
Late-life depression is known to be associated with specific clinical
features, such as cognitive impairments, it typically has a poor
outcome and is a risk factor for dementia. Vascular factors have
been implicated in its aetiology,1 but neuroinflammation has
not been well studied despite being a highly plausible mechanism
and potentially tractable target. We have previously shown an
increase in inflammatory cytokines in the blood in older
individuals with depression.2 In the current study we aimed to
show whether we could demonstrate an increase in central (brain)
inflammation in vivo using [11C]PK11195 positron emission
tomography (PET) imaging. [11C]PK11195 is a radioligand that
selectively binds to the translocator protein (TSPO), a receptor
expressed on activated microglia. Increased binding has been found
in stroke, traumatic brain injury and some neurodegenerative
diseases, such as Alzheimer’s disease.3 We also investigated
vascular and structural changes in late-life depression using
multimodal magnetic resonance imaging (MRI).

Method

Within the Neuroimaging of Inflammation in Memory and Other
Disorders (NIMROD) study, we recruited five participants with
depression aged 65–78 years (depression group) from secondary
care National Health Service (NHS) psychiatry services, who
had met DSM-IV criteria for major depression (assessed using
the Structured Clinical Interview for DSM Disorders)4 and 13
controls (59–81 years) from the NIHR Clinical Research Network.
Participants had full clinical and cognitive assessment and
venepuncture for C-reactive protein (CRP) measurement. All
participants provided written informed consent. Ethics approval
for the study protocol was obtained from the National Research
Ethics Service – East of England Committee.

Participants underwent multimodal MRI on a 3T Siemens Verio
scanner including T1 weighted structural (176 slices, 161 mm,
1 mm slice thickness, reaction time (TR) = 2300 ms, echo time
(TE) = 2.98 ms, flip angle 9), T2 FLAIR (75 slices, 0.960.9 mm,
2 mm slice thickness, TR = 12540 ms, TE = 132 ms, flip angle
120) and high-resolution hippocampal T2 coronal (24 slices,

0.460.4 mm, 2 mm slice thickness, TR = 6420 ms, TE = 11 ms, flip
angle 160). Within 4 months of MRI scans, PET imaging was
performed on a GE Advance scanner (GE Healthcare, Waukesha,
Wisconsin) for 75 min following bolus intravenous injection of
[11C]PK11195 (500 MBq), with a pre-injection 15 min 68Ge/68Ga
transmission scan used for attenuation correction.

To estimate TSPO binding site density, non-displaceable binding
potential (BPND) was determined from [11C]PK11195 PET data
with the guidance of T1 weighted MRI.5 Regional white matter
hyperintensity (WMH) volumes were segmented and quantified
using T2 FLAIR images. T2 hippocampal coronal scans were
manually segmented for cornu ammonis 1 (CA1), CA2, CA3/dentate
gyrus, and measured for subiculum and entorhinal thickness. (See
online supplement DS1 for detailed methods of PET analysis as
well as WMH and hippocampal segmentation.)

As a result of the relatively small sample size in the depression
group, we did not assume Gaussian data distributions. Group-
level statistical comparisons of regional [11C]PK11195 PET BPND

as well as demographic, cognitive, blood, white matter lesion and
hippocampal subfields data were performed using non-parametric
Mann–Whitney U-test. Chi-squared test was used to test for gender
differences between groups. In addition, regional [11C]PK11195
BPND data were also analysed using Monte Carlo randomisation
tests to obtain P-values for each participant. (See online
supplement DS1 for further details.) Results are reported without
correction for multiple comparisons, noting that the primary
outcome measure related to our principal hypothesis was
[11C]PK11195 BPND in limbic cortical regions associated with
depression and dementia.

Results

The two groups did not differ in age, gender ratio, education or global
cognition (Mini-Mental State score6) but the depression group had
significantly higher blood CRP levels than controls (mean CRP:
depression group 18.8 mg/L, control group 1.2 mg/L; P= 0.002)
and a trend in Montgomery–Åsberg Depression Rating Scale7 score
(depression group 10.0, control group 4.0; W= 13.5, P= 0.065).

