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Oscillatory flows are commonly experienced by swimming microorganisms in the environment,
industrial applications and rheological investigations. We experimentally characterise the response
of the alga Dunaliella salina to oscillatory shear flows, and report the surprising discovery that algal
swimming trajectories orient perpendicular to the flow-shear plane. The ordering has the charac-
teristics of a resonance in the driving parameter space. The behaviour is qualitatively reproduced
by a simple model and simulations accounting for helical swimming, suggesting a mechanism for
ordering and criteria for the resonant amplitude and frequency. The implications of this work for
active oscillatory rheology and industrial algal processing are discussed.

PACS numbers: Valid PACS appear here

Many swimming microorganisms experience shear flow
in natural and industrial processes. Swimming is strongly
biased by environmental cues and fluid shear [1, 2], with
significant implications for ecology [3] and industrial ex-
ploitation [4]. Classic examples include directed swim-
ming relative to light (phototaxis) and hydrodynamic fo-
cusing in down-welling flow due to viscous and gravita-
tional torques (gyrotaxis) [1, 5].

There is great potential to use individual and collective
microswimmer behaviour to improve microbial biotech-
nology, such as algal photobioreactor design [4]. For
example, gyrotactic microorganisms in laminar channel
flow tend to focus and so drift faster and diffuse less than
non-swimming cells or nutrients [6, 7] while in turbulent
flows cells accumulate in transiently downwelling [7–9] or
strongly accelerated [10] regions. Horizontal shear flows
can trap gyrotactic swimmers (a mechanism for oceanic
thin layers) [3] and modify hydrodynamic instabilites and
patterns (bioconvection) [11, 12]. Phototaxis and shear
flow can combine to drive cell focusing [13] and pattern
formation [14]. Complex transport dynamics can even
result from relatively simple shear flow [2, 15]. The rhe-
ology of active media is also of recent interest: suspen-
sions of swimming bacteria behave less viscously [16] and
algae more viscously [17] than dead cells.

Here, we investigate the interaction of the swim-
ming alga Dunaliella salina with oscillatory shear flows.
Surprisingly, in experiments swimming trajectories are
strongly ordered by the flow for particular driving param-
eter values. The ordering mechanism is distinct from that
observed recently with Dunaliella primolecta, with con-
stant, strong shear flows [18]. We explore the observed
resonant ordering employing simple but predictive mod-
els, and discuss implications for active oscillatory rheol-
ogy and industrial processing of swimming algae.

FIG. 1. (a) Oscillatory flow and imaging setup. (b) Tra-
jectories orientations θ from the x-axis are evaluated from
their displacements ∆r. The flow axis ey was often rotated
by θflow from x (consistent across repeat experiments). (c)
Dunaliella salina swimming and helical rotation directions, p
and n; model coordinate system and angles (see text).

D. salina CCAP 19/18 cells (long axis ≈ 15µm) were
grown on modified Pick medium [19, 20] under 12:12
light/dark cycle at 21◦C. All experiments were carried
out at this temperature. Cells were concentrated by
upswimming (gravitaxis) using cotton wool rafts [11].
Dilute (106 cells/ml) suspensions were subjected to os-
cillatory shear on the stage of an optical microscope
(Olympus BX51). The suspension was placed between
two transparent parallel plates 400 µm apart, the top
plate connected to an electromechanical drive that si-
nusoidally sheared the suspension (Fig. 1). Plate par-
allelism was ensured by zeroing sample capillary flow.
Video sequences (100-400 Hz) of sheared algae were ac-
quired using a Mikrotron MC1310 at 10× (NA 0.25) us-
ing red-filtered bright-field illumination to minimise pho-
totaxis [21]. Sequences were captured in a plane equidis-
tant from top and bottom plates at depth 200 µm. Al-
gae were tracked using MATLAB versions of established
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algorithms [22, 23]. The direction of the imposed os-
cillating flow was inferred from short-time cell trajecto-
ries and confirmed by tracking PEGylated polystyrene
colloids (Supplementary Materials, Fig. S1). Cell ob-
servation before and after measurements found that the
apparatus did not damage the cells (e.g. deflagellation).

