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SUMMARY

Mutations truncating a single copy of the tumor
suppressor, BRCA2, cause cancer susceptibility. In
cells bearing such heterozygous mutations, we find
that a cellular metabolite and ubiquitous environ-
mental toxin, formaldehyde, stalls and destabilizes
DNA replication forks, engendering structural chro-
mosomal aberrations. Formaldehyde selectively
depletes BRCA2 via proteasomal degradation, a
mechanism of toxicity that affects very few addi-
tional cellular proteins. HeterozygousBRCA2 trunca-
tions, by lowering pre-existing BRCA2 expression,
sensitize to BRCA2 haploinsufficiency induced
by transient exposure to natural concentrations of
formaldehyde. Acetaldehyde, an alcohol catabolite
detoxified by ALDH2, precipitates similar effects.
Ribonuclease H1 ameliorates replication fork insta-
bility and chromosomal aberrations provoked by
aldehyde-induced BRCA2 haploinsufficiency, sug-
gesting that BRCA2 inactivation triggers sponta-
neous mutagenesis during DNA replication via
aberrant RNA-DNA hybrids (R-loops). These findings
suggest a model wherein carcinogenesis in BRCA2
mutation carriers can be incited by compounds
found pervasively in the environment and generated
endogenously in certain tissues with implications for
public health.
INTRODUCTION

Inherited germline mutations affecting a single copy of the

BRCA2 tumor suppressor gene predispose to cancers of the

breast, ovaries, pancreas, prostate, and other organs (Breast

Cancer Linkage Consortium, 1999). Human BRCA2 encodes a

nuclear-localized protein of 3,418 residues, which is essential

for the maintenance of chromosome integrity, through functions

in homology-directed DNA repair, in stabilizing stalled DNA repli-
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cation forks, or in mitotic cell division (reviewed in Venkitaraman,

2014). Aberrations in chromosome structure and increased

sensitivity to genotoxic agents typically occur after bi-allelic

BRCA2 disruption in murine or human cells, rather than with mu-

tations affecting a single allele (Connor et al., 1997; Patel et al.,

1998; Skoulidis et al., 2010). Organ development and function

is grossly normal in genetically engineered mice heterozygous

for mutant BRCA2 alleles (Connor et al., 1997; Friedman et al.,

1998; Ludwig et al., 1997; Sharan et al., 1997; Suzuki et al.,

1997), as is homology-directed DNA repair in multiple tissues

(Kass et al., 2016). What promotes carcinogenesis in carriers

of heterozygous BRCA2 mutations is therefore unclear.

Inherited missense mutations in BRCA2 may act dominantly

to suppress thewild-type allele (Jeyasekharan et al., 2013). How-

ever, the most prevalent BRCA2 alleles that confer a clinically

significant risk of cancer susceptibility encode nonsense or

frameshift mutations, which prematurely truncate the BRCA2

protein (Rebbeck et al., 2015) (Breast Cancer Information Core

[BIC] database, https://research.nhgri.nih.gov/bic/). These trun-

catingmutations include the 6174delTmutation prevalent among

the Ashkenazim (Neuhausen et al., 1996), the pathogenic trunca-

tion 3036del4 (BIC database) representative of variants asso-

ciated with breast and ovarian cancer, or carboxyl (C)-terminal

truncating mutations like 7691insAT or 9900insA implicated in

Fanconi anemia (Howlett et al., 2002). We have investigated the

mechanism by which heterozygosity for such BRCA2 truncating

mutations may promote carcinogenesis.

Here, we report that exposure to naturally occurring concen-

trations of formaldehyde or acetaldehyde selectively unmasks

genomic instability in cells heterozygous for multiple, clinically

relevant, truncating BRCA2 mutations. These agents are not

only widespread in our environment, but also accumulate

endogenously in certain tissues via critical metabolic reactions

such as oxidative demethylation or alcohol catabolism (Harris

et al., 2003; Roy and Bhagwat, 2007; Shi et al., 2004). Alde-

hydes selectively deplete BRCA2 via proteasomal degradation,

rendering BRCA2 heterozygous cells vulnerable to induced

BRCA2 haploinsufficiency. Induced BRCA2 haploinsufficiency

provokes chromosomal aberrations through DNA replication

fork stalling and the MRE11-dependent degradation of nascent

DNA, via the unscheduled formation of RNA-DNA hybrids. These
une 1, 2017 ª 2017 The Author(s). Published by Elsevier Inc. 1105
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Figure 1. Formaldehyde Stalls DNA Repli-

cation and Induces Strand Breakage in

Dividing Cells

(A) Immunofluorescence images of HeLa Kyoto

cells labeled with EdU (1 hr) after 2 hr formalde-

hyde (FA) treatment. UT, untreated. Scale bars,

20 mm. The histogram quantifies the mean ± SEM

of total EdU nuclear intensities, n = 3.

(B) DNA fiber analysis comparing sister fork sym-

metry. The experimental setup and representative

images are shown. The scatterplot compares the

ratio of sister-fork tract lengths (see the STAR

Methods) between untreated (UT) and FA-treated

conditions. Red lines represent the median, n = 3.

Statistical significance was determined by the

Mann-Whitney t test, n = 3.

(C) Mean ± SEM of gH2AX foci per cell 3 hr after

indicated treatments. Greater than or equal to

1,500 cells were analyzed per condition. Statistical

significance was determined by the two-tailed

Student’s t test, n = 4.

(D) Mean ± SEM of gH2AX foci per cell in PCNA+

versus PCNA� cells after 3-hr exposure to FA or

HU. Statistical significance was determined by the

two-tailed Student’s t test, n = 3.
previously unrecognized cellular effects of aldehydes may

potentiate genome instability and promote tissue-specific can-

cer evolution in patients who inherit pathogenic BRCA2 trunca-

tions, with implications for cancer biology and public health.

RESULTS

Formaldehyde Stalls DNA Replication and Triggers
Strand Breakage
Formaldehyde, a widespread environmental toxin, occurs at

50–100 mM in human blood (Heck et al., 1985; Luo et al., 2001)

and reacts readily with both proteins and DNA to generate ad-

ducts and cross-linkages (Huang et al., 1992; Lu et al., 2010; Sol-

omon and Varshavsky, 1985) expected to impede DNA transac-

tions in the cell nucleus. Mice doubly deficient in the Fanconi

anemia protein FANCD2 and in the formaldehyde-catabolizing

enzyme ADH5 sustain DNA damage and retarded growth (Pontel

et al., 2015). To characterize the effect of formaldehyde on DNA
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replication, HeLa Kyoto cells exposed to

formaldehyde for 2 hr were labeled with

5-ethynyl 20-deoxyuridine (EdU) to mea-

sure DNA synthesis and co-stained for

the S-phase marker, proliferating cell

nuclear antigen (PCNA). PCNA-positive

cells exhibit a dose-dependent decrease

in EdU incorporation when exposed

to 100 mM or 300 mM formaldehyde

(Figure 1A). DNA fiber analysis after pulse

labeling with 5-iodo-20-deoxyuridine
(IdU) and then 5-chloro-20-deoxyuridine
(CldU) shows that formaldehyde signifi-

cantly increases the asymmetry of sister

replication fork tracts emanating from
the same origin of replication (Figure 1B), a consistent marker

of replication fork stalling (Schwab et al., 2015), from a median

ratio of 1.18 in untreated (UT) cells to 1.87 following formalde-

hyde (FA) treatment (p < 0.001, Mann-Whitney t test). Formalde-

hyde also increases staining for gH2AX (Figure 1C), a marker of

DNA breakage. Notably, gH2AX foci accumulate prominently in

PCNA-positive cells (Figure 1D), suggesting that formaldehyde

selectively causes DNA damage during DNA replication. The

DNA synthesis inhibitor, hydroxyurea (HU), elicits similar effects

(Figures 1C and 1D). Thus, formaldehyde stalls DNA replication

and triggers strand breakage in dividing cells.