Although largely recovered from their depression at time of
imaging, at the group level, participants with depression had
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Summary
We studied neuroinflammation in individuals with late-life
depression, as a risk factor for dementia, using [11C]PK11195
positron emission tomography (PET). Five older participants
with major depression and 13 controls underwent PET
and multimodal 3T magnetic resonance imaging (MRI),
with blood taken to measure C-reactive protein (CRP).
We found significantly higher CRP levels in those with late-life
depression and raised [11C]PK11195 binding compared with
controls in brain regions associated with depression,
including subgenual anterior cingulate cortex, and significant
hippocampal subfield atrophy in cornu ammonis 1 and
subiculum. Our findings suggest neuroinflammation requires

further investigation in late-life depression, both as a possible
aetiological factor and a potential therapeutic target.
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significantly higher [11C]PK11195 BPND compared with controls
in left subgenual anterior cingulate cortex (mean BPND:
depression group 0.1103, control group 0.0246; W= 54,
P= 0.035), and right parahippocampus (depression group
0.1225, control group 0.0490; W= 53, P= 0.046); these are
substantiated by the voxel-wise results given in Fig. 1 and online
Fig. DS5. Using the individual-level Monte Carlo randomisation
test, all five individuals in the depression group showed a significant
increase of [11C]PK11195 BPND in the aforementioned brain
regions, confirming the group-level statistical inference.

The depression group showed trends for more extensive
WMH in both periventricular (depression group 7.33 ml, control
group 3.74 ml; W= 13, P= 0.059) and deep (depression group
1.85 ml, control group 0.73 ml; W= 15, P= 0.095) white matter.
We found a significant reduction of CA1 area in the coronal plane
(depression group 22.09 mm2, control group 24.90 mm2; W= 52,
P= 0.019) and subiculum thickness (depression group 1.73 mm,
control group 1.95 mm; W= 56, P= 0.004) in the depression
group. (See online supplement DS2 for additional demographic,
cognitive, WMH and volumetric results.)

Discussion

We found evidence of both central and peripheral inflammation in
older individuals with depression, including changes in the
anterior cingulate and medial temporal lobe, which play a key role
in the regulation of mood and cognitive functioning.8 Damage in
these areas is linked with an elevated risk of dementia.9 Increased
[11C]PK11195 binding in people with depression could be
associated with cerebrovascular disease and white matter lesions,
reported in the current and previous studies,10 although some
controls also had a similar burden of WMH with normal levels
of [11C]PK11195 binding in subgenual anterior cingulate cortex
and parahippocampus (online Fig. DS5). It is notable that
[11C]PK11195 BPND showed the greatest effect size compared with
other modalities, with a 300% increase from controls (v. 150% for
WMH and 10% for hippocampal atrophy), suggesting a strong
biomarker potential for late-life depression.

There was no major cognitive impairment in our cohort,
although the depression group showed significant atrophy in the
hippocampus and subiculum, which have been shown to correlate
with greater risk of cognitive impairment and Alzheimer’s
disease.11 In addition, the hippocampus is a key component in the
hypothalamic–pituitary–adrenal (HPA) axis. Increases in cytokine
levels can lead to increases in oxidative stress and glucocorticoid
as well as decreases in serotonin and other neurotransmitters in
HPA resulting in impaired mood and cognition.12,13

Our results were not corrected for multiple comparisons, and
further replication is required in a larger cohort. However, the
large effect size of [11C]PK11195 was in keeping with our principal
hypothesis and was supported by both a primary group-level test
and secondary individual statistical tests. Cross-sectional studies
provide limited information about whether neuroinflammation
was the cause or consequence of neuronal damage in affected brain
areas, so future longitudinal studies are needed. In conclusion, we
suggest that neuroinflammation may be an important mechanism
in late-life depression and merits further investigation as a potential
target for novel therapeutics in a condition that responds poorly
to conventional antidepressant therapy.
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Fig. 1 Statistical comparison of individual participant’s
[11C]PK11195 non-displaceable binding potential (BPND) with
the control group (Z-scores).