With no flow, D. salina swimming trajectories were
distributed isotropically in the horizontal plane (Fig. 2a).
As in [24], gravitactic bias was not evident for tracks in
this plane on experimental timescales. On application
of oscillatory shear with amplitude A and frequency f
trajectories might be expected simply to reflect superpo-
sition of isotropic swimming and oscillatory advection.
This was indeed the case for some driving parameters,
such as A = 240 µm and f = 6 Hz (Fig 2b). However,
for A = 448 µm and f = 2 Hz swimming trajectories un-
expectedly aligned perpendicular to the flow-shear plane
(Fig. 2c). Alignment can be quantified by the start-
to-end displacement, ∆r(τ), of each swimmer trajectory
(Fig. 1b). Evaluated at short times within a cycle, ∆r(τ)
provides the flow direction ey ∼ ∆r(τ → 0). However,
evaluating ∆r(τ) over the largest available integer multi-
ple n of the oscillation period, τ = n/f , provides overall
trajectory orientation, θ, and speed, vt = |∆r|/τ .

Distributions P (θ) of orientations are presented beside
the trajectories in Fig. 2. The distribution for f = 2 Hz,
A = 448 µm shows how trajectories orient along the line
perpendicular to the flow-shear plane, but are equally
likely in either direction along this line. If the flow is
halted, the distribution returns to uniform (Fig. S1, Sup-
plementary Materials). Speed distributions for aligned
trajectories (Fig. 2c) are similar to those without flow
(Fig. 2a). These reflect the swimming speed distribution
[25]. Hence, swimmers in aligned trajectories travel per-
pendicular to the flow at their swimming speed (but very
slow swimmers cannot make much progress, biasing the
distribution towards high speeds in Fig. 2c). Without
alignment (Fig. 2b), the speed distribution reflects con-
tributions by swimming and the oscillatory flow, which
accounts for the bias towards low speeds.

To statistically quantify observed alignment as a func-
tion of the flow parameters, we count trajectories with
displacement ∆r oriented perpendicular, N⊥, and paral-
lel, N‖, to the flow direction and define R = N⊥/N‖. By
parallel (perpendicular) displacements we mean swim-
ming orientations within ±π/4 of the flow (vorticity)
axis. We also provide the alternative measure r =
(〈sin(θ − θflow)〉2 + 〈cos(θ − θflow)〉2)1/2 ∈ [0, 1], where
averages are over all angles (which were doubled for axial
distributions at resonance) [26]. Small r denotes isotropy,
large r alignment (see Fig. 2). The surface plot in Fig.
3 illustrates how the alignment has the characteristics
of resonance, occupying a small region of the imposed
flow parameter space. Fixed amplitude and frequency
sections of the ordering surface are shown in Fig. 4 and
discussed below.
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FIG. 2. Trajectories, orientation and speed distributions
of D. salina. (a) No flow: isotropic trajectories (alignment
measures [r = 0.02, R = 0.9], see text). (b) Oscillatory shear
flow with amplitude A = 240 µm and frequency f = 6 Hz:
tracks show oscillation (cyan) at short times, but are isotropic
(blue) at longer times [r = 0.05, R = 1.6]. (c) A = 448 µm
and f = 2 Hz: swimming directions align perpendicular (blue)
to the flow oscillation direction (cyan) [r = 0.53, R = 4.4].
Open/closed circles denote start/end points of each 2.5s track.

Discussion. The observed trajectories result from the
combination of shear flow and swimming. Many algae
swim helically, in part to facilitate phototaxis via a di-
rectional eyespot [27]. Thus we model the algae as heli-
cal swimmers in a flow. Following [28], we assume that
a cell at position r swimming with speed v in direction
p has an intrinsic angular velocity ωhn about an axis
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FIG. 3. Alignment ratio R as a function of driving amplitude
A and frequency f for oscillatory flow in a shear cell with H =
400 µm gap width. A is a measure of horizontal displacement.

n, where p · n = cosβ, for constant angle β, due to
an asymmetric (non-planar) flagellar stroke. Hence, if
the only external torque is due to flow with velocity u
and vorticity ω, spherical swimmers obey ṙ = u(t) + vp,
ṗ =

(
1
2ω(t) + ωhn

)
× p and ṅ = 1

2ω(t)× n. Experimen-
tal observations suggest that the fluid velocity is u(t) =
γ̇∞Z cos(ωdt)ex, with vorticity ω(t) = γ̇∞ cos(ωdt)ey.
Here ex and ey are along the positive flow and vorticity
directions, respectively, γ̇∞ = ωdA/H is the maximum
shear rate and ωd = 2πf is the angular driving frequency
(recall A, f and H are driving amplitude, frequency and
gap width, respectively). Nondimensionalising lengths
with A and times with 1/ωd, the model equations read

