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Accurate segmentation of carotid artery plaque in MR images is not only a key part but also an essential step for in vivo plaque
analysis. Due to the indistinct MR images, it is very difficult to implement the automatic segmentation. Two kinds of classification
models, that is, Bayes clustering and SSVM, are introduced in this paper to segment the internal lumen wall of carotid artery. The
comparative experimental results show the segmentation performance of SSVM is better than Bayes.

1. Introduction

Cardiovascular diseases (CVDs) are the leading cause of
death globally according to the recent statistics of the World
Health Organization. Atherosclerosis, a kind of systematic
inflammatory disease, is estimated to be responsible for
CVDs to a great extent. Therefore, there are considerable
interests in characterizing atherosclerotic plaques for proper
treatment planning. Research in the past 20 years indicates
that plaque vulnerability is very relative to its structure, such
as the lumen condition, atherosclerotic components within
the plaque [1–5].

As the fundamental step, artery wall should be segmented
accurately. Meanwhile, explicit detection of wall is very im-
portant to locate each component inside the plaque correctly,
which is also very significant for the subsequent procedures
such as component analysis.

Automated analysis of plaque composition in the carotid
arteries has been presented by many researchers. Different
imaging techniques always bring out distinct characteristic
of image, which will restrict different applicable approach to
approach of segmentation. Among current standard imaging
techniques in clinical, in vivo multicontrast MRI technique
has been generally validated to be used to quantify the com-
position of plaque effectively [6]. Most segmentation meth-
ods based on this kind of imaging technique are generally

based on manual extraction of numerous contours. Auto-
matic segmentation not only makes the combination of
different multicontrast-weighted MR Image possible, but
also can further make full use of the advantages of different
image to improve the accurate rate of classification of com-
ponent within lumen. Other impressive experiments are also
carried out by taking use of model-based clustering and fuzzy
clustering [7], maximum-likelihood classifier and nearest-
mean classifier [8], morphology-enhanced probability maps
[9], and k-means clustering [10]. Most of these methods
are based on voxel-wise statistical classification, and the
manual analysis cannot be completely replaced by them.
An automatic method which was used to segment the
carotid artery plaques in CT angiography (CTA) [11] has
potential to replace the manual analysis. Firstly, the vessel
lumen was segmented. Subsequently, classifier was trained
to classify each pixel. However, this algorithm is needed to
be improved to deal with the multicontrast-weighted MR
Image. Furthermore, in order to provide a more accurate
and objective ground truth, a simultaneous segmentation
and registration model [12] is necessary in registration. This
method is an active contour model based on simultaneous
segmentation and registration which is belong to mutual-
information-based registration [13]. Therefore, researches
concerning segmentation of plaques are essential.
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Figure 1: Flow of operations.

The paper is organized as follows. Significance of study-
ing carotid artery plaque and current research contributions
are briefly presented in Section 1. Section 2 is mainly focus
on describing major and special preprocessing such as ill-
illumination uniforming and image registration. Two kinds
of model used to segment the wall boundary are descried in
detailed in Section 3. Section 4 focuses on two algorithms to
segment the lumen, and a conclusion and further work are
presented in Section 5.

2. Testing Image Set

The complete process of plaque analysis system is organized
as below, which is composed of four modules. Firstly,
carotid artery region should be separated from the original
MRI image and then move on to the preprocessing parts
including noise removal and illumination uniform. After
that, the lumen and the outer wall in the images are obtained
in turn. The latter operations are related with extracting
and modeling essential plaque components, and mechanical
analysis based on FSI (fluid-structure interaction) theory will
be also introduced to estimate the risk extent of a plaque. The
steps in Figure 1 will be discussed in detail in this paper.

2.1. Acquisition of Testing Image Set. Images used in our
research are acquired by a MRI scanner named GE SIGNA.
Taking Figure 2(a) for instance, it can be found that carotid
arteries marked by two rectangles are closely surrounded
by other tissues as muscles, fat, bones, and other vessels
in the 512 mm × 512 mm MRI image. In order to handle
carotid artery alone as shown in Figure 2(b), small ROI of
each artery region should be firstly segmented from the
original scanning image by picking out the artery centroid
which size is 81 mm × 81 mm. The reduction of interested
region effectively avoids disturbing from other tissues and
also improves the computing speed.

The detail of MRI acquisition has already been published
in [14]. Briefly speaking, patients undergo high resolution
MRI of their carotid arteries in a 1.5 Tesla MRI system
(named as Signa HDx GE Healthcare, Waukesha, WI, USA)
with a 4-channel phased-array neck coil (named as PACC,
Machnet BV, Elde, The Netherlands). Artifact resulted from
movement is minimized by using a dedicated vacuum-
based head restraint system (VAC-LOK Cushion, Oncology
Systems Limited, UK). It is used to fix the head and neck
of patient in a comfortable position to avoid occurrence of
artefact. After an initial coronal localizer sequence is sampled
and tested, 2-dimensional (2D) axial time-of-fight (TOF)
MR angiography is performed to identify the location of
the carotid bifurcation and the region of maximum stenosis.

