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SUMMARY

During development of the vertebrate CNS, the
basic helix-loop-helix (bHLH) transcription factor
Olig2 sustains replication competence of progenitor
cells that give rise to neurons and oligodendrocytes.
A pathological counterpart of this developmental
function is seen in human glioma, wherein Olig2 is
required for maintenance of stem-like cells that
drive tumor growth. The mitogenic/gliomagenic
functions of Olig2 are regulated by phosphorylation
of a triple serine motif (S10, S13, and S14) in the
amino terminus. Here, we identify a set of three
serine/threonine protein kinases (glycogen synthase
kinase 3a/b [GSK3a/b], casein kinase 2 [CK2], and
cyclin-dependent kinases 1/2 [CDK1/2]) that are,
collectively, both necessary and sufficient to phos-
phorylate the triple serine motif. We show that
phosphorylation of the motif itself serves as a tem-
plate to prime phosphorylation of additional ser-
ines and creates a highly charged ‘‘acid blob’’ in
the amino terminus of Olig2. Finally, we show that
small molecule inhibitors of this forward-feeding
phosphorylation cascade have potential as glioma
therapeutics.
Cell R
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INTRODUCTION

A pivotal development in vertebrate evolution was the appear-

ance of myelinating oligodendrocytes that enwrap neural axons

in the CNS. By enabling saltatory conductivity of electrical im-

pulses, oligodendrocytes enabled the vertebrate brain to grow

large and complex. During CNS development, the basic helix-

loop-helix (bHLH) transcription factor Olig2 plays two essential

roles in the formation of oligodendrocytes throughout the CNS.

At late stages of CNS development, Olig2 instructs neural pro-

genitors to exit the cell cycle and adopt an oligodendrocyte

fate. However, at earlier stages of development, Olig2 actually

opposes cell cycle exit and sustains replication competence

so as to allow an adequate pool of oligodendrocyte progenitors

to accumulate (Meijer et al., 2012).

Unfortunately, there is a pathological counterpart of this sec-

ond function. Tumor-initiating cells with stem-like properties

have been isolated from a wide range of adult and pediatric as-

trocytomas (Galli et al., 2004; Hemmati et al., 2003; Ignatova

et al., 2002; Singh et al., 2003). Irrespective of patient age or tu-

mor grade, these stem-like cells are marked by Olig2 (Bouvier

et al., 2003; Ligon et al., 2004, 2007; Lu et al., 2001; Marie

et al., 2001; Ohnishi et al., 2003). Beyond merely marking these

stem-like cells, Olig2 is required for maintenance of the stem-

like state and is essential for tumor formation from intracranial

xenografts of human glioblastomas (Ligon et al., 2007; Mehta

et al., 2011; Suvà et al., 2014). To a large extent, the gliomagenic
eports 18, 3167–3177, March 28, 2017 ª 2017 The Author(s). 3167
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functions of Olig2 reflect an oppositional relationship with p53

functions (Mehta et al., 2011). Although p53 signaling is the

most frequently mutated signaling axis in glioblastoma, the ma-

jority of glioblastomas retain at least one intact copy of the p53

gene (Cancer Genome Atlas Research Network, 2008). Com-

plete ablation of p53 in human gliomas or genetically relevant

murine models of glioma eliminates the tumorigenic requirement

for Olig2 (Mehta et al., 2011).

Several years ago, we showed that the mitogenic function of

Olig2 in normal oligodendrocyte progenitors and the anti-p53

functions of Olig2 within stem-like, tumor-initiating cells of gli-

oma are regulated by phosphorylation of a triple serine motif in

the Olig2 amino terminus at S10, S13, and S14. Phosphorylation

of this motif is developmentally regulated and it is the phosphor-

ylated form of Olig2 that has gliomagenic and anti-p53 functions

(Sun et al., 2011). A more recent study demonstrates that this

phosphorylation also regulates the switch from the proliferation

to invasion in glioma cells (Singh et al., 2016). In studies summa-

rized here, we use mass spectrometry (MS), genetics, and test-

tube biochemistry with synthetic peptides to identify a set of

three protein kinases that are collectively both necessary and

sufficient to phosphorylate the triple serine motif. We go on to

show that the motif, when phosphorylated, serves as a template

to prime phosphorylation of three adjacent serines, thus creating

a highly charged ‘‘acid blob’’ in the Olig2 amino terminus. Finally,

we show that small molecule inhibitors of Olig2 protein kinases

might have potential as glioma therapeutics.

RESULTS

Olig2 Is Phosphorylated by GSK3 at S10
We interrogated the Olig2 triple serine motif and flanking amino

acids using four different computer algorithms to identify candi-

date protein kinases for S10, S13, and S14 (Table S1). Small

molecule inhibitors of the most frequent hits in this in silico

screen were tested on Olig2-positive neural progenitor cells

(NPCs) (Table S2). Lysates of the drug-treated cells were size

fractionated by SDS-PAGE and immunoblotted with a phos-

pho-specific antibody that recognizes Olig2 only when all three

members of the triple serine motif are in a phosphorylated state

(Sun et al., 2011). These procedures identified S10 as a potential

substrate for glycogen synthase kinase 3 (GSK3).

In mammals, two isoforms of GSK3 (a and b) share a high de-

gree of homology, particularly in their kinase domain (Doble and

Woodgett, 2003). As shown in Figures 1A and 1B, small molecule

inhibitors of GSK3a/b and also lithium (a well-known GSK3a/b

antagonist) suppress the phosphorylation of Olig2 in cultured

mouse NPCs and also in low-passage human glioma cells (the

BT145 line) that have been maintained under conditions devel-

oped for neural progenitors so as to maintain ‘‘stemness’’ (see

the Experimental Procedures).GSK3a-null mice are viable (Mac-

Aulay et al., 2007), but GSK3b-null mice die at an early stage of

embryonic development (Hoeflich et al., 2000). Accordingly, ge-

netic validation of the GSK3 inhibitor data were achieved in NPC

lines derived from informative intercrosses of GSKa-null and

GSK3b-conditional mice, as shown schematically in Figure 1C.