ṙ = Γ cos(t)Zex + νp (1)

ṗ =

[
Γ

2
cos(t)ey + Ω−1n

]
× p; ṅ =

Γ

2
cos(t)ey × n (2)

where Γ = γ̇∞/ωd = A/H is the dimensionless shear
rate/amplitude, Ω = ωd/ωh is a frequency ratio and
ν = v/(Aωd) = ν0/(ΓΩ) a nondimensional swimming
speed, with ν0 = v/(ωhH). The Cartesian representa-
tion of (1-2), with Z measured from the bottom plate
and XY the flow-vorticity plane (Fig. 1), was solved nu-
merically to simulate a suspension of swimmers (see Sup-
plementary Materials). The ratio R was computed from
many simulations with a uniform distribution of initial
swimmer orientations.

Non-swimmers (ν = 0) passively follow the imposed
oscillatory flow. In the absence of flow, the governing
equations predict helical trajectories: p rotates around
n (the helix axis) with frequency ωh. With the experi-
mental resonance close to helical swimming frequency, it
is tempting to think that helical trajectories are respon-
sible for the observed alignment. This is only partially
true, as we shall see.

First we ask if the combination of ‘non-helical’ swim-
ming and oscillatory shear alone is sufficient to induce
ordering in experiment. Fig. 4 displays the ordering ra-
tio (experiment a,b; simulation c,d) and simulated swim-
mer trajectories (e) for a model where helical swimming
is switched off (dashed lines). While R peaks at char-
acteristic values of the driving amplitude Γ (Fig 4c), it
is entirely independent of driving frequency (Fig 4d) in
stark contrast to the experiments. The non-helical limit
does, however, predict alignment: it is worth considering
further. When β = 0, the governing equations simplify
considerably if we choose Euler angles Θ and Φ (Fig. 1c)
such that p = n = (sin Θ sin Φ, cos Θ, sin Θ cos Φ), where
Θ increases from the direction of vorticity, ey, along the
Y -axis, and Φ is measured from the Z-axis [e.g. (Θ, Φ)=
(π/2, π/2) is along the X-axis]. Equations (1-2) give

Ẋ = ν⊥ sin Φ + Γ cos(t)Z (3)

Ẏ = ν‖ (4)

Ż = ν⊥ cos Φ (5)

Θ̇ = 0; Φ̇ =
Γ

2
cos(t) (6)

where ν⊥ = ν sin Θ0 and ν‖ = ν cos Θ0 are the nondi-
mensional swimming speed components perpendicular
and parallel to ey. Integration of (4) and (6) yields
Y (t) = Y0 + ν‖t, Θ(t) = Θ0 and

Φ(t) = Φ0 +
Γ

2
sin(t). (7)

(Recall that Γ = A/H is the non-dimensional shear rate.)
As the Y component of the trajectory grows linearly in
time, independent of shear, alignment can only depend
on the coupled X and Z dynamics. In particular, closed
orbits in the XZ-plane are present at resonance, see Fig.
4e, panel (i). For such orbits, progress only in the Y -
direction is possible, leading to alignment. Off-resonance,
orbits are open and cells can progress in X and Z direc-
tions (Fig. 4e, panel (ii)).

This phenomenology can be understood in terms of
oscillatory Jeffery dynamics of the swimmer orientation.
We see from (7) that oscillatory shear forces swimmer
orientation in the vertical XZ-plane to describe circular
arcs swept sinusoidally in time (contrast this with circu-
lar Jeffery orbits in steady shear flow, ωd → ∞), with
angular amplitude Γ/2. Folded orbits only arise when
shear is sufficiently large to rotate swimmer orientation
by integral multiples of π, so it can make no net progress
during a cycle (see 4e). This provides a prediction for
the resonant ordering amplitude Γres ≈ 2πn, n ∈ Z, in
good agreement with non-helical simulations (Fig 4c).
The latter agree qualitatively with the experimental re-
sults in Fig 4a. Quantitatively, much smaller values of Γ
are sufficient to induce ordering in experiment. A pos-
sibility is that the Γ reported underestimates the shear
rate swimmers were exposed to, e.g. because the intrinsic
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flagellar beats cause effective cell shape changes leading
to unexpected response to shear [29, 30]. Alternatively,
additional mechanisms, such as those discussed below,
may modify the ordering dynamics.