Heterozygous BRCA2 Truncations Sensitize Selectively
to Formaldehyde-Induced Replication Stress
From the HeLa Kyoto cell line (that is diploid for BRCA2) (Adey

et al., 2013), we created cells heterozygous for the clinically rele-

vant BRCA2 truncating mutations 6174delT and 3036del4 using

CRISPR/Cas9-mediated genome engineering (Ran et al., 2013).



While 6174delT encodes a frameshift mutation leading to a pre-

mature stop codon at amino acid 2002, the 3036del4 frameshift

mutation similarly truncates the BRCA2 protein at amino acid

958 (Figure 2A). Both mutations cause cancer predisposition in

humans (Ramus and Gayther, 2009).

Heterozygosity for the 6174delT or 3036del4 mutations low-

ered wild-type BRCA2 protein expression to 40%–60% of that

in parental cells, although the truncated proteins were undetect-

able (Figure 2B). The proliferation of the heterozygous cell lines

was indistinguishable from the parental cells (Figure S1A), and

there was no significant change (Figure S1B) in the formation

of RAD51 foci at sites of DNA damage after 5 Gy ionizing

radiation (IR), a key surrogate marker for BRCA2’s functions in

homologous DNA recombination (Yuan et al., 1999) and replica-

tion fork stabilization (Petermann et al., 2010; Schlacher et al.,

2011). Our findings are in accord with previous reports in which

BRCA2 heterozygosity impairs neither cell proliferation nor the

control of RAD51.

Bi-allelic BRCA2 inactivation causes cellular sensitivity

to replication stress provoked by HU, accompanied by the

destabilization of DNA replication forks (Lomonosov et al.,

2003; Schlacher et al., 2011). By contrast, haploinsufficiency

for the related cancer suppressor, BRCA1, suffices to cause de-

fects in stalled replication fork repair or integrity following HU

exposure (Pathania et al., 2014). We therefore compared the

effects of HU with formaldehyde in BRCA2 heterozygous cells

using the DNA fiber assay to measure IdU-labeled tract length.

Without treatment, the median length of IdU-labeled replica-

tion tracts in BRCA2 6174delT or 3036del4 heterozygous cells

was similar to that in parental cells (Figures 2C and 2F), confirm-

ing BRCA2 heterozygosity does not affect processive DNA repli-

cation. There was also no significant change after HU exposure

(Figures 2D and 2G). By contrast, formaldehyde treatment at

100 mM significantly shortened IdU-labeled replication tracts in

cells heterozygous for BRCA2 6174delT or 3036del4 compared

to the parental cells (Figures 2E and 2H).

Exposure to as little as 80 mM formaldehyde (Figures S1C–

S1E) for no more than 3 hr (Figures S1F and S1G) provokes repli-

cation tract shortening in BRCA2 6174delT or 3036del4 hetero-

zygous cells, but not parental controls. Similar anomalies occur

in immortalized human breast epithelial cells (HBECs) from pa-

tients heterozygous for the pathogenic BRCA2999del5 truncation

(Rubner Fridriksdottir et al., 2005), in contrast to wild-type

controls (Figures 2I–2K). Thus, transient exposure to naturally

occurring formaldehyde concentrations selectively provokes

DNA replication fork instability in BRCA2 heterozygous cells

derived from a target tissue for carcinogenesis in mutation car-

riers but not in wild-type controls, speaking to the physiological

relevance of our findings.

In contrast to BRCA2 heterozygosity, depletion of BRCA2

from HeLa Kyoto parental cells with short interfering RNA

(siRNA) (Figure S2A) destabilizes DNA replication forks stalled

by exposure either to HU or to formaldehyde (Figures S2B–

S2D). Similar experiments using the BRCA2-deficient cell line,

EUFA423 (that harbors inactivating bi-allelic mutations that trun-

cate oneBRCA2 allele at exon 15 [7691insAT] and the second, at

exon 27 [9900insA]) (Howlett et al., 2002), or control EUFA423

cells stably reconstituted (Figure S2E) with full-length FLAG
epitope-tagged BRCA2 (Hattori et al., 2011; Jeyasekharan

et al., 2013), yielded similar results (Figures S2F–S2H). These

findings, with prior reports (Lomonosov et al., 2003; Schlacher

et al., 2011; Ying et al., 2012), confirm that BRCA2 is dispensable

for processive DNA replication but essential to preserve the

stability of stalled DNA replication forks, both after exposure to

HU as well as formaldehyde.

Formaldehyde Exposes Stalled DNA Replication Forks
in BRCA2 Heterozygous Cells to MRE11-Dependent
Strand Degradation
BRCA2 protects nascent DNA strands at stalled DNA replication

forks from degradation by the endonuclease, MRE11 (Schlacher

et al., 2011; Ying et al., 2012). Mirin (Dupré et al., 2008), a selec-

tive small-molecule inhibitor of MRE11, but not its vehicle,

DMSO, significantly inhibits the degradation of IdU-labeled

replication tracts after formaldehyde treatment in BRCA2

3036del4 (Figure 2L) or 6174delT (Figure 2M) heterozygous cells.

This suggests that formaldehyde exposes stalled DNA replica-

tion forks in BRCA2 heterozygous cells to MRE11-dependent

strand degradation.

Selective Proteasomal Degradation of BRCA2 Protein
after Formaldehyde Exposure
Surprisingly, formaldehyde consistently causes dose-dependent

BRCA2 protein depletion over a 5 hr period in cells that are wild-

type for BRCA2, whereas HU does not (Figures 3A and 3B). This

effect is transient (Figure S3A), persisting for 8–12 hr after expo-

sure and is not cell-type-specific, as it also occurs in other cell

lines of varied origin that are wild-type for BRCA2 (Figure S3B).

Neither HU nor a panel of other genotoxic agents (camptothecin

[CPT],mitomycin C [MMC], ultraviolet light, ionizing radiation [IR],

5-azacytidine [5-Aza]) cause BRCA2 depletion in BRCA2 wild-

type cells even after extendedexposure for up to 24hr (Figure 3C)

despite robust activation of the DNA damage response marked

by increased phosphorylation of Ser 1981 in ataxia-telangiecta-

sia-mutated (ATM) kinase and Thr 1989 in ATM-related (ATR)

kinase. Thus, we unexpectedly find that formaldehyde depletes

BRCA2 protein from many cell types that are wild-type for

BRCA2, an effect not triggered by other genotoxins.

A pulse-chase assay using the protein synthesis inhibitor

cycloheximide in BRCA2 wild-type cells shows that 300 mM

formaldehyde shortens the half-life of BRCA2 protein from

4.5 hr ± 1.7 to 2.3 hr ± 0.4 (Figure 3D). While three different inhib-

itors of the 20S proteasome (Kisselev et al., 2006)—velcade, ep-

oxomicin, and MG132—substantially restored BRCA2 protein

levels in formaldehyde-treated cells (Figure 3E), the lysosome in-

hibitor chloroquine (Solomon and Lee, 2009) did not. The deubi-

quitinase inhibitor, b-AP15 (that potently inhibits the recognition

of polyubiquitinated substrates by the 19S proteasome) also fails

to protect BRCA2 protein (Figure 3E), despite permitting the

accumulation of many polyubiquitinated species. Several re-

ports indicate that b-AP15 spares proteolysis by the 20S core

proteasome (Chitta et al., 2015; Tian et al., 2014), but there is

also evidence otherwise (Huang et al., 2014), precluding a

definitive conclusion regarding the role of ubiquitination in the

formaldehyde-induced proteasomal degradation of wild-type

BRCA2 protein.
Cell 169, 1105–1118, June 1, 2017 1107
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BRCA2 protein largely populates the nuclear-soluble fraction

of cell extracts and is also detected in the chromatin-bound

and cytosolic fractions (Figure S3C). Formaldehyde-induced

BRCA2 degradation affects all three fractions, suggesting that

the underlying mechanism operates in them all.

