible. The simulation then runs for a
fixed period of time. Whenever contact between clapper and
bell is detected, the contact spring comes into play via the
generalised force Qφ. Recall that Qθ = 0 always. The chosen
value of contact stiffness k was 1 MN/rad, and the reduced
stiffness Rk was used during the rebound phase to represent
energy loss at impact as explained earlier. The first set of
simulations to be shown use the value R = 0.2; other values
of R are used later on to explore the effect of the coefficient
of restitution.

Some typical results of the simulations are shown in
Figure 9. Figure 9(a) shows the behaviour using parameter

values appropriate to the small laboratory bell, initialised in
the “ringing right” state. This plot then shows the typical
signature of ringing right; θ and φ generally have the same
sign throughout the motion. The plot shows the bell angle θ
varying most of the way around the circle for one handstroke
and the following backstroke, from near-vertical back to
near-vertical in each case. The clapper is limited between
the angles ±26◦ for this particular bell. Rather careful
examination is needed to see the clapper bouncing in the
waveform of clapper relative angle φ(t) in this plot, but
it is much more obvious in the waveform of φ̇(t), shown
as a solid line (with an amplitude scale factor convenient
for fitting it to these axes, the same factor being used for
all four cases in Figure 9). Each bounce shows as a sudden
jump in φ̇, upwards for the handstroke and downwards
for the backstroke. The rapidly decreasing series of impacts
following the first bounce can be seen clearly.

Figure 9(b) shows the same bell ringing wrong. The
waveforms all look similar to Figure 9(a), except that now
θ and φ generally have opposite signs. The remaining cases
shown in Figure 9 relate to bells with different parameter
combinations, the details of which will become clear in
the next subsection when the “clappering chart” will be
presented. Figure 9(c) shows a bell ringing right, with rather
high values of φ̇. All other things being equal, this bell will
ring louder than the bell shown in Figure 9(a) because its
dynamical properties lead to a harder strike of the clapper
against the bell. Figure 9(d) shows a bell, again ringing right,
in which the first strike occurs very late in the bell’s swing; the
clapper only just manages to catch up with the bell and hit it
as the bell is approaching the vertical. This might represent
a bell that would be hard for the ringer to control, because
it might fail to strike during a swing with reduced angle as is
frequently necessary during change ringing. More light will
be shed on this possibility by the charts to be shown in the
next section.

4.2. Clappering Charts. As was explained in Section 3.1, to
a good approximation the free motion of bell and clapper
should be governed by just two dimensionless parameters,
Lb/Lc and r/Lc. This prediction was tested with the simula-
tion program and found to hold up very well over the range
of parameters covering normal bells. This makes it natural to
map behaviour of interest into the plane determined by these
two parameters, using whatever approach is computationally
convenient to achieve parametric variation in that plane.
Note that all simulations were carried out using the full
equations, in terms of time t. The approximate equations
and the non-dimensional time τ are not used. The specific
procedure used to scan the parameter plane was as follows.
The parameter values M, m, a, and Ib were all taken from
the laboratory bell and clapper as listed in Table 1, and were
kept fixed throughout. The period Tb was held fixed at 1.8 s:
as seen in Table 1 this period is intermediate between the
small laboratory bell and the large Great St Mary’s tenor.
The corresponding value of Lb is 0.85 m. To achieve each
particular point in the parameter plane, the length Lc was
first chosen to achieve the desired value of Lb/Lc, then the
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Figure 9: Typical simulation results, with time scales normalised to the period of a single swing from near-vertical to near-vertical. Each
diagram shows bell angle θ(t) (dashed line), clapper relative angle φ(t) (dash-dot line), and clapper angular velocity φ̇(t) (solid red line).
The vertical scale applies to the two angles; the angular velocity trace is scaled by a convenient factor to fit to the scales (the same factor in
each case). Cases are indexed by the pair of values of r/Lc and Lb/Lc as follows: (a) laboratory bell (0.446,1.68), ringing right; (b) same bell
as (a), ringing wrong; (c) bell at (0.458, 0.732), ringing right; (d) bell at (−0.005, 1.363), ringing right.

offset distance r was chosen to match the value of r/Lc. The
parameter Ic was held fixed at the value 0.20 kg m2 and the
required value of b computed from (8).