Red arrow: subgenual anterior cingulate cortex.
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Supplement DS1  

METHOD 

MRI guided PET Image Analysis  

To estimate TSPO binding site density, non-displaceable binding potential (BPND) - a measure of 

specific binding - was determined using simplified reference tissue modelling of the dynamic 

[11C]PK11195 PET data, with supervised cluster analysis to determine the reference tissue time-

activity curve.1 BPND was estimated voxel-wise and also for a set of regions based on the Hammers 

atlas (http://brain-development.org/brain-atlases/). The regions of interest were non-rigidly inverse-

normalized to subjects’ native T1 space, to which the dynamic PET image data were coregistered. 

Prior to the determination of BPND, regional PET data were corrected for cerebrospinal fluid (CSF) 

contamination using SPM tissue class segmentation to reduce CSF-induced partial volume effects, 

particularly those resulting from differential brain atrophy across subjects. To illustrate the spatial 

distribution of BPND in each individual depressed subject, [11C]PK11195 BPND maps of both 

depressed and control groups were normalized to MNI space 

(http://www.bic.mni.mcgill.ca/ServicesAtlases/HomePage). Then, the BPND was transferred to Z-score 

with respect to the control group after non-brain areas (identified as not white or grey matter) were 

removed using SPM tissue class segments. 

 

T2 FLAIR: Segmentation and Quantification of White Matter Hyperintensities 

Based on T2 FLAIR scans, individual white matter hyperintensity (WMH) maps were segmented 

using the Lesion Segmentation Toolbox in Statistical Parametric Mapping 12 (SPM: Wellcome 

Institute of Neurology, University College London, UK). The technical details have been previously 

described2 and this method has been shown to yield a high agreement with semi-manual lesion 



volume estimation.3 After the segmentation of lesion maps, a trained operator (S.G.) manually 

inspected and corrected the segmentations while blinded to group diagnosis. An in-house script4 was 

then used to quantify periventricular (PvWMH), and deep WMH volumes, as well as total WMH. In 

addition, lobar WMH in bilateral frontal, temporal, parietal, and occipital regions were also calculated. 

 

T1 Weighted: Voxel-based Morphometry and ROI Analysis of Grey Matter Volumes 

Individual T1-weighted volumetric images were processed using an optimised voxel-based 

morphometry (VBM) (http://dbm.neuro.uni-jena.de) within SPM. T1-weighted images were first bias-

corrected and segmented into grey matter (GM), white matter (WM), and cerebrospinal fluid (CSF) 

partitions, and then affine normalised into MNI space. GM probability maps were modulated (intensity 

corrected for local volumetric changes induced during normalisation), followed by smoothing with an 

8-mm full width at half maximum kernel. VBM analysis of GM differences was performed with a two-

sample T-test, controlling for Total Intracranial Volume (TIV: calculated as the sum of total volumes of 

the GM, WM and CSF partitions). Analyses were restricted to the GM mask of the template, 

thresholded at 10% GM probability. Results were assessed at a statistical threshold of p<0.001 

uncorrected. We did not perform a conservative multiple comparison correction given the small 

sample, particularly in the LLD group. From the modulated GM images, we used the Hammers atlas,5 

modified in-house to achieve consistency with [11C]PK11195 PET parcellations, to extract the 

average volumes (mm3) of specific regions of interests in the medial temporal lobe and the cingulate 

regions. Between-group differences in volumetric data were compared using ANCOVA while 

correcting for TIV. 