GSK3a/b double-knockout cells do not survive (Figure 1C),

and immunoblotting assays show no change in phospho-Olig2
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levels within GSK3a homozygous null NPCs (Figures 1D and

1E). However, we observe a significant reduction in phospho-

Olig2 levels within GSK3a�/+; GSK3b�/� NPCs. Together, these

findings indicate that GSK3 function is essential for phosphory-

lation of Olig2 and that GSK3a and b function redundantly

toward this end.

To test whether Olig2 is directly phosphorylated by theGSK3s,

we turned to in vitro kinase assays. As indicated in Figure 1F, the

canonical substrates for GSK3a/b require a ‘‘priming’’ phospho-

serine or phosphothreonine at +4 residues to the carboxyl side.

In its phosphorylated state, S14 of Olig2 would serve this priming

function. As shown in Figure 1G, recombinant GSK3b cannot

phosphorylate an unmodified synthetic peptide corresponding

to residues 1–18 of Olig2. However, an equivalent peptide with

pre-phosphorylated S14 is an excellent substrate. Moreover,

mass spectrometric analysis of the resulting products confirms

that S10 is the enzymatic target of GSK3b in vitro. Besides singly

phosphorylated S14, doubly phosphorylated peptides at S10

and S14 were detected when using phosphorylated S14 pep-

tides as substrates (Figure 1H). Collectively, the data indicate

that S10 of the Olig2 triple phosphoserine motif is phosphory-

lated by GSK3 and this requires pre-phosphorylation at S14.

Olig2 Is Phosphorylated by Casein Kinase 2 at S13
Computer algorithms identified S13 as a potential substrate for

casein kinase 2 (CK2) (Table S1). CK2 functions as a tetramer

composed of two catalytic subunits, CK2a and CK2a0, and two

copies of an essential regulatory subunit, CK2b (Litchfield,

2003). As indicated in Figures 2A and 2B, a small molecule inhib-

itor of CK2 (CX-4945) suppresses phosphorylation of Olig2 in

murine NPCs and also in human glioma cells. Genetic validation

of CK2 as an Olig2 kinase was achieved by using small hairpin

RNA (shRNA) knockdown of CK2b, as shown in Figures 2C

and 2D.

Canonical substrates for CK2 require priming by negatively

charged amino acids such as aspartic acid (D), glutamic acid

(E), or a phosphoserine (pS), positioned at either +1 or +3 resi-

dues to the carboxyl side (Figure 2E) (Meggio and Pinna,

2003). The primary sequence of Olig2 suggests that either E16

or phosphorylated S14 would prime S13 to be phosphorylated

by CK2, and this prediction is borne out by in vitro kinase assays

with recombinant CK2 showing that (1) S13 is a direct enzymatic

target for CK2 and (2) CK2 phosphorylation of Olig2 at S13 is

facilitated by pre-phosphorylation of S14 (Figures 2F and 2G).

Of interest, mass spectrometric analysis of CK2-phosphorylated

Olig2 peptides revealed that S3 is also a substrate for CK2,

which is likely primed by aspartic acid at +1 residue to the

carboxyl side.

Cyclin-Dependent Kinases 1 and 2 Phosphorylate S14
As phosphorylation of the S10 and S13 sites was contingent

upon prior phosphorylation of S14, we focused next on the iden-

tity of the S14 kinase. The S14 site precedes a proline residue,

and phosphorylation of serine in this context is often mediated

by so-called ‘‘proline-directed kinases.’’ The known proline-

directed kinases include mitogen-activated protein kinases

(MAPKs) and cyclin-dependent kinases (CDKs). We focused

on these particular kinase groups because phosphorylation of



Figure 1. GSK3 Phosphorylates Olig2 at S10

(A) Immunoblot assay shows that inhibition of

GSK3 results in reduced Olig2 phosphorylation.

Mouse NPCs and BT145 human glioma cells

treated with GSK3 inhibitors CHIR99021 (CHIR),

SB216763(SB), or LiCl for 4 hr show a decrease in

P-Olig2 level, compared to control cells that were

treated with either DMSO or NaCl. The following

concentrations were used: 5 mm CHIR, 10 mm SB,

10 mM NaCl, and 10 mM LiCl.

(B) Quantification of immunoblot assay. Relative

P-Olig2/Olig2 levels were quantified and compared

between control and inhibitor-treated groups. Data

were analyzed by the Student’s t test and are rep-

resented as the mean ± SEM. *p < 0.05; **p < 0.01

(n = 3). CHIR, CHIR99021; SB, SB216763.

(C) A schematic diagram shows generation of the

mouse GSK3a- and GSK3b-knockout NPC lines.

Control adeno (Ad) or adeno-Cre (Ad-Cre) virus

was introduced to generate GSK3a- or GSK3b-

knockout NPC lines.

(D) GSK3a and b function redundantly to phos-

phorylate Olig2. P-Olig2 levels were examined

in GSK3a�/+, GSK3a�/�, and GSK3a�/+GSK3b�/�

NPCs.

(E) Relative P-Olig2/Olig2 was quantified and

compared between different groups. Data were

analyzed by the Student’s t test and are repre-

sented as the mean ± SEM. *p < 0.05 (n = 3).