In real applications to bell-hanging, the bell period
could be changed by, for example, changing the headstock
of the bell to “tuck it up”. The clapper period could
be changed by counterbalancing or otherwise changing
the mass distribution. Because the two non-dimensional
parameters can be changed by practical interventions of this
kind, it is convenient to call the resulting plots “clappering
charts.” For the purposes of simulation, the limiting value
φmax = 26◦ has been used, measured from the laboratory
bell. This angle varies slightly among different bells, but
the behaviour is not found to be very sensitive to the exact
value, so it is felt that the charts computed here will give
a reasonable representation of the behaviour of all normal
church bells.

Ranges of the two dimensionless parameters were chosen
to match those used in the earlier study [3], and a 20 × 20
grid was used to cover this rectangular region of the plane.
For each point in this grid, the simulation program was run
with initial conditions corresponding to ringing right and
ringing wrong. The resulting computed motion was analysed
to detect whether the bell was able to continue ringing right,
wrong, neither, or both. Impacts were also detected, allowing
a number of useful quantities to be computed; relevant to the
following discussion are the bell angle θ at first impact, the
clapper relative angular velocity φ̇ just before each impact,
and the time delay between the first and second impacts.

Figure 10 shows the value of θ at first impact for all
configurations capable of ringing right (Figure 10(a)) and all
capable of ringing wrong (Figure 10(b)); since θ was initially
positive, first impact normally occurs at a negative angle.
Values of zero, and the darkest blue shade, correspond to
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Figure 10: Regions in the “clappering plane” for which a bell can ring (a) right and (b) wrong. Colour shading indicates the bell angle θ, in
degrees, at which the first contact occurs between clapper and bell. The bell motion was initialised at angle θ = 171◦. White symbols indicate
the positions of the bells from Figure 9, three cases ringing right and one ringing wrong (see text).
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Figure 11: Regions in the “clappering plane” for which a bell can ring (a) right and (b) wrong. Colour shading indicates the clapper relative
angular velocity φ̇ at the moment of first contact between clapper and bell. The bell motion was initialised at angle θ = 171◦. White symbols
indicate the positions of the bells from Figure 9.

points where the relevant regular ringing was not possible.
The boundaries of the “right” and “wrong” regions revealed
by this plot have been compared to the graph resulting
from the earlier study [3] and found to agree remarkably
accurately. This is a tribute to the earlier study, using such
a different approach and relatively primitive equipment, and
it is also a valuable check on the accuracy of the current
simulation model.

Figure 11 shows, in the same format as Figure 10, the
value of φ̇ at first impact, which must inevitably be negative
for ringing right and positive for ringing wrong. The
magnitude of φ̇ translates roughly into loudness of the
strike (for a given bell). It is important to note that the
numerical value of φ̇ is not the same for different bells
occupying the same position on the clappering chart, because
the justification for the chart axes was based on the non-
dimensional time variable introduced in (10). However, the

time-scale implicit in φ̇ does not in fact vary over this version
of the diagram since it was computed with a fixed bell period
Tb = 1.8 s, so it should give results representative of typical
church bells. Note from Figure 11 that when a given bell is
capable of being rung both right and wrong, there is usually
a different value of φ̇ at first impact for the two cases. This
means that a switch from ringing right to ringing wrong
will usually change the loudness of that bell, sometimes
drastically, and the ringer has no way to compensate for this.

Figure 11 shows what happens on one set of boundaries
in the charts: the upper limit on ringing right and the lower
limit on ringing wrong. On both these boundaries, the value
of φ̇ at first impact goes to zero. This means that the clapper
does not strike the bell and bounce off but makes a “soft
landing” on the bell that is in fact the mirror image of the lift-
off at the start of clapper flight. There is no transfer of energy,
and no strike will be audible. The strike gets progressively
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Figure 12: Regions in the “clappering plane” for which a bell can ring (a) right and (b) wrong. Colour shading indicates the lift-off angle
θ (in degrees) at which the clapper first leaves the surface of the bell on each stroke. White symbols indicate the positions of the bells from
Figure 9.

stronger, in either case, as the position in the chart moves
further from this boundary into the region where the chosen
ringing pattern (right or wrong) can be sustained. Study of
the detailed simulation results reveals what happens to the
bell and clapper on the other side of these boundaries. The
value of φ̇ at first impact increases again, but now after the
first impact, the clapper crosses the bell and impacts on the
other side during the same swing of the bell. Thereafter, the
ringing pattern switches; for example, in Figure 11(a) at a
point just above the boundary, a bell that was initially ringing
right switches to ringing wrong.