 

T2 Weighted: Hippocampal Subfields Analysis 

Hippocampal subfields were segmented manually using the high resolution (0.4 mm x 0.4 mm) T2 

weighted MRI data. In order to increase the signal to noise ratio we acquired two images for each 

subject and aligned them before averaging to produce a final image. The averaged images for each 



subject were then analysed by two raters (L.H. and S.S.), blinded to the diagnosis and subject 

characteristics, using an established manual approach, in which the hippocampi and subfields CA1, 

CA2, CA3/DG were traced on the 3 coronal slices directly posterior to the head of hippocampus;6,7 

see Fig. DS1.  

 

The subiculum thickness (see Fig. DS1) was measured at the point immediately before it joined the 

medial hippocampus on the three slices that had hippocampal traces made. The entorhinal cortex 

(ERC) was measured at the same point on the first slice of the hippocampal tracings and then the two 

slices anterior to this (in the hippocampal head) with the line drawn perpendicular to the inferior 

border of the ERC. The values for the subfield area, the ERC and subiculum thickness were 

averaged across the left and right hemispheres and the three image slices analysed. 

 

We assessed the intra-rater reliability of the tracings by repeating the measurements with the same 

rater one month after the initial tracings. It was performed on a test dataset of 3 AD, 3 MCI and 3 

control subjects. (One control subject in the test dataset is a subject in our control group.) As with the 

initial tracing, the rater was blinded to the diagnosis when repeating the procedure a month later. For 

inter-rater reliability, both raters traced the same test dataset of 9 subjects. We measured the 

percentage difference in measurements and Intraclass Correlation Coefficient (ICC), using a two-way 

random model for absolute agreement of measurements.  

 

Individual level Monte Carlo randomisation test for regional [11C]PK11195 PET data 

In clinical practice, it is essential to obtain information about each individual patient. So, in addition to 

the group comparison, we have performed an additional individual level analysis comparing each 

subject to the rest of the population. This analysis took advantage of the relatively large control group 

(N=13) and derived a set of p-values for every subject including both controls and LLD subjects. This 

kind of randomisation test was widely used in functional MRI analysis (such as those statistical 



algorithms implemented in FSL7) and to the analysis of EEG data in a lie detection scenario, in which 

discriminating guilty information at single subject level is particularly critical8,9. The analysis procedure 

was as the follows: 

 

1. Leave one subject S out; 

2. Compute the mean BPND of the opposite group to S; 

3. Compute the distance (or difference) between the mean BPND and the BPND of subject S; 

call this distance d; 

4. Randomly permute the group labels among all subjects except for S. This is to simulate the 

null hypothesis in which the BPND for controls and patients would be sampled from the same 

distribution, i.e. group labels can be arbitrarily exchanged. 

5. Compute the mean of the opposite group based on the permuted data, and the distance 

between the mean and the subject S. Call the new distance ds; 

6. Repeat step 4 and step 5 for 10,000 times to build a null distribution of ds; (See Fig. DS2 for 

an example null distribution for parahippocampus ROI in subject LLD5.) 

7. The percentage of times when ds is larger than d shows the likelihood of false positive, so 

can be converted to a p-value for subject S. 

 

We have performed the above test for both subgenual anterior cingulate and parahippocampus ROIs, 

and the two p-values were further combined using the Stouffer's methods into a single p-value for 

each subject. 

  



Supplement DS2 

 RESULTS 

Subject Characteristics and Clinical Measurements 

Depressed subjects (LLD) and controls (Con) did not differ in age, sex ratio, education or global 

cognition but had significantly higher blood CRP levels than controls, and a trend in Montgomery–

Åsberg Depression Rating Scale (MADRS). (See Table DS1.)  Table DS2 shows the previous history 

of depressive episodes for the LLD subjects. 

 

White Matter Lesions 

We found marginally increased WMH volumes in subjects with LLD in both periventricular and deep 

white matter. In terms of lobar distribution, the majority of WMH were in frontal and parietal regions, 

with temporal and occipital areas relatively spared compared with controls; see Table DS3. However, 

we found that white matter lesions were common in both controls and LLD subjects largely due to the 

age range of our subjects. 

