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We report the fabrication and electrochemical performance of a flexible thin film supercapacitor with a novel nanostructured
composite electrode. The electrode was prepared by in situ coprecipitation of two-dimensional (2D) MnO

2
nanosheets at room

temperature in the presence of carbon nanofibers (CNFs).The highest specific capacitance of 142 F/g was achieved for CNFs-MnO
2

electrodes in sandwiched assembly with PVA-H
4
SiW
12
O
40
⋅nH
2
O polyelectrolyte separator.

1. Introduction

Developments in producing efficient microelectronic devices
depend on the associated micropower sources like superca-
pacitors or batteries [1–3]. In order to achieve high power
performance and long term stability of thin supercapacitors,
research efforts have been devoted to the application of
nanostructured electrodes and suitable coupling with poly-
electrolyte components [4]. As supercapacitors are becoming
increasingly miniaturised, the use of nanomaterials and
their preparation routes pose new challenges. It is generally
acknowledged that size and shape are critical factors in
inducing novel and unexpected properties to nanomaterials.
The properties observed depend highly on anisotropy effects
and region dependent surface reactivity [5–7]. Meanwhile,
the demand for ultrathin flexible energy storage tools is
increasing, especially in miniaturized electronic devices.

Pseudocapacitive electrode materials composed of metal
oxides like RuO

2
, SnO

2
, and MnO

2
are of particular

interest due to the intrinsic reversibility of surface redox
reactions which contribute to large capacitance [8–10].
Recently, hydrous manganese oxides (MnO

2
⋅xH
2
O) have

attracted attention due to their low cost and environmentally
favourable aspects (such as low toxicity). Nanostructured

MnO
2
with larger surface area provides shorter lengths for

the conduction of electrons and diffusion of cations.
In 2D nanostructural frameworks of MnO

2
, MnO

6
octa-

hedral share edges forming layers of MnO
2
held together by

Van der Waals interactions. In the presence of high surface
area substrate carbon this has been demonstrated to enhance
charge transfer. In addition the layeredMnO

2
nanosheets are

amenable to release bending stresses [11, 12] and compatible
with the metallic (e.g., copper) coated fabrics that act as
current collectors. This is attributed to the layered structure
with robust bondingwithin theMnO

2
sheets. In view of these

advantages, MnO
2
nanosheets are being considered for use

in thin, planar supercapacitors. Recently, MnO
2
deposition

on large surface area reduced graphene oxide (RGO) and
carbon nanotubes (CNTs), and activated or mesoporous
carbons have been reported as supercapacitor electrodes [13–
15]. Different polymorphs of manganese oxide such as 𝛼-, 𝛽-,
𝛾-, and 𝛿-type offering distinctive properties can be prepared
in simple chemical synthesis routes [16–18].

In the study, we propose a new set of electrode materials
prepared in a “green” low temperature process using cheap
sustainablematerials and the assembly of a supercapacitor via
a simple one-step route. Two-dimensional (2D) birnessite-
type MnO

2
nanosheets were coated on carbon nanofibers
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(CNFs) by in situ coprecipitation at room temperature form-
ing a nanocomposite material. The composite electrode was
fabricated into a prototype supercapacitor device with thin
flexible properties. We then measured the electrochemical
performance of this nanostructured electrode with coupling
of various polymer-based electrolytes.

2. Experimental Section

2.1. Materials. CNFs were prepared from polyacrylonitrile
(PAN) (as described below). Polyvinyl alcohol (PVA; Alfa
Aesar), KMnO

4
(Fischer Scientific), MnCl

2
⋅4H
2
O (ACROS

Organics), silicotungstic acid (H
4
[W
12
SiO
40
]) designated as

STA, polyethyleneimine (PEI; Fluka), and KOH and NaOH
(Aldrich) were of reagent grade and used as received. Cu
coated nonwoven polyester fabric (as current collector) was
obtained from RS Components (UK).

2.2. Preparation of CNFs from Polyacrylonitrile Polymer. Pol-
yacrylonitrile polymer was dissolved in dimethylformamide
(DMF) with homogeneous concentration of 10 wt% by stir-
ring for 10 h at 60∘C. The polymer nanofibers were then
oxidised at 280∘C in air and then carbonized at 1000∘C in N

2

atmosphere.

2.3. Electrode: CNFs-MnO
2
. CNFs were dispersed (by stir-

ring for 10min) in a glass vessel containing 0.04M KMnO
4

and 1.2M NaOH. Then, 0.1M MnCl
2
was added dropwise

with vigorous stirring (∼1000 rpm).The resulting precipitates
were aged overnight with stirring at room temperature. The
resulting carbon-Mn precursor suspension was filtered and
washed several times and dried at 80∘C in air for 3 h giving
dark-brown composite.

