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Bromodomain protein 4 discriminates
tissue-specific super-enhancers containing
disease-specific susceptibility loci in
prostate and breast cancer
Verena Zuber1,2,3,4, Francesco Bettella2,3, Aree Witoelar2,3, the PRACTICAL Consortium, the COGS-CRUK GWAS, the
BCAC Consortium, the TRICL Consortium, Ole A. Andreassen2,3, Ian G. Mills1,6,7†, Alfonso Urbanucci1,6*†

Abstract

Background: Epigenetic information can be used to identify clinically relevant genomic variants single nucleotide
polymorphisms (SNPs) of functional importance in cancer development. Super-enhancers are cell-specific DNA
elements, acting to determine tissue or cell identity and driving tumor progression. Although previous approaches
have been tried to explain risk associated with SNPs in regulatory DNA elements, so far epigenetic readers such as
bromodomain containing protein 4 (BRD4) and super-enhancers have not been used to annotate SNPs. In prostate
cancer (PC), androgen receptor (AR) binding sites to chromatin have been used to inform functional annotations of SNPs.

Results: Here we establish criteria for enhancer mapping which are applicable to other diseases and traits to achieve the
optimal tissue-specific enrichment of PC risk SNPs. We used stratified Q-Q plots and Fisher test to assess the differential
enrichment of SNPs mapping to specific categories of enhancers. We find that BRD4 is the key discriminant of tissue-
specific enhancers, showing that it is more powerful than AR binding information to capture PC specific risk loci, and
can be used with similar effect in breast cancer (BC) and applied to other diseases such as schizophrenia.

Conclusions: This is the first study to evaluate the enrichment of epigenetic readers in genome-wide associations
studies for SNPs within enhancers, and provides a powerful tool for enriching and prioritizing PC and BC genetic risk
loci. Our study represents a proof of principle applicable to other diseases and traits that can be used to redefine
molecular mechanisms of human phenotypic variation.

Keywords: BRD4, Genome-wide association studies, SNPs, Functional annotation, Chromatin, Risk loci, Prostate cancer
risk, breast cancer risk, schizophrenia, super-enhancer

Background
Genome-wide association studies (GWASs) have linked
more than ten thousand of single nucleotide polymor-
phisms (SNPs) to human diseases and traits [1]. Given
that a great part of associated variants are located in
known tissue-specific enhancers, a recent study by

Tehranchi and colleagues [2] found that these non-coding
variants affect transcription factors (TFs) binding and
gene expression. Although they found that CCCTC-
binding factor (CTCF) is likely to play a pioneering role in
translating natural genetic variation in chromosomal
architecture [2], we still strive to understand tumor-
specific epigenetic features that render possible progression
toward such disease. For instance, previous approaches
have been adopted to explore disease risk association with
regulatory DNA elements [3–6].
In prostate cancer (PC) the androgen receptor (AR)

binds predominantly to gene-distal sites and has been
used by multiple groups to functionally annotate genetic
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risk loci based on overlaps with risk single nucleotide
polymorphisms (SNPs) as measured in genome-wide
association studies (GWAS), which in some cases are
also predicted to affect AR binding [7, 8].
Epigenetic marks such as acetylation on Histone 3

lysine 27 (H3K27ac) have been used as annotation of
enhancers [9]. Moreover, regions of extended H3K27ac
bound by combinations of mediator complex subunit 1
(MED1) and bromodomain containing protein 4 (BRD4)
have been defined as super-enhancers important to
determine cell identity [10–12]. BRD4 has proven to be
involved in several diseases thanks to the small molecule
inhibitor JQ1 [13]. In PC cells, BRD4 was recently
shown to bind to the AR and affect its activity [14] while
components of the mediator complex such as MED1
and MED12 were recently found to be implicated in
advanced PC [15, 16].
SNPs associated with common diseases have been

found to lie within enhancers driving transcriptional
output and have been identified using different
methods [9]. For PC, the most recent methods in-
clude genotyping matched to expression quantitative
trait loci analysis and epigenetic marks such as
H3K27Ac combined with chromatin accessibility [17,
18] or additional combination of binding information
for key TFs such as AR and FOXA1 [19]. Here we
combined information on H3K27ac profile with bind-
ing site data for BRD4 and MED12 to improve the
functional annotation of PC risk SNPs based on a
previously described enrichment analysis [18].
We show that this method is able to capture SNPs asso-