 

Grey Matter Volume 

In the whole brain voxel wise analysis, we found bilateral hippocampal, right fusiform, right frontal and 

bilateral precuneus atrophy in LLD subjects compared with controls (controlled for age, sex, years of 

education and TIV but uncorrected at p < 0.001; not significant after FWE/FDR corrections); see Fig. 

DS3. In the ROI analysis using the modified Hammers atlas, we found reduction in GM volume in 

right hippocampal in LLD (controlled for age, sex, years of education and TIV but uncorrected for 

multiple comparisons); see Table DS4. 

 

Hippocampal Segmentation Test–retest Reliability 

The reliability of intra- and inter-rater measurements was comparable to what is found in the 

literature,5,6 with differences in the CA1, CA2 and CA3/DG areas and subiculum and ERC thickness 



below 13%, which is regarded as highly consistent. The intra-rater reliability was generally better than 

the inter-rater reliability in terms of both percentage size differences and ICC; see Table DS5. 

 

Hippocampal Subfields 

Using T2 weighted scans optimised for hippocampal regions, we found significant atrophy in CA1 and 

subiculum areas in the medial temporal lobe, and a marginally atrophic CA2 in subjects with LLD 

compared with controls, see Table DS6. This is consistent with both our GM volume analysis based 

on T1 weighted scans and prior research. 

 

Individual level results for [11C]PK11195 BPND 

Using the Monte Carlo methods, we found that all LLD subjects have significantly increased 

[11C]PK11195 BPND in subgenual anterior cingulate cortex and parahippocampus, while all controls 

did not have such an effect. Individual level p-values for five LLD subjects are shown in Table DS7. 

This result based on a more rigorous nonparametric statistical test that makes minimum assumption 

about the data showed a consistent finding with the group level inference reported in the main text. 

So, we can be more confident that the association in [11C]PK11195 BPND was a real and robust 

effect, because the randomisation test when sufficient resamplings are taken, accurately 

approximates exhaustive permutation tests, which are, in a specific sense, statistically exact. The 

randomisation procedure has replicated this experiment a large number of times (10,000 in this case), 

providing what is effectively a large sample size when accumulating across replications and the 

effectiveness of the method at the individual-level carries over to a larger sample. 

 

Age and Disease Duration Effects 

Although not significant, LLD subjects were 5 years older than controls on average. Due to the small 

sample size, we could not remove the younger controls to match the age between groups, or control 

age effectively in the statistical test. However, we found no correlation between age and the 



[11C]PK11195 BPND in subgenual anterior cingulate cortex and parahippocampus for controls, 

suggesting the group difference was unlikely a result of age. 

 

We found a trend level correlation between [11C]PK11195 BPND in subgenual anterior cingulate cortex 

and age at disease onset (r=0.8, p=0.1) for subjects with LLD; see Fig. DS4. However, this 

relationship was not found in parahippocampus.  
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 Controls LLD p 

Age 68.0 (5.5) 73.2 (5.3) 0.108 

Sex (F:M) 8:5 3:2 0.952 

Education (yrs) 14.1 (2.8) 12.0 (3.9) 0.165 

MMSE 28.7 (1.0) 27.6 (1.9) 0.275 

ACE-R  91.3 (5.5) 88.4 (7.8) 0.547 

CRP (mg/L) 1.2 (1.2) 8.0 (4.2) 0.004 

ESR 12.1 (11.1) 8.3 (5.8) 0.592 

WBC 6.9 (1.8) 7.7 (1.1) 0.178 

GDS 1.5 (1.3) 3.0 (4.5) 0.896 

HADS Anxiety 5.0 (4.0) 7.2 (4.2) 0.279 

HADS Depression 2.4 (1.9) 3.0 (3.1) 0.747 

MADRS 4.0 (4.6) 10.0 (7.1) 0.065 

 

Table DS1. Demographic and clinical characteristic in mean (SD). P values were derived using 

nonparametric Mann-Whitney U test except for sex, which used the Chi-square test. Abbreviations: 

LLD - Late life depression; MMSE - Mini Mental State Examination; ACE-R – Addenbrooke’s 

Cognitive Examination Revised; CRP - C-reactive protein; ESR – erythrocyte sedimentation rate; 

WBC – white blood cell count; GDS - Geriatric Depression Scale; HADS – Hospital Anxiety and 

Depression Scale; MADRS - Montgomery–Åsberg Depression Rating Scale. 