2.4. Polyelectrolyte-Separator Films. Polyelectrolytes, which
also act as electrode separators, were prepared by combi-
nation of PVA-KOH gel, PVA-PEI film, and PVA-STA film.
Typical gel-like electrolyte films were prepared by dissolved
PVA powder with water, and the electrolytic salt counterpart
(i.e., KOH, PEI, or STA) following solutions was cast on clean
glass plate forming free-standing polyelectrolyte films. As
control experiments, conventional single cells were prepared
using nickel-foam current collector and CNFs mat cut in
squares (1 × 1 cm) separated by polypropylene filter.

2.5. Electrochemical Performance. Cyclic voltammetry mea-
surements were performed using a Metrohm Autolab
PGSTAT302/FRA2 system. Electrochemical behaviour of the
composite electrode materials was performed in different
thin film configurations, including that of a conventional
single cell module in 6M KOH electrolyte solutions. Cyclic
voltammetry of the single cell was performed in different
potential ranges in an aqueous KOH electrolyte (with con-
centration of 6M). The capacitance was calculated using the
relation𝐶 = 𝐼[𝑑𝑉/𝑑𝑡]−1 at the zero potential point for voltage
range of −1.0 to 1.0 V, where 𝐼 is the current (averaged from
charge and discharge values) and 𝑑𝑉/𝑑𝑡 is the scan rate.

3. Results and Discussion

Figure 1(a) shows the schematic diagram of the coating
of MnO

2
nanosheets on the surface of CNFs by in situ

coprecipitation of KMnO
4
and MnCl

2
and molar ratio of

[Mn2+]/[MnO
4

−
] = 2, with the precipitant of NaOH at room

temperature. The coprecipitation produced uniform sized
nanosheets of birnessite-MnO

2
as verified by SEM and XRD

(Figure 1). The formation of MnO
2
on carbon was confirmed

by XRD analysis as shown in Figure 1(b). The three main
Bragg peaks, at 2𝜃 values of 12.40∘ (001), 26.97∘ (002), and 37∘
(003), match well with the pattern of birnessite Mn

7
O
13
⋅H
2
O

(JCPDS 42-1317) [19, 20]. Birnessite (a hydrated manganese
oxide) often deviates from stoichiometry due to the substi-
tution of some hydrated alkaline cations like Na+, K+, and
Ca2+, in the interlayer that compensates the layers negative
charges [21]. EDS analysis on the prepared films indicates the
intercalation of a small amount (𝑥 < 0.35) of alkali metals
in A
𝑥
M
7
O
13
⋅H
2
O. Hereafter this generated phase of oxide is

referred to by its generic stoichiometry, MnO
2
.

The size and distribution of nanosheets were found to
depend on the concentration of NaOH. In some cases, the
nanosheet morphology was not observed on the surface of
carbon. These variations of microstructure originated from
the rate of crystal growth related to the concentration of
[OH−] [22]. As observed in SEM images shown in Figures
1(c)–1(f), the thickness of MnO

2
nanosheets coated on the

surface of CNF appears to be uniform and is estimated to
be ∼8 nm, with lateral size at 50–100 nm. High magnification
images show MnO

2
nanosheet coating on each individual

fiber and coverage of the entire surface of the CNF. An
SEM analysis of several areas of the decorated electrode
showed an absence of nanosheet aggregation which is a
common problem with coprecipitation chemistry. The size
and shape of nanosheets were uniform over the entire surface
of carbon substrate and different batches proved excellent
reproducibility. However, the MnO

2
morphology can be

easily changed by using different precursors or altering the
processing conditions.We find that a nanowormmorphology
can be obtained from manganese acetate upon oxidation
as shown in Figure 2(a). As prepared composite fibers were
assembled to form a thin flexible supercapacitor (Figure 2(b))
in combination with polyelectrolyte the complete cell is
∼2mm thick.

The capacitive performances of CNF-MnO
2

were
evaluated by the potentiostatic charge/discharge method.
Even though CV scans were performed with potential
window of 1 V for aqueous electrolytes and 1.5 V for
polyelectrolytes, representative voltage ranges are restricted
to 1.0 and −1.0 V in Figure 2. Firstly, typical CV curves were
measured for CNF-MnO

2
electrodes in 6M KOH solution

at different scan rates as presented in Figure 3(a). The shape
of CV curves shifts progressively from rectangular to oval
shapes with increasing scan rates. This phenomenon is
probably caused by the internal resistance of the electrode in
a conventional set-up inhibiting the charge collection from
aqueous electrolyte (which hinders diffusion of K+ in to the
electrode). Further, the gravimetric capacitance of the CNFs
in 6M KOH was calculated to be 62, 56, 47, 31, 22, and 18 F/g
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Figure 1: (a) Schematic of coating 2D MnO
2
nanosheets onto CNFs surfaces at room temperature. (b) XRD patterns of as prepared CNFs-

MnO
2
crystal structures. (c)–(f) SEM images of CNF-MnO

2
mats with different magnifications.
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(a)