Formaldehyde Selectively Depletes Components of the
Cellular Proteome
Formaldehyde-induced degradation affects relatively few pro-

teins encoded in the human proteome. Proteins other than

BRCA2 implicated in homologous recombination or the Fanconi

anemia repair pathway, like BRCA1, RAD51, PALB2, XRCC3,

FANCI, or FANCD2, were at most modestly affected (Figure 4A),

as were non-homologous end joining proteins like KU80, KU70,

and XRCC4 (Figure 4B).

The selectivity of protein depletion triggered by formalde-

hyde is evident in proteome-wide analyses using sequential

window acquisition of all theoretical spectra-mass spectrometry

(SWATH-MS), which quantifies protein abundance at high

throughput and resolution (Gillet et al., 2012). In ten biological

replicates per sample from HeLa Kyoto cells treated with or

without 200 mM formaldehyde for 5 hr, we detected >50,000

peptides from all samples and analyzed only peptides detected

in at least eight out of ten replicates in both conditions. The abun-

dance of 4,219 proteins could be calculated by summating

the peptide intensities of the three most abundant peptides for

each protein. Analysis of fold-changes in protein expression

and the associated Benjamini-Hochberg corrected p values

(Table S1) reveals that <1% of the detected proteins (35/4,219)

showed statistically significant reductions (p < 0.05, Benjamini-

Hochberg adjusted) of more than 25% following formaldehyde

exposure (Figure 4C; Table S2). Examples of the 35 depleted

proteins (e.g., TXNL1 and JAK1) were robustly depleted by form-

aldehyde in western blotting, in contrast to proteins (e.g., PLK1

and AURKB) shown by SWATH-MS to exhibit little change

in abundance, confirming complementarity between the two

detection methods (Figure 4D). In addition, the number of pro-

teins with coefficient of variation (CV) <25% was similar across

all (treated and untreated) samples (Figure S4A). By contrast,

for all of the 35 proteins affected by formaldehyde, peptide inten-

sities were significantly and consistently decreased in at least

eight out of ten biological replicates (nine representative exam-

ples plotted in Figure S4B). Thus, formaldehyde selectively

reduces the abundance of a few additional proteins besides

BRCA2, a previously unrecognized effect that may be salient
Figure 2. Heterozygosity for BRCA2 Truncating Mutations Selectively

(A) The pathogenic BRCA2 truncating mutants used in this work. DBD, DNA bind

(B) BRCA2 protein levels in HeLa Kyoto cells. *Denotes non-specific bands. The

(C–E) IdU tract length frequency distributions of wild-type HeLa Kyoto versusBRC

with 100 mM FA.

(F–H) IdU tract length frequency distributions of wild-type HeLa Kyoto versusBRC

with 100 mM FA.

(I) IdU tract length frequency distributions of BRCA2+/+ HBECs treated with or w

(J) IdU tract length frequency distributions of BRCA2+/999del5 - 1 HBECs treated

(K) IdU tract length frequency distributions of BRCA2+/999del5 - 2 HBECs treated

(L and M) IdU tract length frequency distributions of HeLa Kyoto cells after treatm

(C)–(M) represent at least two independent experiments.

See also Figures S1 and S2.
to its role as a ubiquitous environmental toxin. However, fea-

tures common to the proteins apparently targeted by formalde-

hyde are not yet evident, obscuring immediate insights into

mechanism.

Formaldehyde Induces Haploinsufficiency in BRCA2

Heterozygous Cells, Causing Replication Stress
We next tested the effects of formaldehyde exposure on BRCA2

protein levels in BRCA2 heterozygous cells, in which expression

is already lowered to �50% of that in wild-type parental cells

(Figure 2B). After exposure to 100 mM formaldehyde exposure

for 5 hr, BRCA2 expression in parental cells decreased to

�55% of the baseline value, approximately a 2-fold reduction.

However, a similar 2-fold reduction induced by formaldehyde

in cells heterozygous for the BRCA2 6174delT or 3036del4

mutations further diminished expression to �20% of wild-type

levels (Figure 5A). In contrast, HU exposure had a minimal

effect in all conditions. HBECs heterozygous for BRCA2999del5

responded similarly (Figure S5A).

Could formaldehyde exposure lead to ‘‘induced haploinsuffi-

ciency’’ for BRCA2 protein in settings where its expression

is already lowered by heterozygous mutations, by reducing

BRCA2 levels to a degree that compromises function? We com-

plemented BRCA2 6174delT or 3036del4 heterozygous cells

by stably expressing a construct encoding full-length FLAG

epitope-tagged BRCA2 to restore wild-type levels of BRCA2

protein (Figures 5B and 5C). BRCA2 complementation sufficed

to counteract formaldehyde-induced shortening of IdU-labeled

replication tracts (Figures 5D and 5E). These results validate

that formaldehyde indeed triggers ‘‘induced haploinsufficiency’’

for BRCA2 in cells bearing heterozygous mutations, and replica-

tion stress arises from the depletion of BRCA2 and not other

proteins.

Conversely, we partially depleted BRCA2 protein from HeLa

Kyoto parental cells using calibrated doses of siRNA before

analyzing formaldehyde-induced replication stress (Figure S5B).

Treatment with 10 nM versus 25 nM of siRNA progressively re-

duces BRCA2 protein expression from �35% to �6% of base-

line levels in untreated cells (Figure S5C). When combined with

100 mM formaldehyde for 5 hr, BRCA2 levels are sharply further

reduced by �3- to 6-fold, such that 10 nM of siRNA with formal-

dehyde reduces expression to �13% of baseline levels, and

25 nM of siRNA with formaldehyde reduces expression to

�1% of baseline levels. In contrast, 4 mM HU combined with

different doses of siRNA has little effect over siRNA alone.
Sensitizes Cells to Formaldehyde-Induced Replication Stress

ing domain; NLS, nuclear localization signal.

histogram plots normalized BRCA2 band intensities (mean ± SEM, n = 3).

A2+/3036del4 heterozygous cells (C) without treatment, (D) with 4mMHU, and (E)

A2+/6174delT heterozygous cells (F) without treatment, (G) with 4mMHU, and (H)

ithout FA for 5 hr.

with or without FA for 5 hr.

with or without FA for 5 hr.

ent with FA in the presence (100 mM) or absence (DMSO) of Mirin. Results in

Cell 169, 1105–1118, June 1, 2017 1109



Figure 3. Selective Proteasomal Degradation of BRCA2 Protein after Formaldehyde Exposure

(A) BRCA2 protein levels in wild-type HeLa Kyoto cells after 5-hr treatments.

(B) BRCA2 protein levels in wild-type HeLa Kyoto cells treated as indicated.

(C) BRCA2 protein levels in wild-type HeLa Kyoto cells treated with various DNA damaging agents for the indicated durations. HU, hydroxyurea; CPT,

camptothecin; 5-AZA, 5-azacytidine; MMC, mitomycin C; UV, ultraviolet; IR, ionizing radiation; FA, formaldehyde.

(D) BRCA2 protein turnover in wild-type HeLa Kyoto cells treatedwith or without 300 mMFA.Mean ±SEMof BRCA2 band intensities normalized to loading control

and 0 hr, n = 3. CHX, cycloheximide.

(E) BRCA2 protein levels in wild-type HeLa Kyoto cells pre-treated with various inhibitors for 3 hr prior to addition of 300 mM FA for 3 hr. Normalized BRCA2 band

intensities are shown below. Results represent two independent experiments. Epox, epoxomicin; Chlq, chloroquine.