ciated not only with PC but also in the context of Breast
Cancer (BC) and Lung Cancer (LC) susceptibility. We find
that BRD4 is the key discriminant of tissue-specific super-
enhancers and binds disease specific PC and BC low
p-value risk SNPs. Enrichment of disease-specific risk SNPs
is higher when BRD4 binding profile information is incor-
porated with other epigenetic marks such as H3K27Ac and
MED components, than for binding profiles of key TFs im-
plicated in disease development and progression such as
the AR or estrogen receptor (ER). Inhibitors for
BRD4 are in clinical trials. However, little is known
about the contribution of BRD4 to brain diseases. In
order to evaluate if similar principles apply also for
heritable mental disorders we extended our frame-
work to epigenetic marks including BRD4 binding de-
rived from Schwann cells and applied the enrichment
analysis to GWAS studies of mental disorders from
the Psychiatric Genetics Consortium (PGC) [20, 21].

Methods
Data source for enhancers’ annotation
AR binding information in both LNCaP and VCaP cells
was retrieved from Massie et al., (2011) [22]. Raw data

were aligned with novoalign to human genome version
hg19, and peaks were called with MACS using default pa-
rameters after filtering low quality reads (score below 20).
Resulting peaks were then overlapped using Bedtools.
MED1 binding information and H3K27Ac profile in
LNCaP cells was retrieved from Wang et al., (2012) [23]
and re-analyzed as described above. To define the degree
of overlap with super-enhancers, we also downloaded
super-enhancers coordinates from dbSUPER database
[24]. BRD4 binding information and H3K27Ac profile in
VCaP cells was retrieved from Asangani et al., (2014) [14].
ER and BRD4 binding information were retrieved from
Nagarajan et al., (2014) [25]. H3K27Ac profile in MCF7
was retrieved from Theodorou et al., (2013) [26]. BRD4
and MED1 binding information, and H3K27Ac profile for
small cell lung cancer (SCLC) cell line H2171 and
Schwann cells were retrieved from cistrome [27]. All cell-
specific datasets were equally analyzed to ensure compar-
ability within a tissue type.
Enhancers were defined in LNCaP based on (1) ex-

tended H3K27Ac marked regions ranging from 3000 bp
to 200 kb (Additional file 1); (2) an intersection of these
H3K27Ac marked regions with MED12 binding sites
(Additional file 2). In VCaP cells enhancers were defined
(3) as an extended H3K27Ac marked regions ranging
from 3000 bp to 200 kb (Additional file 3) (4) the inter-
section of H3K27Ac stretches longer than 2000 bp and
BRD4 binding sites (in VCaP cultured in presence of an-
drogens) (Additional file 4) or (5) as BRD4 sites alone
(Additional file 5). (6) To achieve a consensus map of
super-enhancers in PC (Additional file 6) we selected
super-enhancers found in LNCaP cells that were found
to have H3K27Ac and BRD4 binding also in VCaP cells.
Enhancers in MCF7 cells were identified following the

criteria described in Hnisz et al., (2013) [12]. First,
H3K27Ac peaks closer than 100 bp were merged, then
only stretches longer than 2000 bp were selected
(Additional file 7). Different compendia of enhancers
were then created based on the presence of BRD4
(Additional file 8) and ER binding (Additional file 9) or
the combination of these features (Additional files 10
and 11). The same type of algorithm was followed to
identify enhancers in H2171 and Schwann cells 90-8TL
(Additional files 12, 13, 14, 15, 16, 17 and 18). DNase I
hypersensitive sites (DHS) profiles for LNCaP cells were
retrieved from He et al. (2012) [28] and from ENCODE
(Additional files 19 and 20). A more stringent profile of
these two based on overlap (Additional file 21) was also
included.