  



 

 LLD1 LLD2 LLD3 LLD4 LLD5 

Age of onset of first depression (years) 52 62 75 71 73 

Years from disease onset 13 9 3 5 3 

Number of previous depressive episodes 2 4 1 3 5 

 

Table DS2. History of depressive episodes. 

 

Volumes (mm3) Controls LLD p 

Total WMH 4.47 (2.48) 9.18 (6.00) 0.12 

Periventricular WMH 3.74 (2.06) 7.33 (4.45) 0.059 

Deep WMH 0.73 (0.61) 1.85 (1.76) 0.095 

Frontal L 0.95 (0.54) 1.92 (1.08) 0.075 

Frontal R 1.03 (0.72) 2.29 (1.45) 0.024 

Parietal L 0.32 (0.27) 1.07 (1.03) 0.010 

Parietal R 0.39 (0.58) 0.95 (1.07) 0.046 

Occipital L 0.30 (0.25) 0.29 (0.09) 0.94 

Occipital R 0.28 (0.26) 0.31 (0.17) 0.70 

Temporal L 0.27 (0.19) 0.51 (0.44) 0.25 

Temporal R 0.23 (0.22) 0.50 (0.48) 0.21 

 

Table DS3. WMH in periventricular and deep WM, as well as it’s lobar distribution. 

Abbreviations: LLD - Late life depression; L - Left; R - Right; WMH - white matter hyperintensity. 

  



 

Volumes (mm3) Controls LLD p a p b 

Hippocampus L 1812.73 (136.73) 1739.55 (140.97) 0.170 0.646 

Hippocampus R 2071.32 (132.76) 1959.99 (167.57) 0.034* 0.288 

Parahippocampal Gyrus L 2757.66 (253.34) 2840.81 (107.70) 0.586 0.607 

Parahippocampal Gyrus R 2739.44 (252.60) 2602.34 (307.42) 0.101 0.685 

Presubgenual Anterior 

Cingulate L 

606.77 (108.99) 598.89 (54.33) 0.629 0.500 

Presubgenual Anterior 

Cingulate R 

499.24 (132.83) 492.29 (81.51) 0.743 0.773 

Subgenual Anterior 

Cingulate L 

700.09 (127.23) 669.03 (30.27) 0.362 0.305 

Subgenual Anterior 

Cingulate R 

612.97 (121.59) 603.88 (48.08) 0.657 0.444 

Posterior Cingulate L 4203.35 (524.93) 4342.61(419.52) 0.744 0.864 

Posterior Cingulate R 4091.32 (590.70) 4119.15 (363.35) 0.794 0.752 

Insula L 6958.11 (798.16) 7316.50 (457.14) 0.412 0.405 

Insula R 7124.87 (742.94) 7552.37 (728.02) 0.336 0.279 

TIV 1501.8 (149.48) 1534.24 (165.60) 0.694 0.754 

 

Table DS4. Volumetric comparisons of regions of interest between controls and late-life 

depression in mean (SD). p a Statistical comparisons were performed with ANCOVA accounting for 

TIV; p b ANCOVA accounting for TIV, age, gender, and education. Abbreviations: LLD - Late life 

depression; L - Left; R - Right; TIV - Total intracranial volume. 