See also Figure S3.
BRCA2 depletion (from 35% to 6% of baseline levels) using

siRNA alone had little effect on processive DNA replication in un-

treated cells (Figure S5D). BRCA2 depletion to 55% of baseline

levels using 10 nM siRNA (mimicking BRCA2 heterozygosity)

did not alter the length of IdU-labeled replication tracts after

replication stalling provoked by HU, whereas depletion to 4%

of baseline levels using 25 nM siRNA (mimicking bi-allelic

BRCA2 inactivation) caused a marked degradation of the tracts
1110 Cell 169, 1105–1118, June 1, 2017
(Figure S5E). In contrast, the combined effect of formaldehyde

plus 10 nM or 25 nM siRNA reduced BRCA2 expression to

13% and 1% of baseline levels, respectively, triggering signifi-

cant shortening of IdU-labeled replication tract length in both

conditions (Figure S5F). Our findings provide additional evidence

to support the idea that BRCA2 haploinsufficiency potentiates

formaldehyde-induced replication stress, suggesting that

many of the clinically relevant frameshift, splicing, or nonsense



Figure 4. Formaldehyde Selectively Depletes Components of the

Cellular Proteome
(A) Abundance of proteins involved in homologous recombination or the

Fanconi anemia repair pathway in wild-type HeLa Kyoto cells treated with FA

for 5 hr.

(B) Abundance of proteins involved in non-homologous end-joining in HeLa

Kyoto cells treated with FA for 5 hr.

(C) Volcano plot showing the results of the SWATH-MS analysis of HeLa Kyoto

cells treated with or without 200 mM FA for 5 hr. Each dot represents a protein

with Benjamini-Hochberg adjusted p values plotted along the y axis, and the

fold change in abundance following FA treatment along the x axis. The hori-

zontal black line indicates where p = 0.05. Red dots mark proteins that are

depleted byR25% compared to untreated controls in a statistically significant

manner (p < 0.05). Proteins tested by western blotting are labeled.

(D) Abundance of selected proteins from SWATH-MS analysis in HeLa Kyoto

cells treated with FA for 5 hr.

See also Figure S4 and Tables S1 and S2.
mutations in BRCA2 thus far detected in humans may have

similar consequences.

In multiple experiments using different cell types, replication

stress is not detected when cells wild-type for BRCA2 are

exposed to 80–100 mM formaldehyde for 3–5 hr, although it is

evident in similarly treated BRCA2 heterozygous cells (Figures

2E, 2H, 2I–2M, and S1C–S1H). Indeed, formaldehyde exposure

in BRCA2 wild-type cells reduces BRCA2 protein to �50%

of pre-existing levels (Figure 3A, 5A, and S3A), consistent with

the absence of replication stress. However, prolonged or

high-dose formaldehyde treatment enhances BRCA2 protein

depletion even in wild-type cells (Figure S5G), concomitantly
precipitating replication tract instability (Figures S5H and S5I).

This previously unrecognized mechanism may contribute to

the genotoxicity of formaldehyde.

Formaldehyde Triggers Structural Chromosome
Aberrations in BRCA2 Heterozygous Cells
Replication forkstallingand instability havebeen linked to thegen-

esis of chromosomal lesions throughmechanisms that remain un-

certain (Schlacher et al., 2011). Untreated cells heterozygous for

theBRCA26174delT or 3036del4mutations exhibit a low average

frequency of structural chromosome aberrations equating to 0.02

± 0.01 and 0.04± 0.02 permetaphase, respectively, similar to that

observed in wild-type parental controls (0.02 ± 0.01 aberrations

per metaphase) and consistent with previous findings (Patel

et al., 1998). Strikingly, after treatment with formaldehyde, the

average frequency of structural chromosomal aberrations per

metaphase increased markedly—by over 30- to 40-fold

(+/6174delT, 0.02 ± 0.01 to 0.93 ± 0.13; +/3036del4, 0.04 ± 0.02

to 1.30 ± 0.18)—in BRCA2 heterozygous cells (Figures 6A and

6B). Similar results are observed usingBRCA2999del5 HBECs (Fig-

ure S6A). Aberrations include Y-shaped tri-radial and star-shaped

quadri-radial structures pathognomonic of defects in mitotic

recombination that are characteristic of BRCA2-deficient cells

(Patel et al., 1998; Yu et al., 2000). In contrast, the average fre-

quency of chromosomal aberrations in parental cells exposed to

formaldehyde did not change significantly (Figures 6A and 6B).

Moreover, treatment with HU enhanced equally the frequency of

chromosomal aberrations in both wild-type and BRCA2 hetero-

zygous cells. Complementation with full-length FLAG epitope-

tagged BRCA2 of cells heterozygous for either the BRCA2

6174delT or 3036del4 mutations significantly reduced formalde-

hyde-induced chromosomal aberrations (Figure 6C), confirming

that BRCA2 haploinsufficiency accounts for this effect.

TheMRE11 inhibitor, Mirin, reverses replication tract degrada-

tion triggered by formaldehyde in BRCA2 heterozygous cells

(Figures 2L and 2M). Mirin also significantly ameliorates the fre-

quency of structural chromosomal aberrations in formaldehyde-

treated BRCA2 heterozygous cells (+/6174delT, 1.11 ± 0.18 to

0.44 ± 0.12; +/3036del4, 2.77 ± 0.38 to 0.80 ± 0.22) (Figure 6D),

suggesting that nascent DNA resection at stalled replication

forks contributes to chromosomal instability.

Formaldehyde-induced DNA replication stress and chromo-

somal aberrations in BRCA2 heterozygous cells do not greatly

impair clonogenic survival (Figure 6E). Formaldehyde exposure

at 100 mM formaldehyde for 5 hr modestly reduced colony for-

mation, as expected, but did so likewise in BRCA2 heterozygous

and wild-type parental cells. Similar results were observed using

BRCA2999del5 HBECs (Figure S6B).

Ribonuclease H1 Ameliorates Formaldehyde-Induced
Replication Stress and Genome Damage
RNA-DNA hybrids (R-loops) are normal intermediates in DNA

transactions such as transcription termination, but their un-

scheduled formation may trigger genomic instability (Hatchi

et al., 2015; Huertas and Aguilera, 2003). Interestingly, unsched-

uled R-loops accumulate after bi-allelic inactivation of BRCA2

(Bhatia et al., 2014) and may contribute to replication stress in

cells that lack FANCD2 or FANCA (Garcı́a-Rubio et al., 2015;
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Figure 5. BRCA2 Complementation in BRCA2 Heterozygous Cells Is Sufficient to Counteract Formaldehyde-Induced Replication Stress

(A) BRCA2 abundance in HeLa Kyoto cells treated as indicated for 5 hr. Mean ± SEM of BRCA2 band intensities normalized to loading controls are plotted, n = 8.

(B and C) BRCA2 abundance in (B) BRCA2+/3036del4 and (C) BRCA2+/6174delT heterozygous cells complemented with FLAG-BRCA2, plotted as in (A).

(D) IdU tract length frequency distributions of BRCA2+/3036del4 heterozygous cells complemented with FLAG-BRCA2 after FA exposure for 5 hr.

(E) IdU tract length frequency distributions ofBRCA2+/6174delT heterozygous cells complemented with FLAG-BRCA2 after FA exposure for 5 hr. Results of D and E

represent two independent experiments.

See also Figure S5.
Schwab et al., 2015). To test whether R-loopsmediate formalde-

hyde-induced replication stress and genome damage, we used

ribonuclease (RNase) H1, whose overexpression efficiently dis-
1112 Cell 169, 1105–1118, June 1, 2017
solves R-loops (Cerritelli and Crouch, 2009) and has previously

been deployed to test their involvement in cellular processes

(Bhatia et al., 2014; Schwab et al., 2015).



Figure 6. Formaldehyde Triggers Structural Chromosome Aberrations in BRCA2 Heterozygous Cells

(A) Frequency of chromosomal aberrations from HeLa Kyoto cells treated as indicated for 5 hr. Red lines indicate the mean, n = 2.

(B) A breakdown of the different types of chromosomal aberrations observed in (A). Examples of various chromosomal aberrations are shown.

(C) Frequency of chromosomal aberrations in HeLa Kyoto cells treated with 100 mM FA for 5 hr. Red lines indicate the mean, n = 2.

(D) Frequency of chromosomal aberrations in HeLa Kyoto cells treated with 100 mM FA for 5 hr in the presence or absence of Mirin. Red lines indicate the

mean, n = 2.