The model for non-helical swimmers predicts align-
ment as a function of amplitude, but does not reproduce
the experimentally observed dependence on both driv-
ing amplitude and frequency (Fig 4b). D. salina is a
helical swimmer, rotating at 1.5 − 2 Hz [25]. This sec-
ond, internal frequency provides the possibility of further
resonance. Indeed, with β 6= 0 (recall β is the angle be-
tween p and n) numerical results reveal that ordering is
frequency dependent (Fig. 4d). Position equations are
unchanged, but depend on more complex orientation dy-
namics resulting from the coupling of flow-induced and
helical rotation. Cell orientation angles Θp and Φp, defin-
ing p, evolve according to (see Supplementary Materials)

Θ̇p = Ω−1 sin Θn sin(Φn − Φp), (8)

Φ̇p =
Γ

2
cos(t) (9)

+ Ω−1 [cos Θn − sin Θn cot Θp sin(Φn + Φp)],

whereas angles for n satisfy (6), such that Θ̇n = 0,
Φ̇n = Γ cos(t)/2. As the p-dynamics are slaved to the
n-dynamics, trajectories with helical swimming do retain
broad features of non-helical orbits in oscillatory shear,
see Fig. 4e, but they are nevertheless qualitatively per-
turbed (even for infinitesimal β). Thus only for particu-
lar driving frequencies and amplitudes does helical swim-
ming produce alignment-inducing orbits. The frequency
condition for ordering can be obtained by considering
the case of a swimmer with n in the direction of vortic-
ity: Θn(0) = 0 = Φn(0); Θp(0) = β; and Φp(0) = 0.
Equation (9) then integrates to Φp(t) = Γ

2 sin(t) + Ω−1t:
a helical phase can perturb simple Jeffery rotation by the
flow. Only when Ω ∼ 1, i.e. when the driving and he-
lical phase are synchronised, can a resonant value of Γ
give alignment, agreeing with both simulations and ex-
periments (Fig 4b,d).

Oscillatory Jeffery orbits and helical swimming pro-
vide a first order explanation for the dependence of reso-
nance in experiments on both frequency and amplitude.
The model is predictive: helical frequency shifts alter
resonant alignment, e.g. simulations of the predatory di-
noflagellate Pfiesteria piscida (Supplementary Materials)
predict a resonant frequency shift when helical frequency
increases in the presence of prey (Fig 4d, inset). This
description could be extended to investigate how addi-
tional effects such as taxes, orientation noise, inertia and
cell shape either dominate, compete or act in concert with
helical swimming to affect resonance. Intriguing possibil-
ities include stochastic resonance due to noise in the flow
velocity gradients [31] and the aforementioned effective
shape due to flagellar beats [29, 30]. The possibility of
flagellar deformation by shear [2] seems unlikely. Shear
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FIG. 4. Alignment ratio R vs. amplitude Γ and fre-
quency Ω from experiment (errorbars smaller than data points
not shown) (a, b) and simulation (c, d). Simulation predic-
tions are shown with (β = π/6, solid) and without (β = 0,
dashed) helical swimming (frequency fh = 2Hz), only the
latter providing frequency dependence. Trajectories (β = 0,
green; β = π/6, black) are also shown in (e): at resonance,
[Γ,Ω] = [7.5, 0.75], for XZ plane (i) and 3D views (ii); off-
resonance [Γ,Ω] = [4, 0.75] (iii). Only trajectories closed in
XZ provide ordering. Inset of (d): simulations of P. piscida
in oscillatory flow, which increases its helical frequency from
1 (solid line) to 2 Hz (dash dot) when predating [33]. We
predict a measureable shift in the resonance peak.

rates on the same order as our experiments can mod-
ify flagellar dynamics for cells held on a micropipette
[32]. However, our cells are in suspension (free to ro-
tate): much larger shear will be necessary to deform their
flagella. A full analytical investigation of the nonlinear
dynamics of the helical model in oscillatory shear is be-
yond the scope of this paper, but it is clear that much
is to be discovered, analogous to structures observed for
swimming cells in Poiseuille flow [15].