  



 

 

 CA1 CA2 CA3/DG Subiculum 
thickness 

ERC 
thickness 

Inter-rater Reliability 
Percentage difference 

(%) 11.9 11.7 12.8 11.6 9.2 

ICC (average 
measures) 0.775 0.798 0.629 0.751 0.572 

Significance p value < 0.001 < 0.001 0.018 < 0.001 0.01 
Intra-rater Reliability 

Percentage difference 
(%) 8.3 6.5 9.3 8.3 4.0 

ICC (average 
measures) 0.83 0.832 0.813 0.839 0.559 

Significance p value < 0.001 0.002 0.005 0.004 0.107 
 

Table DS5. Hippocampal subfield segmentation reliability: Repeated measures for a total 9 

samples (3 AD, 3 MCI and 3 Controls), percentage difference and ICC is a two-way random model 

testing absolute agreement. Abbreviations: ICC - Intraclass Correlation Coefficient. 

 

 

 Controls LLD p 

CA1 area (mm3) 24.90 (2.92) 22.09 (0.41) 0.019 

CA2 area (mm3) 1.35 (0.23) 1.41 (0.36) 0.08 

CA3/DG area (mm3) 18.75 (3.25) 17.25 (1.32) 0.51 

Subiculum thickness (mm) 1.95 (0.13) 1.73 (0.09) 0.0039 

ERC thickness (mm) 2.34 (0.34) 2.24 (0.23) 0.8 

 

Table DS6. Hippocampal subfield volumes and thicknesses - mean (SD).  Abbreviations: LLD - 

Late life depression; CA - Cornu Ammonis. 

 



Subject 
p-value for 

parahippocampus 

p-value for 

subgenual ACC 
Combined p-value 

LLD1 0.049 0.0042 0.0012 

LLD2 0.0023 0.01 0.00014 

LLD3 0.045 0.018 0.0036 

LLD4 0.02 0.03 0.0026 

LLD5 0.044 0.038 0.0069 

 

Table DS7. Individual level p-values for five LLD subjects based on Monte Carlo 

Randomisation test. Both the ROI and combined p-values are significant for all LLD subjects 

revealing an overall 100% hit rate. 

 

 

 

Fig DS1 Manual segmentation of the hippocampal subfields: 1. Subiculum, delineated at the 

medial border of the hippocampus, 2. Entorhinal cortex (ERC), measured perpendicular to the inferior 

border, 3. Cornu Ammonis 1 (CA1) subfield, 4. Cornu Ammonis 3/dentate gyrus (CA3/DG) subfield: 

the CA1-CA3 boundary is delineated using the clearly visible hypointense line (left image) 5. Cornu 

Ammonis 2 (CA2) subfield, marked as the height of the CA1 subfield at approximately the midpoint of 

horizontal axis. 

 



 

 

 

Fig. DS2 Distance between individual sample and population mean null hypothesis 

distributions. Randomisation inferred null hypothesis distributions for differences between a LLD 

subject and the sample mean of 13 surrogate control subjects generated from permutation. The 

vertical line marks true observed value for the LLD subject and p-value region to the right of the line.  



 

 

Fig. DS3 Voxel-based morphometry analysis of GM differences between LLD and controls. At a 

statistical threshold of p < 0.001 (uncorrected), the LLD group showed atrophy in (A) bilateral 

hippocampus; (B) R Fusiform gyrus; (C) R Frontal cortex; and (D) bilateral precuneus after controlling 

for TIV. Abbreviations: LLD - Late life depression; L - Left; R - Right; TIV - Total intracranial volume. 

 

 



 

Fig DS4 Correlation between [11C]PK11195 BPND and age at disease onset for five LLD 

subjects. 
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Fig DS5   Rows 1 and 3: statistical comparison of individual participant’s [11C]PK11195 non-

displaceable binding potential (BPND) with the control group (Z-scores); rows 2 and 4: T2 

segmented FLAIR images with white matter lesion shown in yellow for five participants with 

depression. Con, control; LLD, participant with late-life depression; sgACC, subgenual anterior 

cingulate cortex; parHip, parahippocampus. 
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