(E) Representative images of colony formation by HeLa Kyoto cells treated with or without 100 mMFA for 5 hr. Each dot indicates the colony number per well. Red

lines indicate the mean. Results represent two independent experiments.

See also Figure S6.
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Figure 7. Ribonuclease H1 Ameliorates

Formaldehyde-Induced Replication Stress

and Genome Damage

(A) DNA fiber assay comparing sister fork sym-

metry in HeLa Kyoto cells expressing mCherry or

mCherry-RNase H1 (RNH1) vectors with or without

FA treatment. The scatterplot compares the ratio

of sister-fork tract lengths between the different

conditions with red lines indicating the median,

n = 2.

(B) IdU tract length frequency distributions of HeLa

Kyoto cells transiently expressing mCherry after

FA exposure for 5h.

(C) IdU tract length frequency distributions of HeLa

Kyoto cells transiently expressing mCherry-RNase

H1 after FA exposure for 5h.

(D) IdU tract length frequency distributions of

HeLa Kyoto cells transiently expressing mCherry-

RNase H1 (D145N) after FA exposure for 5h. Re-

sults of (B)–(D) represent at least two independent

experiments.

(E) Frequency of chromosomal aberrations in HeLa

Kyoto cells expressing either mCherry or mCherry-

RNase H1 following 5 hr treatment with 100 mMFA.

Red lines indicate the mean, n = 2.

(F) Aldehyde-induced haploinsufficiency in BRCA2

heterozygous cells. Aldehyde exposure triggers

selective BRCA2 degradation in the cells of both

wild-type individuals as well as those who carry

heterozygous BRCA2 mutations. Adequate levels

of BRCA2 remain in wild-type individuals. But

in BRCA2 heterozygous mutation carriers, alde-

hyde-induced degradation decreases BRCA2

levels below the threshold of adequacy, engen-

dering ‘‘induced haploinsufficiency.’’ These events

expose stalled DNA replication forks to MRE11

activity, engendering chromosomal aberrations via

R-loop formation.

See also Figure S7.
Strikingly, there is a marked decrease in the ratio of sister

fork tract lengths in formaldehyde-exposed cells expressing

an mCherry fluorophore-tagged form of RNase H1, but not

mCherry alone (Figure 7A), suggesting that R-loops signif-

icantly contribute to formaldehyde-induced replication stalling

in parental as well as BRCA2 heterozygous cells. BRCA2

6174delT or 3036del4 heterozygous cells exhibit—even when

untreated—a modest elevation in the ratio of sister fork tract

lengths that is reduced by overexpression of mCherry-RNase
1114 Cell 169, 1105–1118, June 1, 2017
H1, but not mCherry alone (Figure 7A).

We infer that BRCA2 heterozygous cells

experience increased levels of replica-

tion fork stalling due to R-loops even

during unperturbed replication in cul-

ture, although this defect does not per

se augment chromosomal aberrations

(Figures 6A and 6B). Furthermore, tran-

scription inhibition by 5,6-dichloro-

1-b-D-ribofuranosylbenzimidazole (DRB)

(Figures S7A–S7C) or the overexpression

of mCherry-RNase H1—but neither
mCherry alone nor the inactive Asp145Asn (D145N) mutant of

mCherry-RNase H1 (compare Figures 7B–7D)—also reduce

replication tract shortening in formaldehyde-treated BRCA2 het-

erozygous cells. Moreover, formaldehyde-induced BRCA2

degradation persists despite mCherry-RNase H1 overexpres-

sion (Figure S7D), suggesting it is a cause, not the consequence,

of excessive R-loops. Thus, multiple lines of evidence implicate

unscheduled R-loop formation in the genesis of formaldehyde-

induced replication stress in BRCA2 heterozygous cells.



Remarkably, overexpression of mCherry-RNase H1, but not

mCherry alone, significantly decreases the frequency of struc-

tural chromosomal aberrations in BRCA2 heterozygous cells

after formaldehyde exposure to levels comparable to wild-type

parental cells (Figure 7E). Thus, remarkably, our data suggest

that R-loop formation not only underlies formaldehyde-induced

replication fork stalling but also instigates genomic instability in

BRCA2 heterozygous cells.

Acetaldehyde-Induced Replication Tract Shortening in
BRCA2 Heterozygous Cells
Acetaldehyde, an endogenous product of ethanol catabolism,

is detoxified by ALDH2, whose activity is lost in >500 million

people worldwide through an inherited, trans-dominant muta-

tion, ALDH2E487K, prevalent in individuals of East Asian descent

(Yoshida et al., 1984). Carriers of this mutation typically exhibit

adverse reactions to alcohol consumption, due to the build-up

of acetaldehyde. Interestingly, transient exposure to acetalde-

hyde induces BRCA2 protein degradation in a dose-dependent

manner (Figure S7E), and DNA fiber analysis confirms that IdU-

labeled replication tracts are significantly shortened in BRCA2

6174delT or 3036del4 heterozygous, but not parental cells after

treatment with 3–4mM acetaldehyde for 5 hr (Figures S7F–S7H).

These findings suggest that the mechanism of ‘‘induced BRCA2

haploinsufficiency’’ may be common to different aldehydes.

DISCUSSION

We report here that naturally occurring concentrations of formal-

dehyde, a product of cellular metabolism and a ubiquitous

environmental toxin, provoke replication fork instability and

structural chromosomal aberrations in cells heterozygous for

multiple, pathogenic truncating mutations affecting the BRCA2

tumor suppressor. These anomalies arise from a previously un-

recognized effect of formaldehyde to selectively deplete

BRCA2 via proteasomal degradation. Settings where BRCA2

expression is already compromised by heterozygous truncating

mutations potentiate vulnerability to formaldehyde-induced hap-

loinsufficiency for this tumor suppressor protein. Similar effects

occur with acetaldehyde, a product of ethanol catabolism. We

propose a model (Figure 7F) wherein aldehyde exposure poten-

tiates the carcinogenic potential of germline truncating muta-

tions affecting a single allele ofBRCA2. Our findings have several

implications.

Mechanism of Formaldehyde-Induced Chromosomal
Instability in BRCA2 Heterozygous Cells
We provide a first line of evidence that replication fork degrada-

tion by MRE11 contributes to chromosomal instability (Figures

2L, 2M, and 6D). MRE11 inhibitors significantly reduce structural

chromosomal aberrations induced by formaldehyde in BRCA2

6174delT or 3036del4 heterozygous cells, suggesting that two

different effects of formaldehyde—DNA replication fork stalling

(Figures 1B, 2, and S2) plus induced haploinsufficiency for

BRCA2 (Figure 5)—collude to precipitate chromosomal

instability.

We reveal a previously unrecognized link between unsched-

uled RNA-DNA hybrid formation and formaldehyde-induced
chromosomal instability in BRCA2 heterozygous cells. Overex-

pression of RNase H1, an enzyme that resolves R-loops, amelio-

rates formaldehyde-induced replication fork instability (Figures

7B–7D) and chromosomal aberrations (Figure 7E) in BRCA2 het-

erozygous cells. Notably, RNase H1 mitigates chromosomal ab-

errations thought typical of defective mitotic recombination,

and thus currently accepted models attributing chromosomal

instability solely to defective homologous DNA recombination

will need to be extended.

Selective ProteomeDepletion Inducedby Formaldehyde
Unexpectedly, formaldehyde selectively depletes the cellular

proteome, an effect that is neither cell-type-specific nor induced

by several other forms of DNA damage (Figures 3C and S3B).

Besides BRCA2, only �35 of >4,200 proteins detected by

SWATH-MS are selectively depleted. The mechanism(s) under-

lying the selectivity of formaldehyde-induced proteome deple-

tion remain unclear and warrant further study. However, this first

systematic analysis of the effect of formaldehyde on proteome

expression identifies changes that may be linked in future

studies to the toxicity of this ubiquitous, reactive compound.