The vertical axis in the clappering charts shows Lb/Lc
and hence determines the period of the bell swing relative
to the clapper swing. For ringing right, one might have
thought that the clapper needs a shorter period than the
bell so that it can catch up, while the converse would be the
case for ringing wrong. The plots show the opposite pattern.
The reason relates to the fact, noted earlier, that the clapper
“sticks to the bell” initially during the down-swing. It does
not start its flight until it reaches the lift-off angle, plotted in
Figure 7 for the particular case of r = 0. Towards the bottom
of the charts, a bell ringing right shows late lift-off, while
the same bell ringing wrong shows very early lift-off. The
pattern is reversed at the top of the charts. What is seen in
the simulations is the behaviour described earlier: except in
pathological cases, if the clapper lifts off very early during the
first down-swing, it will strike the opposite side sufficiently
early to take up the behaviour it would have had if it had
started on that side. It will cross over and strike a second time.
If the bell had been set off in a configuration for ringing right,
it switches to ringing wrong, and vice versa.

So, early lift-off is a sign of a style of ringing (right or
wrong) that is not stable and spontaneously reverses. The
pattern of lift-off angles shown in Figure 7 is then consistent
with the fact that ringing right tends to occur in the lower
part of the clappering chart and ringing wrong in the upper

part. The simulation results for the full pattern of lift-
off angles for bells ringing right and wrong are shown in
Figure 12. The columns in these plots corresponding to r = 0
confirm the values shown in Figure 7.

The physical condition determining the other main
boundaries in the clappering charts, the curving lines on the
left-hand side, is revealed by Figure 10. On this boundary,
the angle θ at first impact tends towards the value at the
top of the bell’s swing, close to −180◦, so that the clapper
only just makes contact as the bell reaches the top of its
swing. An example close to this boundary was shown in
Figure 9(d), indicated by a diamond symbol in Figure 10(a).
The laboratory bell is indicated in Figures 10(a) and 10(b)
by a star; the model agrees with practical experience that
this bell is able to ring either right or wrong. Finally, the
square symbol in Figure 10(a) shows the position of the bell
illustrated in Figure 9(c); this has roughly the same value of θ
at first impact as the laboratory bell, but Figure 11(a) shows
that it has much higher impact velocity.

4.3. Double Striking. The aspects of behaviour discussed so
far do not depend on what happens after the first impact,
so the value of R used in the simulations makes virtually
no difference to the plots. The next aspect to be discussed,
however, does depend on the bouncing of the clapper. This is
the question of double striking or double clappering. Some
bells produce a clear audible impression of a double strike on
each stroke. The first question to ask is why this is not the
case for all bells, since the results of Figures 2 and 5 show
that there are always multiple impacts between the clapper
and the bell during normal ringing.

The answer to this probably lies in a psychoacoustical
phenomenon known in different manifestations by various
names, including “echo suppression” and “forward masking”
(see e.g., Moore [12]). The human hearing system has
evolved to cope with sounds in the presence of echoes from
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Figure 13: Results of listening test for double striking as described
in the text. Average score across all participants is shown with
equally spaced contours between +1 (darkest blue) and −1 (darkest
red). The heavy black line shows the zero contour and the lower
white line the hyperbolic fit to this contour. This corresponds to a
value D = 1 in (33) and represents the threshold of perception. The
upper white line corresponds to the value D = 10, and in the region
above this line, almost all subjects hear a double strike.

environmental features like trees or walls. It was presumably
important for our distant ancestors to be able to distinguish
and locate the actual source of a sound, without being too
confused by echoes from other directions. The result is that
if we hear a sound followed quickly by a recognisable copy
of the same sound, especially if it comes from a different
direction, our brains identify the second sound as probably
being an echo. We are then, ordinarily, not consciously aware
of the echo as a separate event, although it contributes to our
sense of the acoustical environment we are in.

The sound of a church bell excited by multiple clapper
strikes may tap into this mechanism, so that the later impacts
are perceptually discounted to a greater or lesser extent. In
the case of the bell, there is no directional difference between
the sounds, so the echo suppression effect is less strong than
in the case of, for example, wall reflections in an enclosed
space. Nevertheless, it seems to be empirically the case that
most bells are not perceived as producing multiple strikes.
To establish a criterion for the perception of double striking
so that it can be explored in a clappering chart requires
experimental input.