(b)

Figure 2: (a) Different morphology of MnO
2
with change in preparation conditions on CNFs. (b) Photos of as-assembled supercapacitor in

(∼2mm thick) semiplane and its cross-sectional view.

for scan rate of 1, 5, 10, 20, 50, and 100mV/s, respectively. For
the KOH electrolyte in gel form (as shown in Figure 3(b))
in a sandwiched assembly, a larger induced current carrying
capacity is due to the presence of a polyelectrolyte-
electrode/electrode-current collector interface. The shape
of the CV curves also deviated from rectangular, with the
linearity in CV curves shifting to oxidation at 0.57V and
the corresponding reduction peak at around 0.31 V. These
variations indicated the shift of capacitance behaviour from
double layer to pseudocapacitive behaviour because of the
occurrence of redox reactions of the MnO

2
.

In order to utilise the redox reactions ofMnO
2
to enhance

the capacitance, it is necessary to enhance the interaction
betweenMnO

2
and the polyelectrolyte and enable the cations

in the polyelectrolyte to diffuse through the electrode freely.
To further investigate the effect of excessive protonation
in polyelectrolyte, highly proton conductive STA (capable
of forming large water channels in STA’s hydrate sphere
hydrate sphere) in combinationwith PVAwas used and tested
for its electrochemical response as shown in Figure 3(c).
STA forms stable Keggin type anions upon reduction of
the tungsten (W)VI centres within [SiW

12
O
40
]4− anions and,

when embedded into a PVA film, acts as a proton carrier.
Strong redox peaks suggest that the proton forms a hydrogen
bond with the water molecules from hydrated manganese
oxide and enters as H

3
O+ into 2D tunnels in the metal oxide

and hoping continues from one active layer to the other
through tunnelling mechanisms [23].

From CV charge-discharge cycles, the porous assembly
of CNF-MnO

2
nanosheets with PVA-KOH gel showed large

specific capacitances of ∼100 F/g for slower scan rates, where
the redox process is mainly governed by diffusion of ions.
The diffusion of ions from the electrolyte, which can access
almost all available pores of the composite electrode, leads
to a complete insertion reaction in the reduction step and
the reverse happens during the deinsertion process. The
capacitance decreased to ∼60 F/g at higher scan rate. This
loss of capacitance could be mainly due to the slow diffusion
of K+ ions from electrolytic layer into the pores of MnO

2

nanosheets. For the scan rate of 50mV/s, the shape of CV
curve shifted towards ideal double layer capacitive behaviour
with gradual fading of redox peaks. This is because, when
the scan rate is higher, the effective utilization of the redox
reaction is limited only to the outer surface of MnO

2

electrode [24]. Further, as shown in Figure 3(d), a gravi-
metric capacitance of 142 F/g was achieved for CNF-MnO

2

electrode interfaced with PVA-H
4
SiW
12
O
40
⋅nH
2
O with slow

scan rates. This twofold difference, in specific capacitance
with respect to PVA-PEI blend polyelectrolyte (72 F/g) at
the same scan rate, could be attributed to the difference of
diffusion kinetics of polyion and electrons in the electrode.
It is likely that the addition of STA to the PVA solution
leads to the formation of stable complexes with hydrogen
bonds keeping the charge-discharge mechanism intact. At a
high scan rate (100mV/s), CV curves shift to a rectangular
shape indicating a dominance of capacitive behaviour over
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Figure 3: Cyclic voltammograms of composite (a) CNF- MnO
2
electrodes in 6M KOH solution electrolyte, (b) in polyelectrolyte PVA-

KOH gel, (c) CV performance of CNFs-MnO
2
electrode interfaced with PVA-H

4
SiW
12
O
40
⋅nH
2
O composite polyelectrolyte thin film, and

(d) comparison of their specific capacitance plot against scan rates.

redox processes. This faster transfer of high induced charge
is a result of current response to voltage reversal at the
vertex potentials. Results of different polyelectrolyte systems
showed significant reversible redox responses influencing the
capacitive behaviour in the thin supercapacitor assembly. In
short summary, CVmeasurements clearly show that the basic
structure and geometry of the Keggin anions STA entrapped
in PVA significantly enhance the capacitance value.

4. Conclusions

We successfully fabricated ∼2mm thick, flexible, and stable
working supercapacitors using all-solid components. Two-
dimensional nanosheets of MnO

2
were directly produced on

carbon substrate in a simple one-step synthesis procedure at
room temperature. The use of carbon, manganese dioxide,
KOH, and heteropolyacid hybrids with PVA and PEI for
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electrodes-electrolytes is biocompatible and/or biodegrad-
able, nonhazardous, and environmentally benign. Further-
more, these flexible working devices are simple to prepare,
and their fabrication and assembly are compatible with low-
cost, roll-to-roll production.
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