(F) GSK3 consensus motif fits the S10 site upon

phosphorylation at S14. pS, phosphorylated

serine; S/T (highlighted in red), the kinase’s target

serine/threonine residue; X, any amino acid.

(G) In vitro kinase assay shows that GSK3 phos-

phorylates Olig2 N-terminal peptide; however, it

requires a priming phosphorylation at S14. Syn-

thetic Olig2 N-terminal peptides (aa 1–18) were

used, and both unphosphorylated Olig2 N-termi-

nal peptide (unPO4) and phosphorylated peptide

at S14 (pS14) were tested. Reactions without

peptides (none) served as negative control. Data

were analyzed by the Student’s t test and are

represented as the mean ± SEM. **p < 0.01 (n = 3).

aa, amino acid; counts per minute (CPM).

(H) Mapping the GSK3 phosphorylation sites

by MS analysis. In vitro kinase reactions were

analyzed by MALDI-MS and –MS/MS. The doubly

phosphorylated peptide at S14 and S10 is indi-

cated by pS14/S10. m/z, mass-to-charge ratio.
Olig2 is observed only in cycling or replication-competent cells

(Sun et al., 2011).

As shown in Table S2, small molecule inhibitors of three major

MAPKs, extracellular signal–regulated kinase 1/2 (ERK1/2), p38

MAPKs, and c-Jun N-terminal kinase (JNK) have no impact on

the phosphorylation state of Olig2 in cycling NPCs. However,

a subset of small molecule CDK antagonists suppresses Olig2

phosphorylation in murine NPCs and in the BT145 human gli-

oma cell line. The active subset is confined to inhibitors that

suppress the function of CDK1 and CDK2, whereas inhibitors

active on other CDKs but not CDK1/2 show little or no activity

on Olig2 phosphorylation (Figures 3A and 3B; Table S2).

In these assays, phosphorylation of retinoblastoma protein

(RB) served as a positive control for all CDK antagonists.
Accordingly, CDK1 and CDK2 were singled out for genetic

and biochemical validation.

For genetic validation, we first generated CDK2-null NPC lines

from E13.5 embryos of CDK2-knockout mice (Berthet et al.,

2003). As indicated in Figures S1A and S1B, loss of CDK2 alone

had no effect on Olig2 phosphorylation. Targeted disruption of

CDK1 leads to arrest of embryonic development at a very early

stage (Santamarı́a et al., 2007). We tried chronic CDK1 knock-

down in NPCs by using shRNA targeting CDK1; however, the

CDK1-knockdown cell lines also failed to thrive (data not shown).

We then used an adeno-associated virus (AAV)-mediated

shRNA for acute knockdown of CDK1 in either wild-type or

CDK2-null NPCs. As indicated in Figures 3C and 3D, acute

shRNA knockdown ofCDK1withinCDK2-null NPCs significantly
Cell Reports 18, 3167–3177, March 28, 2017 3169



Figure 2. CK2 Phosphorylates Olig2 at S13

(A) Immunoblot assay. Mouse NPCs and BT145

human glioma cells were treated with the CK2 in-

hibitor CX-4945 (20 mM) for 4 hr. Cell lysates were

size fractionated by PAGE and immunoblotted

with P-Olig2 and Olig2 antibodies.

(B) Quantification of immunoblot assays. Rela-

tive P-Olig2/Olig2 levels were quantified and

compared between control and inhibitor-treated

group. Data were analyzed by the Student’s t test

and are represented as themean ±SEM. *p < 0.05;

***p < 0.001 (n = 3).

(C) Genetic validation of inhibitor data. CK2b was

knocked down in WT mouse NPCs by lentiviral

vectors that express shRNAs targeting mCK2b.

Cells that were stably transduced with lentivirus

that encode non-target shRNA served as a control

(shConr).

(D) Quantification of knockdown data. Relative

P-Olig2/Olig2 levelswere quantified and compared

between the knockdown group and control group.

Data were analyzed by the Student’s t test

and are represented as themean ±SEM. *p < 0.05;

**p < 0.01 (n = 3).

(E) CK2 consensus motif fits S13 site. D, aspartic

acid; E, glutamic acid; pS, phosphorylated serine;

S/T (highlighted in red), the kinase’s target serine/

threonine residue; X, could be any amino acid.

(F) In vitro kinase assay demonstrates that CK2

phosphorylates the Olig2 N-terminal peptide, and

this phosphorylation is facilitated by the phos-

phorylation of S14. Synthetic Olig2 N-terminal

peptides (aa 1–18) were generated without phos-

phorylation (unPO4) and with pre-phosphorylation

at S14 (pS14). Reactions without peptides (none)

served as negative control. Data were analyzed by

the Student’s t test and are represented as the

mean ± SEM. **p < 0.01 (n = 3).

(G) Mapping CK2 phosphorylation sites by MS

analysis. In vitro kinase reactions were analyzed

byMALDI-MS and –MS/MS. Peaks shown are pS3

(singly phosphorylated peptide at S3), pS13 (singly

phosphorylated peptide at S13), pS3/S13 (doubly phosphorylated peptide at S3 and S13), pS3/S14 (doubly phosphorylated peptide at S3 and S14), pS13/S14

(doubly phosphorylated peptide at S13 and S14), and pS3/S13/S14 (triply phosphorylated peptide at S3, S13 and S14).
reducedOlig2 phosphorylation, while acute knockdown ofCDK1

alone in wild-type cells had no effect on Olig2 phosphorylation

(Figures S1C and S1D). Together, these results indicate that

CDK1 and CDK2 function redundantly for phosphorylation of

Olig2.