A simple listening test was conducted in which 19
experienced ringers were played 100 computer-synthesised
sounds and, for each one, were asked to say whether they
would describe it as a single strike or a double strike. Each
sound represented a bell being struck twice; the first strike
was the same in each of the 100 tests, while the second was
quieter (or at least no louder) because of being scaled down
by an amplitude ratio that was varied between the different
sounds. The synthesised strike sound was based on the strong
frequencies of the laboratory bell. The time delay between the
two strikes was also varied between the different sounds. On

the basis of preliminary tests, suitable ranges were chosen for
both parameters: ten values of amplitude ratio from 0.1 to 1
and ten values of time delay from 10 ms to 100 ms. A 10× 10
grid of equally spaced values covering these two ranges was
used. Each listener was presented with these 100 sounds, in
a random order that was different for each test. Sounds were
presented via Sennheiser HD580 headphones.

Responses were collected using a Matlab program and
processed by a very simple procedure. Each response was
allocated the value −1 for “double strike” and +1 for “single
strike.” The matrix of responses over the test grid was
averaged across all subjects, after excluding two outliers. It
turned out that the two youngest subjects (both teenagers)
produced a very different pattern of responses from the
rest. This may point towards an interesting psychoacoustical
phenomenon possibly worthy of further study, but for the
present purpose, it was judged to be a distraction from the
main task. The resulting averaged score in the delay-scale
plane is shown as a contour map in Figure 13; contours are
equally spaced between +1 (darkest blue) and −1 (darkest
red). The zero contour, representing an estimate of the mean
threshold of perception for double striking, is marked by the
heavy black line: any sound represented by a point below
and to the left of this line was perceived by the majority of
listeners as a single strike, whereas one above and to the right
of the line was perceived by the majority as a double strike.

Based on the results of Figure 13, a rough and ready index
of “double strike propensity” can be defined by

D = (A− 0.2)(Δt12 − 22)
2.25

, (33)

where A is the amplitude ratio of the second strike to the
first, and Δt12 is the time delay in milliseconds between
the first and second strikes. This gives contours of equal
D that are hyperbolae with asymptotes at 22 ms delay and
0.2 amplitude ratio, having values greater than unity in the
region of perceived double striking in Figure 13. The D = 1
line is shown in Figure 13 as the lower white curve, matching
the threshold line quite well. A second white curve shows the
line D = 10, which very roughly tracks the boundary beyond
which everyone agreed that all sounds were double strikes.

This quantity D is easily computed for each simulation
case. Results can be plotted as a clappering chart, but a
few words of explanation are first needed. Both A and Δt12

depend on the simulation results beyond the first impact,
but the justification for the clappering charts was based on
the equations for free flight before any impact. Certainly,
the motion after the first impact is not determined purely
by the two non-dimensional parameters used in the charts;
two further parameters enter, the limit angle φmax and the
coefficient of restitution R. However, for fixed values of
these two new parameters, it can be argued that, to a good
approximation, the motion is then fully defined by position
in the clappering chart. The free-flight equations give the
time and relative angular velocity of the first impact. The
rebound angular velocity is determined by the value of
R, then the clapper is in free flight again, so the original
equations determine the time until the second impact and
the angular velocity with which that occurs. That gives
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Figure 14: “Double striking propensity” D plotted in the “clappering plane,” for (a) ringing right and (b) ringing wrong, calculated using
R = 0.2. Colour scale is truncated at 60 for comparison with later plots. The bell motion was initialised at angle θ = 171◦. White symbols
indicate the positions of the bells from Figure 9.
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Figure 15: “Double striking propensity” D plotted in the “clappering plane” for bells ringing right, calculated using (a) R = 0.1 and (b)
R = 0.05. Colour scale matches Figure 14. The bell motion was initialised at angle θ = 171◦. White symbols indicate the positions of the
bells from Figure 9.

enough information to evaluate D, and it can be concluded
that for given values of φmax and R, the variation of D
between different bell configurations should be captured in
a clappering chart.