Data source for summary statistics of genome-wide
association studies
We obtained summary statistics from large meta-
analyses of the traits of interest. In particular, the
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summary statistics for association with PC risk were ob-
tained from the Illumina array Collaborative Oncological
Gene-environment Study (iCOGS) consortium [29] and
comprised information on 25,074 cases and 24,272 con-
trols genotyped on a customized array including 211,155
SNPs. Additionally, we used summary statistics on
525,821 SNPs for association with PC risk derived from
a smaller UK-based cohort including 1854 cases and
1854 controls in collaboration with the PRACTICAL
consortium [30]. Genetic association with BC risk was
obtained in collaboration with the BCAC consortium
and was derived from a meta-analysis including 15,863
cases and 40,022 controls on ~2.5 million SNPs [31].
We collected also summary statistics for 14,900 cases of
lung cancer (LC) and 29,485 controls including
2,433,836 SNPs from the TRICL consortium [32]. From
the IGAP consortium we obtained summary data from
17,008 Alzheimer's disease cases and 37,154 controls
genotyped on 518,871 SNPs [33]. Finally from the
PGC consortium we used summary statistics on asso-
ciation with schizophrenia on 36,989 cases and
113,075 controls including 2,540,803 SNPs [21], and
summary statistics on association with bipolar dis-
order on 11,974 cases and 51,792 controls on a total
of 2,382,073 SNPs [20].

SNPs enrichment method
Enrichment is defined by the presence of lower p-values
than expected by chance. Quantile-quantile (Q-Q) plots
are tools commonly used in genetics to visualize enrich-
ment [18]. Typically, the observed p-value quantiles on
the y-axes are plotted against the theoretical p-value
quantiles under the assumption of no association (i.e.
following the quantiles of the uniform distribution) on
the x-axes. In case of no association, a Q-Q plot follows
a straight 0–1 line starting from the origin. In the pres-
ence of association, the enrichment (of low p-values) is
described by the deflection of the Q-Q plot from this
theoretical line of no association. We used stratified Q-
Q plots to assess differential enrichment of SNPs map-
ping to specific categories of enhancers. Stratified Q-Q
plots have been used previously to demonstrate enrich-
ment of general location annotation categories such as
5’UTR SNPs [18].

Quantifying SNPs enrichment within sets of enhancers
To assess the significance of the association enrichment
among the sets of SNPs within enhancers we used
Fisher’s hypergeometric test. More specifically, we tested
for over-representation of genome-wide significant SNPs
(i.e. association of –log10 p-value > 7.3) within specific
enhancers. We adjusted for multiple testing using a
Bonferroni-correction accounting for the number of
annotations tested.

Random pruning
The statistical models underlying the SNP enrichment
analyses carried out here generally assume independence
of the data. Far from resembling independent samples,
SNPs are linked by complex correlation patterns
reflected in their linkage disequilibrium (LD) structure.
In order to adhere more closely to the independence as-
sumption, and to rule out bias due to confounding fac-
tors such as LD, and assess whether the intrinsic
capacity of functional annotations to enrich specific SNP
sets was due to such confounding factors, the SNPs were
randomly pruned prior to the analyses by randomly
selecting representatives from all 1Mbase LD blocks of
SNPs with pairwise r2 ≥ 0.2. Iterating the random prun-
ing procedure 100 times and subsequently averaging the
corresponding test statistics compensated the arbitrari-
ness in the choice of representative SNPs. These analyses
were performed and shown in Additional file 22: Figures
S1, S3, and S6.

Results
To assess whether tissue or cell-specific enhancers could
mark tissue-specific risk SNPs associated with develop-
ment of PC, we analyzed datasets from two studies that
profiled MED12 binding and H3K27Ac map in LNCaP
cells [23], and BRD4 and H3K27Ac in VCaP cells [14].
MED12, is a subunit of the same chromatin looping me-
diator complex as MED1 [34] therefore we used it for
our PC study assuming that these two subunits would
have similar binding profiles in the same cells.
Enhancers were defined in LNCaP based on (1) ex-

tended H3K27Ac marked regions (Additional file 1); (2)
an intersection of these H3K27Ac marked regions with
MED12 binding sites (Additional file 2). In VCaP cells
enhancers were defined as (3) extended H3K27Ac
marked regions (Additional file 3) (4) the intersection of
H3K27Ac stretches and BRD4 binding sites (Additional
file 4) or (5) as BRD4 sites alone (Additional file 5). (6)
To achieve a consensus map of enhancers in PC
(Additional file 6) we intersected the enhancers found in
both LNCaP and VCaP cells characterized by all three
epigenetic features and responded to the definition of
super-enhancers [12] (Table 1 and Fig. 1).