Implications for Carcinogenesis and Public Health
Our findings suggest a newmodel (Figure 7F) for carcinogenesis

in individuals who carry germline mutations truncating a single

copy of BRCA2. Exposure to aldehydes like formaldehyde or

acetaldehyde, which are both widespread in our environment

and also accumulate endogenously in certain tissues, could

potentiate spontaneousmutagenesis in the cells of mutation car-

riers, predisposing to cancer. In this model, the risk of carcino-

genesis among mutation carriers may depend not only on the

nature of their germline BRCA2 mutation and its susceptibility

to aldehyde-induced haploinsufficiency but also upon other

genetic and environmental factors that determine exposure to al-

dehydes. Because BRCA2 mutation carriers typically develop

cancers in certain epithelial tissues including the breast, ovary,

pancreas, or prostate, we speculate that organ-specific differ-

ences in endogenous aldehyde accumulation or extrinsic expo-

sure may account in part for the observed tissue selectivity.

Notably, our proposal suggests that—rather than being pro-

moted solely by intrinsic cellular defects—cancer evolution

among carriers of at least certain types of BRCA2 mutations

may instead be driven by a gene-environment interaction, in

which a category of pervasive, naturally occurring compounds

trigger ‘‘induced haploinsufficiency.’’

Even in wild-type cells, prolonged or high-dose formaldehyde

exposure can deplete BRCA2 protein to levels low enough

to induce replication stress (Figures S5G–S5I). Thus, although

BRCA2 heterozygous cells are particularly vulnerable to alde-

hyde-induced haploinsufficiency, wild-type cells are not imper-

vious, suggesting a mechanism for the carcinogenic potential

of formaldehyde exposure in otherwise normal individuals.

The public health significance of our findings is emphasized by

the ubiquity of exposure to formaldehyde and acetaldehyde,

particularly in the urban environment, from sources including to-

bacco smoke, e-cigarettes, automobile combustion emissions,

building materials, and even cosmetics (IARC, 2006). Over 500

million individuals worldwide, particularly of East Asian descent,
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carry the trans-dominant ALDH2E487K polymorphic variant,

which vastly reduces enzymatic activity for acetaldehyde catab-

olism leading to increased acetaldehyde build-up after alcohol

consumption (Jin et al., 2015). Epidemiological studies seem

warranted to investigate the risk of cancer associated with

BRCA2 mutations in such populations, particularly in light of

the difficulty in testing these hypotheses in genetically engi-

neered pre-clinical mouse models. Conversely, it is tempting to

speculate that dietary supplementation with formaldehyde scav-

engers like Resveratrol (Marcsek et al., 2007) may offer a future

strategy to reduce cancer incidence in patients who carry path-

ogenic truncating mutations affecting BRCA2.
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STAR+METHODS
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Rat anti-BrdU Abcam Cat#ab6326; RRID: AB_305426

Chicken anti-rat AlexaFluor 488 ThermoFisher Scientific Cat#A-21470; RRID: AB_2535873

Goat anti-chicken AlexaFluor 488 ThermoFisher Scientific Cat#A-11039; RRID: AB_142924

Mouse anti-BrdU BD Biosciences Cat#347580; RRID: AB_10015219

Rabbit anti-mouse AlexaFluor 594 ThermoFisher Scientific Cat#A-11062; RRID: AB_2534109

Goat anti-rabbit AlexaFluor 594 ThermoFisher Scientific Cat#A-11012; RRID: AB_141359

Anti-single strand DNA Merck Millipore Cat#MAB3034; RRID: AB_94645

Rabbit anti-mouse AlexaFluor 350 ThermoFisher Scientific Cat#A-21062; RRID: AB_2535726

Goat anti-rabbit AlexaFluor 350 ThermoFisher Scientific Cat#A-11046; RRID: AB_142716

Rabbit anti-mouse AlexaFluor 488 ThermoFisher Scientific Cat#A-11059; RRID: AB_142495

Goat anti-rabbit AlexaFluor 488 ThermoFisher Scientific Cat#A-11034; RRID: AB_2576217

Rabbit polyclonal anti-PCNA Abcam Cat#ab18197; RRID: AB_2576217

Mouse monoclonal anti-gH2AX Merck Millipore Cat#05–636; RRID: AB_309864

Mouse polyclonal anti-RAD51 (Immunofluorescence) Abnova Cat# H00005888-B01P; RRID: AB_1579507

Mouse monoclonal anti-BRCA2 (Ab-1) Merck Millipore Cat#OP95; RRID: AB_2067762

Rabbit polyclonal anti-BRCA1 (C-20) Santa Cruz Biotechnology Cat#sc-642; RRID: AB_630944

Rabbit polyclonal anti-PALB2 Bethyl Laboratories Cat#A301-246A; RRID: AB_890607

Mouse monoclonal anti-RAD51 (western blot) GeneTex Cat#GTX70230; RRID: AB_372856

Rabbit monoclonal anti-phospho-ATM (S1981) Abcam Cat#ab81292; RRID: AB_1640207

Mouse monoclonal anti-ATM Sigma-Aldrich Cat#A1106; RRID: AB_796190

Rabbit polyclonal anti-phospho-ATR (T1989) GeneTex Cat#GTX128145

Rabbit polyclonal anti-ATR Bethyl Laboratories Cat#A300-137A; RRID: AB_185544

Rabbit monoclonal anti-LC3B Cell Signaling Cat#3868; RRID: AB_2137707

Mouse monoclonal anti-Flag Sigma-Aldrich Cat#F1804; RRID: AB_262044

Mouse monoclonal anti-mono- and polyubiquitinylated

conjugates monoclonal antibody

Enzo Life Sciences Cat#BML-PW8810; RRID: AB_10541840

Rabbit monoclonal anti-Hsp90 Cell Signaling Cat#4877; RRID: AB_10829038

Mouse monoclonal anti-beta-actin Sigma-Aldrich Cat#A5441; RRID: AB_476744

Rabbit polyclonal anti-XRCC3 Merck Millipore Cat#PC691; RRID: AB_2304699

Rabbit polyclonal anti-FANCI Abcam Cat#ab15344; RRID: AB_443182

Goat polyclonal anti-Ku80 Santa Cruz Biotechnology Cat#sc-1485; RRID: AB_2288756

Mouse monoclonal anti-Ku70 Abcam Cat#ab3114; RRID: AB_2219041

Rabbit polyclonal anti-XRCC4 Abcam Cat#ab145; RRID: AB_301278

Mouse monoclonal anti-mCherry Novus Biologicals Cat#NBP1-96752; RRID: AB_11034849

Rabbit polyclonal anti-Histone H3 Cell Signaling Cat#9715; RRID: AB_331563

Mouse monoclonal anti-c-Myc Santa Cruz Biotechnology Cat#sc-40; RRID: AB_627268

Rabbit monoclonal anti-TXNL1 Abcam Cat#ab188328

Rabbit polyclonal anti-Aurora B Abcam Cat#ab2254; RRID: AB_302923

Mouse monoclonal anti-PLK1 ThermoFisher Scientific Cat#33-1700; RRID: AB_2533104

Mouse monoclonal anti-JAK1 Santa Cruz Biotechnology Cat#sc-376996

Chemicals, Peptides, and Recombinant Proteins

37% formaldehyde solution Sigma-Aldrich Cat#F8875

Acetaldehyde solution Sigma-Aldrich Cat#402788

Hydroxyurea Sigma-Aldrich Cat#H8627

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Mirin Sigma-Aldrich Cat#M9948