An example is shown in Figure 14, computed using the
rather high value R = 0.2, and it shows that virtually all
ringable bells would give a clearly audible double strike. The
scale has been truncated at D = 60 for clarity in later plots;
actual values ranged much higher. Recalling that D = 10
roughly marks the level at which all listeners agreed that a
sound was a double strike. Fortunately, the measurements
from Section 3.2 indicate that in reality the value of R is likely
to be much lower than 0.2. Figure 15 shows clappering charts
for bells “ringing right” for the casesR = 0.1 andR = 0.05. As
R reduces, the double-strike propensity drops, and with the
value 0.05 (which is close to the lowest estimate based on the

measurements), only a small region of the chart shows D > 1.
The corresponding plots for ringing wrong, not reproduced
here, show a similar pattern, contracting towards the region
showing the highest values in Figure 14(b). Interestingly, the
laboratory bell falls near this residual region of both charts,
so it is not surprising that this bell did indeed tend to
produce an audible double strike. As was seen in Figure 2,
the laboratory bell also tended to show a longer time interval
between initial bounces on one stroke compared to the other;
this can probably be attributed to asymmetric behaviour of
friction at the clapper pivot, and it produced the effect that
the double strike was much more evident on one stroke than
the other, as would be predicted from the results here.

4.4. Ringing Up and Ringing Down. All the charts shown
so far apply to normal ringing, when the bell turns almost
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Figure 16: Regions in the “clappering plane” for which a bell can ring (a) right and (b) wrong, for the case in which the bell motion was
initialised at angle θ = 90◦ so that the bell swings through a half circle from horizontal to horizontal. Colour shading indicates the bell angle
θ in degrees at which the first contact occurs between clapper and bell, with a scale matching Figure 10. White symbols indicate the positions
of the bells from Figure 9.

a full circle on each stroke. However, for safety, bells are
often left in the “down” position when ringing is not taking
place, and therefore bells go through a process of being “rung
up” and “rung down” at the start and finish of a session.
At intermediate stages in this process, the amplitude of bell
swing is less than the full circle. To illustrate what happens,
clappering charts for the halfway stage, when the bell swings
through a half circle starting and finishing horizontal, are
shown in Figure 16. These charts, colour shaded to show
the angle at first strike, are to be compared with those of
Figure 10. Naturally, the colour scale shows that the strike
point of the bell never goes beyond 90◦.

The regions of the plane in which ringing right and
ringing wrong are possible have changed significantly in
Figure 16 compared to Figure 10. The upper boundary of
the “right” region has moved down, while the “wrong”
region has extended into some parts of the plane previously
inaccessible. Additional simulations, not shown, using inter-
mediate starting angles reveal that the upper boundary of the
“ringing right” region does not begin to move downwards
significantly until the initial angle reduces to approximately
130◦. The adjustments made in the course of normal change-
ringing are over a rather small range of angles centred
around a value much higher than 130◦. This suggests that
the problems associated with inadvertently crossing this
boundary are not something that change-ringers need to
worry about.

This chart shows that it is perfectly possible to hang a bell
in such a way that it can be rung right once it is fully rung
up, but which is not capable of ringing right at the halfway
point shown in this plot. Indeed, the laboratory bell falls
into this category. This means that it can be tricky to ring
this bell up so that the clapper is on the right side. It also
means that if the bell is ringing right and it is then allowed
to ring down, at some stage the clapper will do something
unexpected and switch over to the other side of the bell so

that it rings wrong for the final stages of the ringing down.
The laboratory bell did indeed behave in this way. The data
in Table 1 shows that the old tenor bell of Great St Mary’s was
similarly situated, near the upper limit for ringing right, and
this bell was known to be somewhat challenging to ring up
right.

5. Conclusions

In this paper, experimental and theoretical analyses have
been combined to reveal some of the complicated dynamics
involved in the ringing of church bells in the “English
manner.” Some unexpected details were revealed by both
kinds of analysis. The experimental results show that all
church bells, when rung full-circle, produce multiple impacts
between the clapper and the bell on every stroke. The clapper
may continue to bounce for a second or more, and during
that time, the bell continues to vibrate with a decay rate more
or less the same as would have occurred following a single,
clean impact. However, once the clapper comes to rest against
the side of the bell, the vibration is damped out very quickly.
The most likely explanation of this is frictional dissipation
of energy; the vibration of the bell involves some tangential
motion of the surface, and this causes rubbing against the
clapper. That rubbing, at the end of every stroke of the bell,
is probably also the main cause of the wear scar that always
builds up at the two striking points on the bell’s surface.