Axial images are acquired through the common carotid
artery 12 mm (4 slices) below the carotid bifurcation to a
point 12 mm (4 slices) distal to the extent of the stenosis
identified on the TOF sequence. This kind of method ensures
that the whole region of carotid plaque is completely imaged.

To describe the characteristic of different MRI sequence,
the following parameters are used: T1 weighted (repetition
time/echo time: 1 × RR/7.8 ms) with fat saturation, T2
weighted (repetition time/echo time: 2 × RR/100 ms) with
fat saturation, proton density weighted (repetition time/echo
time: 2 × RR/7.8 ms) with fat saturation, and short-time
inversion recovery (repetition time/echo time/inversion
time: 2 × RR/46/150 ms). The window of view of each MR
image is 10 cm × 10 cm, and size of data matrix is 512 × 512.
The spatial resolution achieved of each pixel is 0.39 mm ×
0.39 mm.

In Figure 2(a), two small ROIs marked by red rectangles
are carotid arteries each size of RIO is 81 mm × 81 mm.
Figure 2(b) is the amplified images of these two areas.

2.2. Preprocessing. Due to the inhomogeneity of coil, the
intensity of each image should be adjusted to be relative
uniform to obtain relative consistent gray scale for the sub-
sequent segmentation based on clustering. The region
(14 mm × 14 mm), which lies in the center of the vessel, is
selected as the interesting region. The contrast of the image is
increased by a linear transformation,

u1 = u0 −m

M −m
× 255, (1)

where u0 is the initial intensity, u1 is adjusted intensity,
and M and m are the maximum intensity and minimum
intensity of the original image. The adjusted results of
intensity uniform are shown in Figure 3.

2.3. Image Registration. According to the characteristics of
MR image, the contour of lumen is clearly presented in
the sequence of T1 which is blood suppressed for short. In
Figure 4, mark two feature points in images (a) and (b) as
red points. Normally, the luminal bifurcation and narrowest
location are selected as marking points for registration.

Generally speaking, the image is indistinct as shown in
Figure 4. Therefore it is very difficult to mark feature points
in some images. In order to deal with this problem, the
registration method proposed in this paper is based on prior-
constrained segmentation of carotid artery under DOG scale
space. As seen from the name, the segmentation algorithm
implies two parts. First, inspired by SIFT algorithm, the
advantage of difference of Gaussian (DOG) scale space is
introduced to catch the edges that seem ambiguous in the
original image scale, which is the scale derivative of Gaussian
scale space along the scale coordinate. Second, given a simple
prior knowledge that the artery wall is near round, a given
thickness of carotid artery wall is set to restrict the searching
area. Prior shape is critical information for external wall
segmentation. The steps to get the wall boundary are shown
in Figure 5.

Then through minimizing the energy function using
a gradient flow, we can achieve the goal of simultaneous
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Figure 2: ROI extraction: (a) original MRI image, (b) extracted images.

(a) (b)

Figure 3: Preprocessing of selected slices of MR images: (a) a set of original images, (b) resultant images after contrast normalization.

segmentation and registration [12]. On the one hard, this
new method can reduce the influence of noise on the original
images and lead to improved registration, on the other hand
it also can improve the precision segmentation, especially for
segmentation the blurred images.

Given two images I1 and I2; C1 is the object contour of I1,
and C2 is the object contour of I2. Establish mapping C2 =
g(C1). The steps of simultaneous segmentation and registra-
tion method are listed as follows.

Step 1. Initialize C1, g, and C2.

Step 2. Optimize the registration parameters to obtain the
optimal mapping function g.

Step 3. Evolute C1 to obtain the optimum partition line of
the current image I1, and obtain the optimal split line of the
current image I by C2 = g(C1).

Step 4. Reach the maximum number of iterative steps, or
before and after the two results of the iteration are less
than the threshold value then the algorithm stops, ended;
otherwise turn to Step 2.

3. Modelling

To compare the results of different algorithm of modeling,
two kinds of model which are based on Bayes classification

algorithm and SSVM (structural support vector machines)
are carried out in this paper.

3.1. Building of Training Set. From MRI slices with matching
histological slices, slices 12 and 25 are selected to generate
the training set for segmentation. Images of those two slices
are manually segmented based on registered histological
results and relative intensity. A total of 549 pixels (each
pixel contains 4 densities representation with total 4 different
contrast weight) are selected randomly in the investigation.
From these segmentation results, each pixel is determined to
belong to one of the 4 issue types including lipid (denoted
as Z1), normal issue (denoted as Z2), calcification (denoted
as Z3), and others (including lumen or outer issue, denoted
as Z4). The training set is used to generate the probability
function which is used to determine the probability of tissue
type of each pixel in the model based on Bayes classification.