Conclusions. We have demonstrated the surprising re-
sponse of swimming microalgae to oscillatory shear flows,
producing an alignment of trajectories with a set of reso-
nance peaks in the parameter space of driving frequency
and amplitude. A simple model combining shear and
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non-helical swimming predicts resonant alignment of the
trajectories of swimming cells, but only when helical
swimming is included does the experimentally observed
frequency dependence of the resonance arise. The rich
dynamics and the counterintuitive interactions between
swimmers and flow revealed by our experiments and
modelling have implications for both active suspension
rheology and the design of novel cell processing methods.
While simplified models of swimmers (rod or spheroidal
pushers and pullers with no helical motion) appear ad-
equate to explain active rheological phenomena such as
shear-thickening in algal suspensions [17, 34], the current
work suggests such models may fail in active oscillatory
rheology experiments. Biotechnologically, the results
hint at methods for improvement in efficiency of the al-
gal processing pipeline [35]. For example, in downstream
processing of useful microalgae, like the β-carotene pro-
ducer D. salina, cells commonly experience oscillatory
flows. Resonant alignment will provide boundary accu-
mulation over times L/v, where L is the size of the shear
plate and v is the swimming speed. This may be ‘engi-
neered out’ by tuning process parameters from resonance;
or it may be fruitfully exploited as a new way to guide
and harvest cells.
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ton Programme for the Physics of Sustainability (OAC)
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edge an EPSRC mobility grant (EP/J004847/1), WCKP
the Programme Grant (EP/J007404/1) and ERC Ad-
vanced Grant (ADG-PHYAPS).

SUPPLEMENTARY MATERIALS

Shear effects on swimming and flow

In order to establish that the swimming of Dunaliella
salina in the absence of flow was not affected by exposure
to oscillatory shear, the trajectory orientation and swim-
ming statistics of cells were monitored before and after
every shearing experiment, see Figure (5). Isotropy and
mean speed return to normal once the oscillatory flow is
halted. The only effect is a drop in the total number of
swimmers in the field of view, probably a result of cell
loss in the field of view generated by the anisotropic mi-
gration caused by the oscillatory shear (as discussed in
the conclusions of the main text). The same (5) shows
the simultaneous tracking of swimming algae and PEGy-
lates polystyrene colloids, verifying they passively follow
the flow, as expected.

Simulation model

As mentioned in the main text, mechanisms for the
experimental trajectory ordering of Dunaliella salina in
oscillatory shear flows were explored by numerical simu-
lations of helical swimmers. The equations of motion of
a swimmer were based on a recently proposed model by
Bearon [28]. In this model (notation as in the main text),
cell position r evolves by swimming with mean speed v
along the direction p. Through an intrinsic torque due
to nonplanar swimming the cell also generates rotation
about a direction n. The dynamics of swimmers in a flow
u is governed by

ṙ = u + vp (A.10)

ṗ = ωc × p (A.11)

ṅ = ωc × n (A.12)

where the angle between p and n is fixed and given by
p · n = cosβ and ωc is the net angular velocity of a
cell resulting from the balance of torques on it. Bearon
considered external torques on the cells due to gravity
on bottom heavy spherical swimmers in a flow, so that
ωc = ωgp×ez +ωhn+ 1

2ω, where ωg is the gravitational
reorientation frequency, ωh is the intrinsic angular speed
of helical rotation and ω is the flow vorticity (horizontal
and vertical linear shear flows were solved for in [28]).
The model neglects known effects, such as cell shape and
stochastic reorientation. These could easily be included
(e.g. as in [7]), but to capture a minimal mechanism for
our observations we neglect them here, and additionally
neglect gravitational torques. These torques will only act
on cells swimming with a significant vertical component.
For these, gravitational reorientation of the cells acts on
timescales 1/ωg ∼ 10s [36], which are large compared to
the flow timescales for most driving frequencies consid-
ered. Thus, flow reorientation is expected to dominate
the dynamics, as verified from simulations (see Figure
6).