Epoxomicin Biovision Cat#2190-50

b-AP15 Cayman Chemical Cat#CAY11324

Velcade Selleckchem Cat#S1013

Chloroquine Sigma-Aldrich Cat#C6628

MG132 Merck Millipore Cat#474790

Mitomycin C Sigma-Aldrich Cat#M4287

Camptothecin Sigma-Aldrich Cat#C9911

5-azacytidine Sigma-Aldrich Cat#A3656

Cycloheximide Sigma-Aldrich Cat#C4859

Colcemid ThermoFisher Scientific Cat#15212012

Giemsa Stain solution ThermoFisher Scientific Cat#10092013

Gurr’s Buffer pH 6.8 ThermoFisher Scientific Cat#10582013

Permount Mounting Medium VWR Cat#100496-550

Crystal Violet Solution Sigma-Aldrich Cat#HT90132

5-Iodo-2-deoxyuridine Sigma-Aldrich Cat# I7125

5-Chloro-2-deoxyuridine Sigma-Aldrich Cat#C6891

Blocking reagent for nucleic acid hybridization

and detection

Roche Cat#11096176001

Human insulin Sigma-Aldrich Cat#I9278

apo-Transferrin Sigma-Aldrich Cat#T1147

Epidermal growth factor Peprotech Cat#AF-100-15

Sodium selenite Sigma-Aldrich Cat#S5261

b-estradiol Sigma-Aldrich Cat#E2758

Hydrocortisone Sigma-Aldrich Cat#H0888

Prolactin Sigma-Aldrich Cat#L6520

5,6-Dichlorobenzimidazole 1-b-D-ribofuranoside Sigma-Aldrich Cat#D1916

JetPRIME Transfection Reagent Polyplus Transfections Cat#114-07

cOmplete, EDTA-free Protease Inhibitor Cocktail Roche Cat#11873580001

Critical Commercial Assays

Click-iT EdU Alexa Fluor� 488 Imaging Kit ThermoFisher Scientific Cat#C10086

Click-iT RNA Alexa Fluor� 594 Imaging Kit ThermoFisher Scientific Cat#C10330

Subcellular Protein Fractionation Kit for Cultured Cells ThermoFisher Scientific Cat#78840

Deposited Data

SWATH-MS proteomics data have been deposited

to the ProteomeXchange Consortium via the

PRIDE partner repository

This paper ProteomeXchange: PXD006106

Experimental Models: Cell Lines

Human: HeLa Kyoto From the laboratory of

Jonathan Pines

N/A

Human: HeLa Kyoto BRCA2 +/3036del4 This paper N/A

Human: HeLa Kyoto BRCA2 +/6174delT This paper N/A

Human: HeLa Kyoto BRCA2 +/3036del4

complemented with FLAG-BRCA2

This paper N/A

Human: HeLa Kyoto BRCA2 +/6174delT

complemented with FLAG-BRCA2

This paper N/A

Human: EUFA423 VU University Medical Center N/A

Human: EUFA423 complemented with FLAG-BRCA2 Hattori et al., 2011 N/A

Human: U2OS ATCC Cat#HTB-96

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Human: MCF-10A ATCC Cat#CRL-10317

Human: MCF7 ATCC Cat#HTB-22

Human: hTERT-RPE1 ATCC Cat#CRL-4000

Human: Breast epithelial cells BRCA2 +/+ Rubner Fridriksdottir

et al., 2005

N/A

Human: Breast epithelial cells BRCA2 +/999del5 - 1 Rubner Fridriksdottir

et al., 2005

N/A

Human: Breast epithelial cells BRCA2 +/999del5 - 2 Rubner Fridriksdottir

et al., 2005

N/A

Recombinant DNA

Plasmid: pcDNA3.1(-) mCherry This paper N/A

Plasmid: pcDNA3.1(-) mCherry-RNase H1 This paper N/A

Plasmid: pcDNA3.1(-) mCherry-RNase H1 (D145N) This paper N/A

Sequence-Based Reagents

siRNA: siLuciferace: 50-CGUACGCGGAAUACUUCGA-30 This paper N/A

siRNA: siBRCA2: 50-GAAGAAUGCAGGUUUAAUA-30 This paper N/A

Software and Algorithms

Cellomics Bioapplication Compartmental Analysis

V4 Version 6.0

ThermoFisher Scientific https://www.thermofisher.com/us/en/home/

life-science/cell-analysis/cellular-imaging/

high-content-screening/high-content-

screening-instruments/hcs-studio-2.html

IncuCyte Version 2011A Essen Bioscience http://www.essenbioscience.com/en/products/

software/incucyte-base-software/

Prism 5 Graphpad software https://www.graphpad.com/scientific-software/

prism/; RRID: SCR_002798

R statistical package Version 3.3.1 R Core Team https://www.r-project.org/; RRID: SCR_001905

OpenSWATH Röst et al., 2014; http://www.openswath.org

Image Studio Lite Version 3.1 LI-COR Biosciences https://www.licor.com/bio/products/software/

image_studio/; RRID: SCR_013715

ImageJ Version 1.47 m Wayne Rasband (NIH) https://imagej.nih.gov/ij
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to Lead Contact Ashok R. Venkitaraman (arv22@

mrc-cu.cam.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
HeLa Kyoto, EUFA423, U2OS and MCF7 cells (all female in gender) were cultured in DMEM supplemented with 10% FCS and 1%

Penicillin/Streptomycin. hTERT-RPE1 cells were cultured in DMEM/F12 supplemented with 10% FCS, 1% Penicillin/Streptomycin

and 4.2% sodium bicarbonate. MCF-10A cells were cultured in DMEM/F12 supplemented with 5% horse serum, 10 mg/ml insulin,

20ng/ml epidermal growth factor (EGF), 100ng/ml choleratoxin, 500ng/ml hydrocortisone and 1% penicillin/streptomycin.

Human female breast epithelial cells were cultured in DMEM/F12 supplemented with 250ng/ml human insulin, 10mg/ml apo-

transferrin, 10ng/ml EGF, 2.6ng/ml sodium selenite, 0.1nM b-estradiol, 0.5mg/ml hydrocortisone, 5mg/ml prolactin and 1% peni-

cillin/streptomycin. Cells were grown on plastic dishes and maintained at 37 �C with 5% CO2. HeLa Kyoto BRCA2 +/3036del4

and +/6174delT heterozygous cells were engineered using CRISPR/Cas9 technology and authenticated by DNA sequencing and

western blotting to observe reduced levels of full-length BRCA2 protein.
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METHOD DETAILS

EdU and EU Incorporation
For EdU labeling, cells were labeled with 10 mMEdU for 1h and fixed with 4% paraformaldehyde for 10 min at room temperature. For

EU labeling, cells were labeled with 1mM EU for 1h and fixed with 4% paraformaldehyde for 10 min at room temperature. See the

‘Immunofluorescence’ section for immunostaining procedures.

Immunofluorescence
For detection of chromatin-bound PCNA, cells grown on coverslips were pre-extracted with CSK buffer (25mM HEPES, pH 7.4,

50mM NaCl, 1mM EDTA, 3mM MgCl2, 300mM sucrose, 0.5% Triton X-100) for 5 min on ice, washed twice in 1x PBS and fixed in

4%paraformaldehyde solution for 10min at 25�C. For EdU detection, we used the Click-iT reaction cocktail (Click-iT EdU Alexa Fluor

488 Imaging Kit, ThermoFisher, C10086) and applied onto samples for 30 min at room temperature, protected from light. After

washing twice with 1X PBS, samples were blocked with 2% BSA, 0.1% Triton X-100/1X TBS solution for 30min and incubated

with primary antibodies at 25�C for 2h (anti-gH2AX (Millipore #05–636, 1:2000), anti-PCNA, Abcam ab18197, 1:1000, anti-RAD51

(Abnova #H00005888-B01P, 1:2000)). Cells were washed thrice in 0.1% Triton X-100/1X TBS solution and incubated with appro-

priate secondary antibodies conjugated to Alexa fluorophores (Molecular Probes, 1:500) for 1h at 25�C. After three washes in

0.1%Triton X-100/1X TBS, slidesweremountedwith Vectashield containing 4’,6-diamidino-2-phenylindole (DAPI) and imaged using

a Leica SP5 confocal microscope using 40x or 63x objective lenses.