3.2. Model Based on Bayes Classification. The most impor-
tant part of the segmentation algorithms is to determine the
probabilities of each pixel. These probabilities represent the
likelihood that the tissue of the pixel at the current location
is lipid, calcification, normal issue, or others.

Maximum classifier is used to determine which issue type
the pixel belongs to. Figure 6 gives the flow-chart of our max-

imum decision probability functional classifier. Where �I is
one pixel of multicontrast weighted MR images transformed
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Figure 4: Handle marking points for registration: (a) MR images, (b) manual outline, (c) result of registration.
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Figure 5: Flowchart of multiscale PCA.
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Figure 6: Flowchart of maximum decision probability functional
classifier.

by preprocessing, gi(�I) is the decision function, and P(Zi | �I)
is class-conditional probability density function (pdf). By

comparing values of four functions, if gi(�I) is the maximum

probability value of one pixel, then pixel �I belongs to Zi and
is labeled i.

3.3. Model Based on SSVM. Recently, structured prediction
has already attracted much attention, and many approaches
have also been developed based on it. Structured learning is
one of the main approaches of structured prediction, which
not only studies the problems with well-structured inputs
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Training
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Training set

Results

Intensity value

Figure 7: Flowchart of SSVM to obtain gray information.
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Figure 8: Flowchart of the iterative training of SSVM.

and outputs but also reveals strong internal correlations. It is
formulated as the learning of complex functional dependen-
cies between multivariate input and output representations.
Structured learning has significant impact in addressing
important computer vision tasks. Figure 7 gives the flowchart
of SSVM to obtain gray information. The flowchart of the
iterative training of SSVM is given in Figure 8.
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Figure 9: Two segmentation results of selected slice using multicontrast MR images: (a) testing MR images; (b) automatic segmentation
results of Bayes classifier; (c) automatic segmentation results of SSVM process.

4. Comparison

The results of segmentation of slices 28 and 34 MR images
based on Bayes and SSVM are illustrated in Figure 9.

As seen in Figure 9, the segmentation result in term
of classification algorithm reveals that the performance of
SSVM is much better than that of Bayes due to the former
including structural information, and smoothing effect of
segmentation of SSVM is also obvious.

The results presented by image are inadequate to make
evaluations. Here a parameter named misclassification rate
is defined to judge the accuracy of each algorithm.

In the experiment of this paper, a selected slice MR
image is corrupted by global intensity varying from 20%
to 40% and adding 1%–9% noise. Misclassification rate, an
evaluating criterion, is defined as the ratio of misclassified
pixels to total number of pixels of this class. It is formulated
as (2) as follows:

e(i) = f p + f n

n
, (2)

where e(i) is the misclassification rate of tissue i; f p is
the false positive responses (pixel belongs to tissue i but is
classified as other tissues); f n is the false negative responses
(pixel does not belong to tissue i but is classified as tissue type
i); n is the total number of pixels of tissue type i.

The misclassification rate of lumen obtained by Bayes
and SSVM algorithm is listed in Table 1. From the statistics

Table 1: Misclassification rate of lumen for Bayes and SSVM.

Noise
Misclassification rate

Bayes SSVM

1% 3.5 2.6

3% 5.3 4.8

5% 6.5 6.3

7% 10.6 8.5

9% 16.9 9.6

shown in Table 1, it can be seen that the misclassification
rate caused by SSVM is much lower than that of Bayes. That
stands for the performance of SSVM outperforms that of
Bayes, especially while the level of noise is higher.

5. Conclusion

To summarize, the work in this paper is focus on the first
several steps of carotid artery plaque analysis, including
preprocessing of MR image, model-based segmentation of
lumen, plaque, and external wall. Two kinds of model, Bayes
and SSVM, are separately constructed and applied to the
detection of internal wall. Receivable boundaries can be both
obtained by two algorithms, the results of experiment shows
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the segmentation performance of SSVM is better than that of
Bayes, especially, while the level of noise in image is higher.

But there are still some improvements need to be done
in the future to break the limitations of the current work.
Firstly, improve Bayes to better performance by increasing
structural information. Secondly, introduce sequence image
tracking technique in research to improve the performance
of human interaction to specify the center of lumen. Further
effort should focus on estimation of artery location in each
MRI slice and take advantage of information gained from
previous slice to pick out the artery centroid of current
image. Moreover, several other algorithms need to be testified
and compared with them when dealing with plaques.
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Québec, Canada, 2006.

[13] J. P. W. Pluim, J. B. A. Maintz, and M. A. Viergever, “Mutual-
information-based registration of medical images: a survey,”
IEEE Transactions on Medical Imaging, vol. 22, no. 8, pp. 986–
1004, 2003.

[14] U. Sadat, R. A. Weerakkody, D. J. Bowden et al., “Utility of high
resolution MR imaging to assess carotid plaque morphology:
a comparison of acute symptomatic, recently symptomatic
and asymptomatic patients with carotid artery disease,”
Atherosclerosis, vol. 207, no. 2, pp. 434–439, 2009.