Despite repeated efforts, we were unable to establish assay

conditions wherein recombinant CDK1 or CDK2 would function

on synthetic peptides in vitro, which might be due to the short

length of the Olig2 N-terminal peptide used in the assay. Accord-

ingly, we used an in vivo phosphorylation assay with an analog-

sensitive mutant of CDK2 (analogue-sensitive [AS]-CDK2) to

validate Olig2 as a direct substrate for CDK2. The ATP-binding

pocket of this mutant CDK2 can utilize bulky adenine analogs,

such as ATP-g-S as a phosphate donor, and can therefore label

CDK2 substrate with P-g-S (Merrick et al., 2011). Expression

vectors encoding wild-type CDK2 or this analog-sensitive

CDK2, together with V5-epitope-tagged wild-type Olig2 or the

S14G Olig2 mutant, were transfected into 293 cells that do not
3170 Cell Reports 18, 3167–3177, March 28, 2017
express endogenous Olig2. Incorporation of P-g-S into wild-

type or mutant Olig2 was assessed by anti-thiophosphate ester

antibody. As shown in Figures 3E and 3F, the analog-sensitive

mutant CDK2 can phosphorylate wild-type Olig2, whereas the

phosphorylation level is reduced upon mutation of the S14 site.

These data indicate that S14 is a direct substrate for CDK2.

Phosphorylation of the Triple Serine Motif Enables
Formation of a Hexa-phosphoserine Acid Blob in the
Amino Terminus of Olig2
During the course of this work, our procedures and protocols for

mass spectrometric analysis of Olig2 were refined. Improved

methodology enabled the detection of additional phosphoserine

residues in the amino terminal end of Olig2 at S3, S6, and S9

(Figures 4A and S2). However, as shown in Figure 4A in NPCs

expressing wild-type (WT) Olig2, peptide fragments with these

additional phosphoserine residues were never observed without

phosphorylations within the original S10, S13, and S14 sites.



Figure 3. S14 of Olig2 Is Phosphorylated by

CDK1/2

(A) Mouse NPCs and BT145 human glioma cells

treated with CDK1/2 inhibitors show a decrease in

P-Olig2 level: AZD5438 (CDK1/2/9 inhibitor), R547

(CDK1/2/4 inhibitor), CVT313 (CDK1/2 inhibitor).

P-Olig2 and Olig2 levels were examined 4 hr after

AZD5438 and R547 treatment or 24 hr after

CVT313 treatment in NPCs and 3 hr after CVT313

treatment in BT145 cells. The following concen-

trations were used: 10 mm AZD5438, 5 mm R547,

and 10 mM CVT313.

(B) Mouse NPCs treated with CDK4/6 inhibitor,

PD0332991, show no obvious change in P-Olig2

level. P-Olig2 and Olig2 levels were examined 4 hr

after PD0332991 treatment.

(C) Genetic validation of CDK1/2 inhibitor data.

The immunoblot assay shows that knockdown of

CDK1 in CDK2-knockout NPCs decreases the

P-Olig2 level. CDK1 was acutely knocked down

in CDK2-knockout NPCs by introducing AAV

that expresses shRNA targeting mCDK1. Cells

transduced with AAV that expresses non-target

shRNA served as a control (shConr). P-Olig2 and

Olig2 levels were examined at 48 hr after viral

transduction.

(D) Quantification of knockdown data. Relative

P-Olig2/Olig2 levelswere quantified and compared

between the knockdown group and control group.

Data were analyzed by the Student’s t test and are

represented as the mean ± SEM. *p < 0.05 (n = 3).

(E) An analog-sensitive kinase assay shows that

CDK2 phosphorylates Olig2 at the S14 site.

(F)Quantification of analog-sensitive kinaseassays.

Thiophosphorylated Olig2 levels were quantified,

normalized to total Olig2, and then compared

between different groups. Data were analyzed

by two-way ANOVA with the Sidak post test and

are represented as the mean ± SEM. *p < 0.05;

**p < 0.01 (n = 4).
The relationship of S3, S6, and S9 to the phosphorylation state

of the original triple serine motif was assessed in a set of ‘‘con-

tingency’’ assays. Olig2-null NPCs were transduced with lentivi-

ral expression vectors encoding Olig2 mutants with informative

phospho-null substitutions at S10, S13, or S14. As shown in Fig-

ure 4A, ablation of the original triple serinemotif completely elim-

inates phosphorylation at S3, S6, and S9. Phospho-null substitu-

tions at S13 and S14 ablate the phosphorylation of S10 and

likewise ablate phosphorylation of S6 and S9. Finally, a single

S/G substitution at S14 almost completely eliminates phos-

phorylation at S10 and S13, although there is a low level of

‘‘breakthrough’’ phosphorylation events to the amino terminal

side. This is consistent with the CK2 kinase assay, which sug-

gests that S13 and S3 can be phosphorylated even with the

absence of S14 phosphorylation, although the efficiency is rela-

tively low (Figures 2F and 2G).

The contingency relationships of S10 and S13 to the phos-

phorylation state of S14 are predicted by the priming require-

ments of GSK3 and CK2 (see Figures 1 and 2). Moreover, close

scrutiny of the Olig2 amino acid sequence shows that S10 and

S13, when phosphorylated, could themselves serve to prime

S6 and S9 for phosphorylation by GSK3 and CK2. In addition,
phosphorylation of S6 would facilitate CK2 phosphorylation on

S3. Thus, as modeled in Figure 4B, phosphorylation of S14 by

the cell cycle-modulated kinase CDK1/2 initiates formation of a

hexa-phosphate acidic domain in the amino terminus of Olig2.