Enrichment of SNPs associated with prostate cancer in
regions bound by MED and BRD4, marked by H3K27Ac in
prostate cancer cells
First, we overlaid genome coordinates of enhancers in
PC cell lines, as defined previously, with genomic coor-
dinates of all SNPs in the PC iCOGS dataset [29]. To
visualize differential enrichment patterns of specific epi-
genetic markers with respect to their genetic association
with PC risk we generated stratified Q-Q plots which is
a method for visualizing the enrichment of statistical
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association relative to that expected under the global
null hypothesis [18]. Q-Q plots show that SNPs within
regions with different genomic features (H3K27ac,
BRD4, and MED12, or a combination of these) had dif-
ferent enrichment patterns compared to all SNPs
(Fig. 2a). The SNPs contained in common PC enhancers,
and therefore characterized by BRD4 and MED12
binding, and a long stretch of H3K27Ac had lower p-
values than SNPs contained in enhancers identified in
VCaP cells by mapping long stretches of H3K27Ac
and BRD4 binding. SNPs associated with PC risk
were more enriched within BRD4 binding sites alone
than within H3K27Ac sites or H3K27Ac/MED12 over-
lapping sites in LNCaP. In addition, we focused on
SNPs achieving genome wide significance and com-
pared overrepresentation of these SNPs mapping to
the above-described enhancers (Additional file 22:
Table S1). 12% and 3% of the SNPs contained in PC
enhancers achieved genome-wide significance in the
iCOGS and in the PRACTICAL GWAS respectively.
SNPs that achieved significance in iCOGs are listed
in Additional file 22: Table S2. These results highlight
that combining generic epigenetic marks such as
H3K27Ac with generic epigenetic readers such as
BRD4 and with MED binding increases the capacity
of capturing SNPs associated with PC.

Importantly, to rule out possible confounding factors,
we first randomly pruned the SNPs, selecting one repre-
sentative SNP per LD block. The random pruning did
not change the enrichments patterns caused by the func-
tional annotations (Additional file 22: Figure S1).
Secondly, in order to rule out that the enrichment
merely results from the non-independence of the SNPs
in the enhancer regions or other confounding features of
these, we compared the observed enrichment to the one
attained on a set of SNPs numerically matching those in
the enhancer regions on minor allele frequencies and
mutual LD r2 (Additional file 22: Figure S2). The numer-
ically matched SNP set was also used as control set to
assess the enrichment significance (Additional file 22:
Table S1, S3, S4) by means of Fisher’s hypergeometric
test (see Methods).

Enrichment of prostate cancer associated SNPs within
androgen receptor binding information.
We also compared the genomic coordinates of the SNPs
to the coordinates for AR binding sites (ARBSs). Despite
the use in the literature of ARBSs for functional annota-
tion of GWAS significant PC SNPs, intersecting enhancer
information with AR binding data did not lead to any fur-
ther enrichment of SNPs associated with PC compared
with enhancer information alone (Fig. 2b and Additional

Table 1 SNPs mapping to epigenetic marks used to define enhancers in prostate and breast cancer

Cell line/Tumor
type

Epigenetic marks Key transcription
factora

Number of SNPs within the intervals covered by the array:

iCOGS PRACTICAL BCAC All

LNCaP H3K27Ac —— 1605 3092 13482 13503

AR 669 1274 5664 5671

LNCaP H3K27Ac +MED12 —— 685 1271 5428 5442

AR 279 541 2310 2316

VCaP H3K27Ac + BRD4 —— 587 983 4218 4239

AR 342 502 2148 2154

VCaP BRD4 —— 859 1595 7984 8066

AR 23 60 233 233

VCaP H3K27Ac —— 3896 8440 38150 38444

PC H3K27Ac +MED12 + BRD4 —— 82 130 618 619

AR 49 46 248 249

PC —— AR 496 1403 5950 5967

MCF7 H3K27Ac + BRD4 —— 8783 21058 93969 94858

ER 4296 10607 45937 46222

MCF7 H3K27Ac —— 19270 48028 215997 217382

ER 6710 16206 69743 70058

MCF7 BRD4 —— 280 495 2617 2641

ER 34 66 282 282

MCF7 —— ER 158 371 1638 1639
aBinding information for key transcription factors such as androgen receptor (AR) or estrogen receptor (ER) where used alone or in combination with the
epigenetic mark profiles in order to assess their capacity to refine enrichment of risk SNPs
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file 22: Table S3). In particular, although intersecting AR
binding information induced a slight left-shift of the Q-Q
plot for enhancers marked by H3K27Ac, MED12, and
BRD4 binding, and for enhancers marked by H3K27Ac
and BRD4, the enrichment was caused by the same SNPs
responsible for the enrichment without AR binding infor-
mation (see Additional file 22: Table S1 and S3). Further-
more, enhancer information outperformed ARBSs profile
alone, or in combination with H3K27Ac profile, in enrich-
ing for genome-wide significant p-valued SNPs in PC
(Additional file 22: Table S3), and overlapping AR with
BRD4 binding sites did not alter the superior capabil-
ity of BRD4 (as in Fig. 2a) to enrich for disease asso-
ciated SNPs. Interestingly, although DHSs have been
used to predict locations of common disease-
associated variation [3], DHSs profiles enriched less
than ARBSs alone (Additional file 22: Figure S3).

Validation of the enrichment method on an independent
GWAS for prostate cancer.
Finally, we validated our results on the independent PC
GWAS obtained from the PRACTICAL consortium
measured on a smaller UK-based cohort [30] (Fig. 2c).
Again, we observed the strongest SNP enrichment in PC

super-enhancers marked by H3K27Ac, MED12, and
BRD4 binding.

BRD4 binding sites derived from prostate cancer
cells do not enrich for SNPs associated with breast
cancer
To test the specificity of BRD4, MED12 and H3K27Ac
profiles in PC cells in identifying tissue-specific SNPs,
we performed a similar enrichment analysis for genetic
association with BC risk measured on the genotype array
content from the BCAC [31] (Fig. 2d). Enhancers de-
fined on the basis of BRD4 binding profile in PC cells
failed to enrich specifically for BC associated SNPs.
Whilst H3K27ac and MED12 together achieved some
enrichment of BC SNPs, the addition of BRD4 depleted
this enrichment entirely. Importantly, once again, ran-
domly pruning the SNPs did not alter the results of the
enrichment analysis (Additional file 22: Figure S4).
These results are in stark contrast to the analysis on PC
datasets in which inclusion of BRD4 enhanced enrich-
ment of low p-valued SNPs associated with PC, and sug-
gests a hierarchical determination of tissue-specificity,
based on the subsequential deposition of these epigen-
etic marks. Taken together, this indicates that BRD4

Fig. 1 Definition of enhancers using chromatin marks and generic epigenetic readers. UCSC genome browser snapshot of the kallikreins locus showing
enhancers identified in LNCaP based on MED12 binding information retrieved from Wang et al., (2012), and H3K27Ac profile retrieved from Hnisz et al.,
(2014) [12]; Enhancers identified in VCaP based on BRD4 binding and H3K27Ac retrieved from Asangani et al., (2014) [14]; and common enhancers in
prostate cancer (PC) identified selecting enhancers in LNCaP which also had BRD4 and acetylation signature according to the compendium of enhancers
in VCaP cells. In the locus shown here the long stretch of H3K27Ac includes also MED12 according to Wang et al., (2011) [23] and BRD4 binding sites. At
the bottom of the figure SNPs within these particular enhancers are indicated with the red line for SNPs found in the enhancers in LNCaP cells and PC
common enhancers, and with the blue line for SNPs found in the enhancer in VCaP cells. Independent tracks for the androgen receptor (AR) binding sites
in common in LNCaP and VCaP cells according to Massie et al., (2011) [22] re-analyzed for this study are also shown
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substantially contributes to prostate-specific SNP enrich-
ment within super-enhancers.
Of note, the genomic distribution of the BCAC SNP array

mirrored the genomic distribution of the SNP arrays used
for iCOGS with the majority of SNPs located within intronic
(48% and 57%, respectively) and intergenic (48% and 34%,
respectively) regions of the genome (Additional file 22: Fig-
ure S5) thus meaning that whilst the number of SNPs dif-
fered between the PC and BC studies, there was no genomic
distribution bias for imputed SNPs. The SNPs included
within the enhancers defined in this study reflected similar
distributions, with the only exception of SNPs lists derived
from LNCaP cells that were slightly biased toward intergenic
regions. Around 69% to 77% of the SNPs were located
within intergenic regions (data not shown).