The first stage of theoretical modelling was to establish
the governing equations for the bell and clapper. It was
shown that under reasonable approximations, these equa-
tions, when applied to the phase of motion involving free
flight of the bell and clapper, depend on the properties of bell
and clapper only via two dimensionless parameters. These
parameters are constructed from three lengths: the offset
distance r of the pivot axis of the clapper below that of the bell
(which could possibly be negative), and the lengths Lb and
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Lc of the “equivalent simple pendulums” that would swing
with the same period as the bell and clapper, respectively.
These lengths can be easily deduced from measurements of
the small-amplitude swing periods of the bell and clapper, via
(9). The two governing parameters are then the ratios Lb/Lc
and r/Lc. Computer simulation has been used to produce
design charts in the plane of these two parameters, called here
“clappering charts.” These charts show whether a given bell
can ring “right,” “wrong,” or both. They also show the angle
of the bell at which the first strike occurs and the relative
velocity of the clapper at that moment, which influences the
loudness of the bell.

The charts also give an indication of whether a particular
bell is likely to produce the audible effect of a double
strike. It has already been noted that, in reality, bells always
produce multiple strikes. But whether we perceive the sound
as a double strike is a different question, determined by
psychoacoustical considerations. A simple listening test was
carried out with experienced ringers. This led to a parametric
description of when a double strike should be heard, and
this in turn enabled the computation of a relevant clappering
chart.

In order to compute this last chart, two additional
dimensionless parameters come into play: the limiting
clapper angle φmax and, more important, the coefficient of
restitution R. Measurements on a range of bells show that the
effective coefficient of restitution for the first impact of the
clapper against the bell always has a very small value; as little
as 5% of the kinetic energy of the clapper motion is recovered
in the rebound. Subsequent bounces, however, show much
less energy loss. It is suggested that the initial energy loss is
associated with setting the bell into vibration, whereas for
later bounces, the clapper encounters a bell that is already
vibrating.

A simple energy-based argument relating to the excita-
tion of vibration by a rebounding mass shows that there
is, at least approximately, a connection between the mass
ratio of bell to clapper and the number of overtones of bell
vibration that are strongly excited. A heavier clapper can only
excite rather few bell modes, while a lighter one can excite
more. This argument has implications beyond the particular
application to bell ringing, for example to the bandwidth that
can be excited when using an impulse hammer to measure
the vibration response of a structure.

In summary, it is suggested that the pair of dimensionless
parameters could usefully be measured for any ring of bells,
especially where there is perceived to be a problem with the
sound or handling. Plotting the location of the bells in the
clappering charts should reveal general aspects of behaviour,
such as loudness, propensity to ring right/wrong, and the
likelihood of double striking being heard. Where there is a
problem in any of these areas, the charts show immediately
what kind of change is necessary to ameliorate it. The plot
would also reveal if the bells are neatly clustered so as to
have similar handling properties, or whether perhaps one
bell stands apart from the others, in which case one might
expect it to present some kind of problem for the ringer. As
an aside, there may be other issues arising from the fact that
bells for change-ringing are, inevitably, in sets. Choices have

to be made by bell-founders and bell-hangers about weights
and hanging details; it might be interesting to investigate
what factors are important beyond the values of the two
dimensionless parameters, and whether there is a rational
basis for traditional practices.

Fortuitously, the small bell studied in the laboratory
exhibits several of the possible bell-hanging problems. It is
in the region of the charts where it is possible to ring both
right and wrong but sufficiently near the upper limit of the
“right” region that during the process of ringing up or down,
it ceases to be possible for the bell to be rung right. Being near
this upper limit automatically makes it a rather quiet bell,
because that limit is determined by the condition that the
clapper only just manages to hit the bell. To cap it all, this bell
is placed in the particular region of the diagram that shows
the worst propensity for double striking. All these predictions
were borne out in practice; this bell could serve as a model of
bad practice in bell-hanging!

Finally, it may be useful to mention a few issues
concerning bells and their accessories that might be of
significance but that have not been included in the modelling
presented here. No account has been taken of anything to do
with mechanical friction in the bearings, or with the rope and
the forces applied by the ringer. There may, for example, be
significant issues concerned with the weight and mechanical
properties of the rope, details arising from the interaction
between rope and pulley, and the detailed design of the wheel
and headstock to go with a bell of a given size that might form
the subject of future work.
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