Therapeutic Potential for Small Molecule Inhibitors of
Olig2 Phosphorylation
The phosphorylation state of Olig2 is developmentally regulated,

being high in cycling neural progenitors and low in terminally

differentiated, myelinating oligodendrocytes. Previous studies

have shown that gliomagenic and anti-p53 functions of Olig2

are contingent upon phosphorylation of the triple serine motif

(Sun et al., 2011). The functional relevance of this relationship

to the pathobiology of human glioma is illustrated by an opposi-

tional relationship between phospho-Olig2 and p53 status. As

shown in Figure 5, the phospho-Olig2 content of gliomas with

genetically intact p53 is more comparable to that of cycling

neural progenitors than to myelinating oligodendrocytes and is

significantly higher than that of p53 mutant gliomas.

Are therapeutic opportunities for glioblastoma embedded

in the kinases that phosphorylate the triple serine motif? To

address this question, we turned to the genetically accessible
Cell Reports 18, 3167–3177, March 28, 2017 3171



Figure 4. Phosphorylation of the Triple Serine Motif Enables For-

mation of a Hexa-phosphoserine Acid Blob in the Amino Terminus of

Olig2

(A) Summary of mass spectrometric analyses on Olig2 N-terminal phos-

phorylated peptides detected in Olig2-null NPCs that were transduced with

WT, triple phospho null (TPN) (S10A/S13A/S14G), double phospho null

(DPN) (S13A/S14G), or single phospho null (SPN) (S14G) Olig2. Black font,

phosphorylated peptides identified in previous study (Sun et al., 2011);

red font, newly identified phosphorylated peptides in WT-Olig2 sample;

blue font, contingent phospho peptides that are undetectable or barely

detectable inWT-Olig2 sample. +, present; +/�, detected but with low level;�,

undetectable.

(B) A sequentially priming phosphorylation cascade. A schematic diagram

shows how the triple serine motif creates priming sites for additional phos-

phorylations at S3, S6, and S9 that create a hexaphosphate acid blob in the

Olig2 amino terminus.

Figure 5. Analysis P-Olig2 Levels in a Panel of Glioma Cells with

Either WT p53 or Mutant p53

(A) Immunoblot of P-Olig2 in cycling neural progenitor cells (NPCs), adult

mouse corpus callosum (MCC), and low-passage human glioma cells (BT145

line).

(B) Glioma cell lines with intact p53 have significantly higher level of P-Olig2

than p53 mutant glioma cells. The relative P-Olig2/Vinculin levels were

analyzed and compared in different glioma cell lines. Data were analyzed by

the Mann-Whitney test and are represented as the mean ± SEM. *p < 0.05

(n = 8 p53 WT glioma cell lines [filled circles] and n = 4 p53 mutant cell lines

[filled boxes]).
murine NSCs. The anti-p53 functions of Olig2 manifest them-

selves in short-term assays and are quantifiable by suppression

of p21 expression. As shown in Figure 6, small molecule inhibi-

tors of CDK1/2, CK2, and GSK3a/b all trigger elevated expres-

sion of p21. Although these small molecule inhibitors likely sup-

press the phosphorylation of multiple on-target and off-target

protein substrates, the p21 responses shown in Figure 6 are

largely rescued by expression of a triple phosphomimetic
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(TPM) Olig2 (S10D/S13E/S14D), indicating that the drug effects

on p21 expression are channeled, at least in part, through their

action on Olig2.

To assess effects of the kinase inhibitors on cell prolifera-

tion, we used a preclinical murine model of pediatric glioma,

a common Olig2-positive brain tumor of childhood (Bergthold

et al., 2014). Activating mutations within the BRAF serine/thre-

onine protein kinase (BRAFV600E) and homozygous deletion

of Ink4a/ARF co-occur in a subset of World Health Organiza-

tion (WHO) grade II–IV pediatric diffuse astrocytomas (Schiff-

man et al., 2010). Mouse NPCs bearing these two mutations

are tumorigenic, and the resulting tumors recapture the histo-

logical characteristics and cellular markers (e.g., Olig2, glial

fibrillary acidic protein (GFAP), and Nestin) of human pediatric

glioma (Huillard et al., 2012). We therefore utilized this mouse

model to assess therapeutic potential of the triple serine motif

as a drug target. Of the six small molecule kinase inhibitors

studied here, the CK2 inhibitor CX-4945 scored second high-

est on the CNS multiparameter optimization (MPO) algorithm

for brain penetrance (Wager et al., 2010) (Table S3). More-

over, CX-4945 is the only one among the six small molecule

kinase inhibitors currently in clinical trials (Chon et al., 2015).

Accordingly, our studies with this tumor model focused on

CX-4945.

To address brain penetrance of CX-4945, we first monitored

Olig2 phosphorylation in the brains of drug-treated mice. As

shown in Figures 7A and 7B, CX-4945 treatment significantly

reduces P-Olig2-positive cells in the brain of our glioma mouse

model. Next, we sought to determine whether CX-4945 could

inhibit cell proliferation in our tumor model by regulating

P-Olig2 levels. This was addressed by using two knockin lines,

wherein the coding sequence of either WT Olig2 or TPM Olig2

(S10D/S13E/S14D, TPM-Olig2) was introduced into the Olig2

locus. As shown in Figures 7C and 7D, CX-4945 inhibits tumor

cell proliferation, but the growth inhibition is rescued by the

TPM-Olig2 variant. As noted for the studies on p21 expression

(Figure 6), the TPM-Olig2 rescue of proliferation is only partial,



Figure 6. Inhibition of Olig2 Phosphorylation

Enhances p53 Function

(A) Olig2 kinase inhibitors increase the p21 level

through inhibiting Olig2 phosphorylation. Olig2-

null NPCs were transduced with retroviruses that

express either WT-Olig2 or TPM-Olig2. The acti-

vation state of p21 upon kinase inhibitor treatment

was examined and compared between two NPC

lines by western blot analysis. Cells were exam-

ined either after 24-hr treatment with 5 mMCVT313

(CDK1/2 inhibitor) or after 8-hr treatment with

10 mMCX-4945 (CK2 inhibitor) or 5 mMCHIR99021

(GSK3 inhibitor).