Enrichment of SNPs associated with breast cancer in
regions bound by BRD4, marked by H3K27Ac in breast
cancer cells
Next, we sought to identify whether using BC-specific epigen-
etic profiles for the samemarkers derived from the BC cell line

MCF7, we would be able to repeat the same performance as
in the PC enrichment analysis. Therefore we retrieved
genome-wide profiles of H3K27Ac, ER, and BRD4 binding in
MCF7 [25], compiled a similar list of enhancers (Table 1 and
Additional file 22: Figure S6), and performed an enrichment
analysis of association with BC risk on the BCAC GWAS
(Fig. 2e and Additional file 22: Table S4). Information on
MED binding is not available for BC cell lines. However,
BRD4 binding information alone caused the strongest en-
richment of SNPs associated with BC (Additional file 22:
Table S5). These data confirm that BRD4 alone is an im-
portant enhancer and super-enhancer discriminant, which
binds disease-specific susceptibility loci in a tissue specific
fashion. Randomly pruning the SNPs involved, proved not
to alter the capacity of BRD4 of capturing disease-specific
associated SNPs (Additional file 22: Figure S7). Interest-
ingly, pruning the SNPs revealed that ER capability to cap-
ture disease associated SNPs in combination with other
epigenetic features was enhanced, possibly suggesting a
different contribution of ER and AR in breast and PC
pathogenesis, respectively.
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Fig. 2 Enrichment of SNPs lying within enhancers. Q-Q plots visualizing the p-value enrichment of sets of SNPs mapping within genomic intervals
identified as regions of putative enhancers or key transcription factor binding sites. The p-values describe the association of a specific SNP with
prostate (iCOGs in panel a & b; PRACTICAL in panel c) and breast cancer (BCAC in panel d & e). The genomic intervals represent regions bound
by MED12, BRD4 with a H3K27Ac modification in prostate cancer cell lines (LNCaP and VCaP), or in overlapping regions profiled for a combination
of the features in the prostate cancer (PC) cell-lines as indicated (a, c, d), intersected with AR binding sites (b), or regions found in MCF7 (e), as
indicated in the legends. (f) Q-Q plots visualizing the p-value enrichment of schizophrenia associated SNPs (PGC) lying within enhancers identified
in Schwann cells
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As counterproof, we tested whether BC epigenetic pro-
files caused any enrichment in iCOGS PC associations,
but no such enrichment was detected (Additional file 22:
Figure S8). These results are consistent with BRD4 bind-
ing being cell and tissue-specific [35]. Moreover, these re-
sults pinpoint the tissue-specificity of risk loci and hint
that BRD4 activity may be influenced by genetic variations
as it is for TFs [2].

Enrichment of risk SNPs associated with lung cancer and
psychiatric traits using H3K27Ac profiles, BRD4, and MED
binding sites derived from relevant cell lines
To understand whether the properties of BRD4 binding to
clinically relevant genetic risk loci is confined to PC and
BC only, or such selectivity can also be observed to other
diseases and traits, we retrieved binding information for
BRD4, MED1 and H3K27Ac profiles available for the lyn-
phoblastoid cell line H2171 derived from a metastatic site
in a LC patient [10] and from the malignant peripheral

nerve sheath tumor Schwann cells 90-8TL [36] (Add-
itional files 12, 13, 14, 15, 16, 17 and 18). To retrieve asso-
ciations of these epigenetic features with other phenotypes
we collected summary statistics for LC [32], Alzheimer’s
disease [33], schizophrenia [21], and bipolar disorder [20].
BRD4 binding information alone caused the strongest

enrichment of associations with LC, although combined
information for BRD4 and MED1 binding, also com-
bined with H3K27Ac profile failed to improve the en-
richment of low p-value SNPs (Additional file 22: Figure
S9a). We speculate that the LC cell line H2171 might
not reflect characteristics of the tissue of origin, as well
as the PC and BC cell lines. However, upon assessing
the enrichment using epigenetic features related to PC
cells for the same LC GWAS (Additional file 22: Figure
S9b), as expected, we detected none, confirming that
BRD4 binding information in H2171 retains some tis-
sue-specificity and capacity to enrich for LC tissue-spe-
cific risk SNPs.