We then assume the simple oscillatory flow u(t) =
γ̇∞Z cos(ωdt)ex (vorticity ω(t) = γ̇∞ cos(ωdt)ey), where
γ̇∞ = ωdA/H is the maximum shear rate for driving
angular frequency ωd = 2πfd and amplitude A. Nondi-
mensionalising in terms of these time (1/ωd) and length
(H) scales, equations (A.10-A.12) reduce to equations (1)
and (2) of the main text

ṙ = Γ cos(t)Zex + νp (A.13)

ṗ =

[
Γ

2
cos(t)ey + Ω−1n

]
× p (A.14)

ṅ =
Γ

2
cos(t)ey × n (A.15)

where, as in the main text, we define the dimension-
less driving amplitude/shear rate Γ = A/H and fre-
quency Ω = ωd/ωh. The parameter ν = v/(Aωd)
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FIG. 5. Trajectory orientation and speed PDFs before (a) and after (b) oscillatory flow (A = 224 µm, f = 2 Hz as in figure 2c
of main text). When oscillatory shear ceases, trajectory isotropy is recovered. (c) Swimmer trajectories (colour) and colloids
(black) for A = 150 µm, f = 2 Hz. The latter passively follow the oscillatory flow.

gauges the relative magnitude of advection by swim-
ming to advection by flow. Re-writing ν = ν0/ΩΓ,
with ν0 = v/(Hωh) a constant, we see that ν cannot
be varied independently of the dimensionless driving pa-
rameters. In [28], where gravity can play a significant
role, the ODEs for the components of (A.13), (A.14)
and (A.15) were derived in a Cartesian coordinate frame
where Euler angles are defined with respect to the ver-
tical. We consider instead a Cartesian frame with Eu-
ler angles Θ and Φ describing the helical rotation di-
rection defined from the vorticity direction ey along the
Y -axis: n = (sin Θn sin Φn, cos Θn, sin Θn cos Φn), as de-
scribed in the main text and shown in Fig. 1c of the
main text. This choice simplifies the angular equations of
motions and makes the dynamics more physically trans-
parent.The equations of motion for the swimmers then
become

Ẋ = ν sin Θp sin Φp + Γ cos(t)Z (A.16)

Ẏ = ν cos Θp (A.17)

Ż = ν sin Θp cos Φp (A.18)

Θ̇n = 0; Φ̇n =
Γ

2
cos(t) (A.19)

Θ̇p = Ω−1 sin Θn sin(Φn − Φp) (A.20)

Φ̇p = Γ cos(t)/2 + Ω−1 cos Θn

− Ω−1 sin Θn cot Θp sin(Φn + Φp) (A.21)

When β = 0, helical effects are negligible. In this
limit, losing subscripts and defining ν⊥ = ν sin Θ0,
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FIG. 6. Alignment ratio simulations with and without grav-
itaxis, which makes little difference to ordering dominated by
flow and helical contributions.

ν‖ = ν cos Θ0, equations (A.16–A.21) reduce to equa-
tions (3−6) in the main text, where the dynamics for Θ,
Φ and Y are trivially solved for analytically. The non-
integrable equations of system (A.16–A.21) for swimming
cells were solved numerically with MATLAB (Math-
works, Natick, MA, USA) using a Runge-Kutta-Fehlberg
(RK45) method in a periodic box of size Lx × Ly × Lz,
where Lx = Ly = 18 and Lz = 1, recalling all lengths
are rescaled by the gap width H = 400µm. Realis-
tic D. salina mean swimming parameters (along-helix
speed v = 80µm/s and intrinsic frequency fd = 2Hz)
were used [25], ignoring phenotypic variations across
the population. The helical angle between the swim-
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ming direction p and the helical axis of rotation n
can be estimated from β = arccos(v/vp) = 0.5, where
vp = 60µm/s is the mean progressive speed along the
helical axis [25]. Simulations were also carried out for
the oscillatory flow response of the predatory dinoflagel-
late Pfiesteria piscida. The swimming parameters for
this dinoflagellate, helix radius rh, frequency fh and
along-helix speed v, have been recently characterised
using digital holographic microscopy [33]. It was ob-
served that P. piscida modifies its helical swimming from
[rh, fh, v] = [9.6µm, 1.1Hz, 174µm/s] in the absence of
prey, to [rh, fh, v] = [11.4µm, 1.9Hz, 240µm/s] when prey
is present. Our prediction for this change in helical
swimming is shown in the inset of Fig. 4d of the main
text. The helical angle used in simulations was found
from these parameters from β = arcsin(ωhrh/v), where
ωh = 2πfh. In all simulations, swimmers were set off
at Z = 1/2, with initial values of p 2D-isotropic in the
horizontal plane and n to be rotated by β out of the
plane. The following realistic driving parameters were
used: Ω = 0.25-3 (fd = 1-6Hz) and Γ = 0.125-8.75
(A = 50-14000µm). The ordering ratios R were obtained
from the simulation position data, as for experiments.
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