(B) Quantification of immunoblot assay. Data were

analyzed by two-way ANOVA with the Sidak post

test. There is a significant difference between WT-

Olig2 and TPM-Olig2 in response to Olig2 kinase

inhibitors. Data are represented as the mean ±

SEM. **p < 0.01; ***p < 0.001 (n = 3).
presumably because the impact of a CK2 antagonist such as

CX-4945 is not confined to Olig2.

With respect to tumor growth in vivo, previous studies have

shown that PLX-4720 (a small molecule RAF inhibitor that is

currently in clinical trials for BRAF mutant pediatric astrocytoma;

Penman et al., 2015) prolongs survival of mice that received

intracranial grafts of the tumor cells (Bergthold et al., 2014). As

shown in Figures 7E and 7F, CX-4945, as a single agent, had

no statistically significant impact on survival of mice that were

challenged with the tumor cells. However, CX-4945 cooperated

with PLX-4720 to give a survival benefit that exceeds that deliv-

ered by the RAF inhibitor alone. Collectively, these data suggest

therapeutic potential for drugs that block phosphorylation of the

triple serine motif, either as adjuvants to radiation and chemo-

therapy or in combination with other targeted therapeutics.

DISCUSSION

During development and also in disease, pro-mitogenic/anti-p53

functions of Olig2 are controlled by phosphorylation of a triple

serine motif at the amino terminus of the protein (Mehta et al.,

2011; Sun et al., 2011). Here we identify a set of three protein ki-

nases that are both necessary and sufficient to phosphorylate

the triple serine motif. We go on to show that in its phosphory-

lated state, the triple serine motif serves as a template that en-

ables phosphorylation of an additional three serines including

S9, S6, and S3, generating a hexa-phosphoserine acidic domain

in the Olig2 amino terminus. A broad body of data document the

functional role of acidic domains (a.k.a. ‘‘acid blobs’’ or ‘‘nega-

tive noodles’’) as facilitators of protein-protein interactions that

enable transcription factor function (Banerjee and Kundu,

2003; Cross et al., 2011; Garcı́a-Rodrı́guez and Rao, 1998; Li

and Botchan, 1993; Sigler, 1988). Protein alignment of Olig2

shows complete conservation of the six serines in the amino ter-

minal acid blob among humans, mice, chickens, frogs, and fish

(Meijer et al., 2012). Formation of the Olig2 acid blob is linked

to the cell cycle by CDK1/2-mediated phosphorylation of S14.
The three kinases that phosphorylate the triple serine motif are

broadly expressed, and direct evidence of their developmental

functions in the formation of Olig2-dependent cell types is lack-

ing. However, targeted disruption of the CK2 regulatory subunit

CK2b in embryonic stemcells does recapitulate some features of

the Olig2-null mouse, including compromised NPC proliferation

and oligodendrogenesis (Huillard et al., 2010).

On a more practical note, a broad body of data suggest that

Olig2 would be an attractive target for glioma therapeutics (Ligon

et al., 2007; Mehta et al., 2011; Suvà et al., 2014). Olig2-null

mouse embryos develop to term but die within minutes following

birth, due to a total deficit of motor neurons (Lu et al., 2002; Zhou

and Anderson, 2002). However, ablation of Olig2 in the postnatal

mouse brain is survivable for extended periods of time (Cai et al.,

2007). Moreover, as a glioma therapeutic, an Olig2 antagonist

might be required only transiently as an adjuvant to standard-

of-care therapeutics. Transcription factors per se are difficult tar-

gets for drug development because their interactions with DNA

or co-regulator proteins tend to involve large surface areas.

However, protein kinases lend themselves well to development

of targeted therapeutics. Does the Olig2 acid blob constitute a

therapeutic opportunity for glioma?

Data generated with small molecule inhibitors of the triple

serine motif kinases can be correlated with a mutational analysis

conducted by Sun et al. (2011). Using site-directedmutagenesis,

Sun et al. (2011) found that a triple phospho-null mutation (S10G/

S13A/S14A) had a severe proliferation phenotype and a double

phospho-null mutation (S13A/S14G) had a partial proliferation

phenotype, whereas a single phospho-null substitution at S14

(S14G) had no discernable impact on cell proliferation. The

lack of a phenotype with the S14G mutation is somewhat at

odds with the pivotal role of S14 as ‘‘the first domino’’ to fall

in a sequentially priming, forward-feeding phosphorylation

cascade as shown in Figure 4. However, the negative result

may be explained by the MS data summarized in Figure 4A,

which suggest a low level of ‘‘breakthrough’’ phosphorylation

events to the amino terminal side of the S14G substitution. The
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Figure 7. Therapeutic Potential of an Olig2

Kinase Antagonist in a Murine Model of

Pediatric Low-Grade Astrocytoma

(A) CK2 inhibition decreases the P-Olig2 level

in vivo. Developing hGFAP-cre; BrafV600E(fl)/+;

Ink4a-Arf�/� pups were treated with 25 mg/kg of

CK2 inhibitor CX-4945 intraperitoneally for 5 days

and were analyzed at P14.

(B) Quantification of P-Olig2 immunostaining. Data

are represented as the mean ± SD. *p < 0.05

(n = 3). CC, corpus callosum. Scale bar, 50 mm.