Fig. 3 Circular plots of GWAS significant SNPs overlapping with putative super-enhancers. The outmost circles depict chromosome-wise
histograms showing p-values of SNP loci (LD r^2 < 0.2 within 1Mbase) representatives for SNPs in iCOGS (a), for SNPs in BCAC (b), and
for SNPs associated with schizophrenia according to PGC (c). GWAS-significant SNPs are labeled and the nearby genes are also indicated.
The inmost circle represents super-enhancers regions identified in prostate cancer cells (SE_PC_BRD4_MED12_H3K27Ac) (a), breast cancer
cells (SE_MCF7_BRD4) (b), and in Schwann cells (SE_Schwann_BRD4) (c) that were most enriched of low p-value SNPs
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Next, we applied our enrichment method to perform an in-
verse analysis in which we sought to understand whether any
association could be found between epigenetic features related
to Schwann cells (the only brain cells for which H3K27Ac
profile and BRD4 binding informationwere publicly available)
and three diseases affecting the brain. No enrichment for
SNPs associated with Alzheimer disease and bipolar disorder
was detected (Additional file 22: Figure S10a&b). However,
low p-valued SNPs associated with schizophrenia were highly
enriched within BRD4 binding sites (Fig. 2f). Interestingly
H3K27Ac profiles also enriched substantially for clinically
relevant SNPs associated with schizophrenia. These data sug-
gest that BRD4 activity in Schwann cells could potentially be
involved in the etiology of schizophrenia [37], and grant fur-
ther investigation on the molecular mechanism underlying
these findings.

Discussion
With the discovery of significant numbers of cancer genetic
risk loci through GWAS there is now a major focus on the
functional annotation of these loci to prioritize them for fur-
ther biological study. So far this annotation has been under-
taken Post-GWAS and has often employed classifiers of open
chromatin, for example DHS, as a primary annotation
followed by genome-wide binding maps for tissue-specific
transcription factors such as the AR for PC or the ER for BC,
while combining this information with H3K27Ac and open

chromatin in a tissue-specific manner [38]. In this study we
ask whether it is possible to use binding sites data and chro-
matinmarks upfront to enrich for genetic risk factors in a can-
cer type-specific manner. We show that an enhancer
signature comprising a number of factors but dominated by
BRD4 allows for the enrichment of PC-specific and BC-
specific genetic risk loci (Fig. 3a and b ). Interestingly, these
chromatin features have been previously reported to be char-
acteristic of super-enhancer-like profiles [10–12, 35]. We
found a strong degree of tissue-specificity, that is when pro-
files are derived from cell-lines associated with specific cancer
types such as the cancer of the breast and prostate, they be-
come far more effective at enriching for cancer-type specific
risk loci than other widely used cancer type-specific TFs such
as theAR, ER orDHSs alone.We also applied this enrichment
strategy to infer that BRD4 binding information may allow in
future for the upfront nomination of genomic-regions for
high-coverage sequencing in risk studies for schizophrenia
(Fig. 3c). Functional determination of the impact of risk SNPs
have been the priority of several consortia aiming to uncover
the effects on epigenetics mediated by clinically relevant risk
variants located in non-exonic regions [39]. Our study implies
a conserved and important relationship between enhancers
and cancer-associated risk loci, which is being pinpointed also
by recent work linking the effect of genetic variation to TFs
binding [2]. Our approach is the first one that implies an effect
of such genetic variations on the activity of generic epigenetic

Fig. 4 Tissue-specific super-enhancers usage and identification of clinically relevant genetic variations associated with diseases and traits. The
method for prioritization of clinically relevant SNPs is based on the identification of risk SNPs with GWAS significance that are associated with
BRD4 binding to chromatin, within tissue-specific super-enhancers rather transcription factors binding
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readers. This is also the first time that such epigenetic
readers have been evaluated as enrichment factors for
SNPs without prior filtering based on published p-values
for risk association.
We highlight the possibility that SNPs lying within super-

enhancers marked by BRD4 are more likely to be associated
with an increased susceptibility to BC, PC, and schizophrenia.
The expression of the genes regulated by enhancers identified
in these diseases could be altered by the presence of specific
SNPs lying therein (Additional file 22: Figure S11). This is a
concept that has recently been postulated for cancer muta-
tions occurring in a chromatin-specific context [40].

Conclusions
In conclusion we have discovered that BRD4-bound
super-enhancers provide a powerful tool for enriching
and prioritizing PC and BC genetic risk loci (Fig. 4),
and have shown that key TFs such as AR or ER, des-
pite being pivotal tissue-specific TFs, do not contrib-
ute to tissue-specific genetic risk enrichment more
than epigenetic factors. We propose to refine disease
specific risk loci enrichment with the identification of
potential binding of BRD4 combined with key MED
components and acetylation profiles. Our study will
promote the use of BRD4 for SNP annotation as the
genetic landscape for different diseases goes on
expanding.
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