(C) A schematic diagram shows generation of two

BRAFV600E-transformed NPC lines in an Ink4a-

Arf�/� background. The two lines express knockin,

epitope-tagged Olig2, wherein the triple serine

motif is either WT (WT-Olig2-BI) or TPM with the

S10D/S13E/S14D substitutions (TPM-Olig2-BI).

Of note, the Olig2-cre driver is used to activate

expression of the BRAFV600E oncogene, while

simultaneously disrupting another endogenous

Olig2 allele (Sch€uller et al., 2008). The resulting

mice exhibit early prenatal lethality, which pre-

cludes further study in postnatal pups.

(D) Proliferation of the TPM-Olig2-BI line is partially

resistant to the CK2 antagonist CX-4945. For

proliferation assays, 5 3 104 cells were seeded at

day 0 and 1 mM CX-4945 was added at day 1. The

cell number was assessed at day 4. Data were

analyzed by the Student’s t test and are repre-

sented as the mean ± SD. *p < 0.05 (n = 3).

(E) A schematic diagram demonstrates orthotopic

transplantation and the treatment regimen (see the

Experimental Procedures).

(F) Combination of BRAF and CK2 inhibitors signif-

icantly improves survival in an orthotopic model of

pediatricglioma.AKaplan-Meier graph is illustrated

and the log-rank test was used to determine the

survival differences between different treatment

groups. *p < 0.05; **p < 0.01 (n = 8).
partial loss of proliferative ability exhibited by the double phos-

pho-null substitution at S13/S14 (Sun et al., 2011) is in accord

with the Figure 4A data, showing that double substitution de-

livers a more complete suppression of phosphorylation events

at S3, S6, S9, and S10. It should also be noted that the cells

may adapt to chronic (i.e., genetic) loss of P-Olig2 in ways that

cannot be achieved with acute, drug-induced loss.

Against this genetic backdrop, small molecule inhibitors tar-

geted to any one of the three kinases that are essential to forma-

tion of the acid blob stimulate expression of p21 (a canonical p53

target gene) and this effect is channeled, at least in part, through

phosphorylation of the Olig2 triple serine motif (Figure 6). Among

these kinase inhibitors, the selective CK2 inhibitor, CX-4945, is

orally available and has been on clinical trials for multiple solid tu-

mors. Although it has not been tested clinically in glioma, CK2a

is frequently overexpressed in glioblastoma, particularly in the

classical subtype of glioma (50.7%) (Zheng et al., 2013). In pre-

clinical studies, CK2 demonstrates an important role in regu-

lating glioma cell viability and is necessary for glioma tumorigen-

esis in vivo. Inhibition of CK2 by CX-4945 impairs glioma cell

proliferation in vitro and suppresses human glioma growth in

the xenograph model (Dixit et al., 2012; Nitta et al., 2015; Zheng

et al., 2013). In our study, we further tested CX-4945 in a pediat-
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ric astrocytoma model. As shown in Figure 7, CX-4945 inhibits

proliferation of Olig2-positive tumor cells and cooperates with

a targeted BRAF antagonist to improve survival in a murine

model of BRAF mutant pediatric astrocytoma. Collectively, the

genetic and pharmacologic data suggest that small molecule

inhibitors of the triple serine motif protein kinases could have

therapeutic potential for malignant gliomas, either as standalone

modalities or as adjuvants to radiotherapy, genotoxic drugs, and

targeted therapeutics.

EXPERIMENTAL PROCEDURES

Kinase Inhibitors

The serine kinase inhibitors used in this study were AZD5438 (CDK1/2/9 inhib-

itor; Selleckchem), R547 (CDK1/2/4 inhibitor; Selleckchem), CVT313 (CDK1/2

inhibitor; EMD Millipore), PD0332991 (CDK4/6 inhibitor; Selleckchem), CX-

4945 (CK2 inhibitor; Selleckchem or Pfizer), CHIR99021 (GSK3 inhibitor; Sell-

eckchem), SB216763 (GSK3 inhibitor; Selleckchem), PLX-4720 (BRAFV600E

inhibitor; Plexxikon), and LiCl (GSK3 inhibitor; Sigma). All of the small molecule

inhibitors were dissolved in DMSO and stock solutions were kept at �20�C,
except LiCl, which was dissolved in water and kept at room temperature.

NPC and Human Glioma Cell Culture

Mouse NPCs were isolated from the lateral ganglionic eminence (LGE) of

E13.5–E14.5 embryos. All human glioma cell lineswere provided byDr. Ligon’s



group (Brigham and Women’s Hospital) and were originally derived from Brig-

ham and Woman’s Hospital patients undergoing surgery in accordance with

institutional review board (IRB) protocols. Both NPCs and human glioma cells

were cultured in serum-free medium containing B27 and N2 supplements,

epidermal growth factor (EGF; 20 ng/mL), and basic fibroblast growth factor

(bFGF; 20 ng/mL). Cells were grown on laminin-coated plates to maintain an

adherent monolayer culture for most assays, except for the experiments

shown in Figure 5, where glioma cells were grown as neurosphere cultures.

Animals

All animal handling and procedures were performed according to University of

North Carolina (UNC), Dana-Farber Cancer Institute (DFCI), Northwestern Uni-

versity (NWU) Feinberg School of Medicine, or University of California, San

Francisco (UCSF) guidelines under Institutional Animal Care and Use Commit-

tee (IACUC)-approved protocols.

GSK3-Null NPC Lines

To generate GSK3a/b-null NPC lines, we crossed GSK3a+/�; GSK3bfloxP/floxP

male and GSK3a�/�; GSK3bfloxP/floxP female mice (Kim et al., 2009; MacAulay

et al., 2007; Patel et al., 2008) and derived GSK3a+/�; GSK3bfloxP/floxP or

GSK3a�/�; GSK3bfloxP/floxP NPCs from the LGE of individual E13–E14 em-

bryos. To generate GSK3b-null NPC lines, we infected the above cell lines

with either adenovirus that expresses theCre recombinase gene or adenovirus

only. The ratio of virus to cells was 100:1. Transduced cells were cultured for at

least three passages before examination to ensure complete recombination

for the GSK3b locus.

In Vitro Peptide Kinase Assay

Active kinases, GSK3b and CK2, were purchased from either Promega

(GSK3b, V1991) or New England Biolabs (CK2, P6010L). Peptides that cover

18 amino acids of the N terminus of Olig2 protein were synthesized as either

native peptides or phosphorylated peptides at S14 (Tufts Physiology Core).

For kinase reactions, we mixed active kinase, Olig2 N-terminal peptides

(20mM) and 32P-labeled ATP (3,000 Ci/mmol) in reaction buffer, and then incu-

bated the mixture for 15 min at 30�C. Reactions were then blotted onto nitro-

cellulose membrane and washed three times with 150 mM phosphoric acid,

dried, and subjected to liquid scintillation counting. The products of cold pep-

tide kinase assays were subjected to MALDI-MS and tandemmass spectrom-

etry (–MS/MS) analyses to identify the phosphorylation site(s) (see the Supple-

mental Experimental Procedures).

Analog-Sensitive Kinase Assay with CDK2

WT-CDK2 and AS-CDK2 (F80G) were expressed by the p3xFLAG-CMV

(Sigma) vectors. WTOlig2-V5 and S14GOlig2-V5 were cloned into pcDNA

backbone vectors. To test whether CDK2 can phosphorylate Olig2, we trans-

fected 293 cells with WTOlig2-V5 or S14GOlig2-V5 with either WT-CDK2-Flag

or AS-CDK2-Flag. The in vivo phosphorylation assay was performed accord-

ing to a previous protocol with slight modification (Banko et al., 2011) (see the

Supplemental Experimental Procedures).

Olig2 Protein Purification

As described previously, we have cloned full-length and different mutant forms

of Olig2 into the pWZL-blast retrovirus vector (Sun et al., 2011). We generated

mouse NPC lines that stably express either WT or different mutant forms of

Olig2 by transducing Olig2-null NPCs with the appropriate virus. Exogenous

Olig2 proteins contain a V5 tag at the C terminus. For MS analysis, we isolated

the nuclear fraction and purified Olig2 by using anti-V5 agarose affinity gel

(Sigma). The immunoprecipitation (IP) samples were then digested and sub-

jected to nano-liquid chromatography (LC)-electrospray ionization (ESI)-MS

analysis for phospho-Olig2 peptides.

Preclinical Murine Models of Pediatric Low-Grade Astrocytoma

BRAFV600E in the context of Ink4a-Arf�/� is a common genetic driver set for

pediatric glioma (Huillard et al., 2012). BrafV600E(fl)/+ mice, Ink4a-Arf�/� mice,

and Olig2-cre mice have been described previously (Dankort et al., 2007;

Sch€uller et al., 2008; Serrano et al., 1996). Two knockin mouse lines that ex-

press either WT-Olig2 or TPM-Olig2 (S10D/S13E/S14D) fused to internal ribo-
some entry site (IRES)-EGFP cassettes were newly generated through homol-

ogous recombination of the Olig2 locus in embryonic stem cells (ESCs). Of

note, Olig2-cre; BrafV600E(fl)/+; Ink4a-Arf�/� mice exhibit early prenatal lethality.

However, by intercrossing the above mouse lines (see the schematic in Fig-

ure 7C), we were able to generate Olig2-cre;WT-Olig2-EGFP;BrafV600E(fl)/+;

Ink4a-Arf�/� and Olig2-cre;TPM-Olig2-EGFP;BrafV600E(fl)/+; Ink4a-Arf�/� em-

bryos and isolate NPCs fromE14.5 LGE. TheseOlig2 knockin cell lines (labeled

WT-Olig2-BI or TPM-Olig2-BI) were used for in vitro proliferation assays.

For in vivo drug tests, we used adenovirus-Cre to activate BRAFV600E

within NPCs isolated from BrafV600E(fl)/+;Ink4a-Arf�/� embryos (see the sche-

matic in Figure 7E). 2 3 105 cells were injected into the brains of 6-week-old

immunodeficient (nude) mice as previously described (Hashizume et al.,

2010). Mice were randomly assigned to four cohorts and treated with

20 mg/kg PLX-4720 and/or 25 mg/kg CX-4945 by intraperitoneal injection

for 5 consecutive days (Monday to Friday) for 2 weeks starting 5 days after

transplantation. All mice were monitored daily for the development of symp-

toms related to tumor growth. Mice were euthanized when they exhibited

symptoms indicative of significant impairment in neurological function.

Statistical Methods

Differential levels of P-Olig2 levels in glioma cell lines were analyzed by the

Mann-Whitney test. Two-way ANOVA with Sidak post tests was performed

when analyzing the analog-sensitive kinase assays and when comparing the

response of WT-Olig2 and TPM-Olig2 cell lines to Olig2 kinase inhibitors.

The log-rank test was used to determine the survival differences between

different treatment groups of mice, and Student’s t tests were used to analyze

sample differences in other assays as described in the figure legends. The sta-

tistical values were obtained using GraphPad Prism software.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

two figures, and three tables and can be found with this article online at
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