For EU detection, fixed cells were washed twice with 1X PBS. After permeabilization with 0.5% Triton X-100/1X PBS for 20min at

room temperature, the Click-iT reaction cocktail (Click-iT RNA Alexa Fluor 594 Imaging Kit, ThermoFisher C10330) was applied to

samples for 30min at room temperature protected from light. After washing twice in 1X PBS, samples weremounted with Vectashield

containing DAPI and imaged using a Leica SP5 confocal microscope using a 63x objective lens. See the ‘Image acquisition and

analysis’ section for details.

DNA Fiber Assay
For sister fork asymmetry assays, cells were labeled with IdU (25 mM) for 10min and subsequently with CIdU (250 mM) with or without

formaldehyde for 20min. For replication fork stability assays, cells were labeled with IdU (25 mM) for 20min prior to incubation for 5h in

respective treatments. Cells were spotted onto glass slides and lysed (200mM Tris-HCl, pH 7.4, 50mM EDTA, 0.5% SDS). DNA was

combed by tilting of slides, air-dried and fixed in Carnoy’s fixative (10min, 25�C). Slides were dried and denatured in 2.5M HCl for 1h

before washing 3x in ice-cold 1X PBS. Slides were blocked in 1.5% blocking solution (Roche, 11096176001, 0.05% Tween, 1X PBS,

pH 7.4) for 30min at 37�C or overnight at 4�C. To detect CIdU, slides were incubated (45min, 25�C) with rat anti-BrdU (ab6326, 1:750)

before incubated in stringency buffer (10mMTris-HCl pH 7.4, 400mMNaCl, 0.2%Tween, 0.2%NP-40) for 15min at 25�C. Slideswere

washed thrice in 1X PBS and sequentially stained with secondary antibody (chicken anti-rat AF488, 1:200, 20min, 25�C) and tertiary

antibody (goat anti-chicken AF488, 1:200, 20min, 25�C) with three PBS washes in between each antibody incubation. To detect IdU,

slides were incubated (45min, 25�C) with mouse anti-BrdU (BD #347580, 1:5) and sequentially with secondary antibody (rabbit anti-

mouse AF594, 1:50, 20min, 25�C) and tertiary antibody (goat anti-rabbit AF594, 1:50, 20min, 25�C)with three PBSwashes in between

each antibody incubation. Single-stranded DNAwas stained (45min, 25�C) withmouse anti-ssDNA (MAB3034, MerckMillipore, 1:50)

and sequentially with secondary antibody (rabbit anti-mouse AF488 or AF350, 1:50, 20min, 25�C) and tertiary antibody (goat anti-

rabbit AF488 or AF350, 1:50, 20min, 25�C) with three PBS washes between each antibody incubation. Slides were mounted in

90% glycerol in 1X PBS and imaged using Leica SP5 confocal microscope. Tract lengths were measured using ImageJ.

Plasmid and siRNA transfections
JetPRIME transfection reagent (Polyplus Transfection, 114-07) was used for all plasmid and siRNA transfections, with 1mg of plasmid

DNA per well of a 6-well dish. A 1:2 ratio of plasmid DNA (mg): JetPRIME reagent (ml) was used. Transfection reaction mixtures were

vortexed thoroughly and incubated at room temperature for 10min before adding dropwise to cells. For siRNA transfections, 4ml of

JetPRIME reagent was used per well of a 6-well dish. Transfection reactionmixtureswere vortexed thoroughly and incubated at room

temperature for 15min before adding dropwise to cells. Culture media was replaced with fresh media after 5h incubation at 37�C.
siRNA sequences used: siLuciferase: 50-CGUACGCGGAAUACUUCGA-30; siBRCA2: 50-GAAGAAUGCAGGUUUAAUA-30.

Subcellular Fractionation
2.53 106 HeLa Kyoto cells were seeded on 10 cm dishes. 24h after seeding, cells were treated and harvested by trypsinisation after

3h. Cell aliquots were taken from each sample for making whole cell extracts using RIPA buffer for lysis. The rest of the cells were

lysed and fractionated using the Subcellular Protein Fractionation Kit for Cultured Cells (ThermoFisher Scientific, #78840). Briefly,

cytoplasmic extraction buffer was added to cell pellets and samples were incubated at 4�Cwith gentle mixing for 10min. After centri-

fuging at 500 g for 5min, the supernatants were transferred to fresh tubes (cytoplasmic fraction). Next, membrane extraction buffer

was added to pellets, vortexed, and incubated at 4�C with gentle mixing for 10min. After centrifuging at 3000 g for 5min, the super-

natants were transferred to fresh tubes (membrane-bound fraction). Next, nuclear extraction buffer was added to pellets, vortexed

thoroughly, and incubated at 4�C with gentle mixing for 30min. After centrifuging at 5000 g for 5min, the supernatants were
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transferred to fresh tubes (nuclear soluble fraction). Finally, chromatin-bound extraction buffer (prepared according to kit instruc-

tions) was added to remaining pellets, which were thoroughly resuspended by pipetting. After incubation at room temperature for

15min, samples were vortexed and centrifuged at 16,000 g for 5min. Supernatants were transferred to fresh tubes (chromatin-bound

fraction).

Western blotting
Cells were lysed in RIPA buffer (50mM Tris HCl, pH 7.4, 150mMNaCl, 0.5% deoxycholate, 0.1% sodium dodecyl sulfate, 1%NP-40)

containing protease inhibitors (Roche, 11873580001) and 1 mM dithiothreitol (DTT). Whole cell extracts were separated by electro-

phoresis, transferred onto polyvinylidene difluoride membranes and blocked in 5% skimmed milk dissolved in 0.1%Tween/TBS.

Membranes were incubated with primary antibodies (a-BRCA2 (Merck Millipore, ab-1, 1:500), a-BRCA1 (Santa Cruz, C-20,

1:200), a-PALB2 (Bethyl A301-246A, 1:1000), a-RAD51 (GeneTex, 14B4, 1:500), a-p-ATM (S1981) (Abcam, ab81292, 1:1000),

a-ATM (Sigma, A1106, 1:500), a-p-ATR (T1989) (GeneTex, GTX128145, 1:500), a-ATR (Bethyl, A300-137A, 1:10000), a-LC3B

(Cell Signaling, D11, 1:1000), a-FLAG (Sigma, M2, 1:500), a-polyubiquitin (Enzo, FK2, 1:1000), a-Hsp90 (Cell Signaling, C45G5,

1:1000), a-b-actin (Sigma, A5441, 1:10000), a-XRCC3 (Oncogene, PC691, 1:5000), a-FANCI (Abcam, ab15344, 1:2000), a-Ku80

(Santa Cruz, sc-1485, 1:500), a-Ku70 (Abcam, ab3114, 1:500), a-XRCC4 (Abcam, ab145, 1:2000), a-mCherry (Novus Biologicals,

NBP1-96752, 1:2000), a-Histone H3 (Cell Signaling, #9715, 1:1000, a-c-Myc (Santa Cruz, sc-40, 1:500), a-PLK1 (ThermoFisher,

331700, 1:1000), a-Aurora B (Abcam, ab2254, 1:1000), a-TXNL1 (Abcam, ab188328, 1:2000), a-JAK1 (Santa Cruz, sc-376996,

1:500)) overnight at 4�C followed by washing in 0.1%Tween/TBS. Membranes were incubated with appropriate HRP-linked second-

ary antibodies at 25�C for 1h and washed thrice prior to signal detection. Membranes were developed by chemiluminescence using

ECL reagent.

Metaphase Spreads
Cells were treated as indicated in the text for 5h, washed three times with media and incubated at 37�C for 18h. Cells were treated

with 0.1 mg/ml colcemid (GIBCO 15212-012) for 3-6h andmitotic cells collected. 0.56%KCl solutionwas slowly added tomitotic cells

with gentle mixing and incubated at 37�C for 15min. Three drops of ice-cold Carnoy’s fixative was added to each sample and cells

pelleted at 100 g for 5min. Cells were gently resuspended in Carnoy’s fixative and fixed overnight at �20�C. Fixed samples were

washed thrice in ice-cold Carnoy’s fixative and spotted onto clean glass slides. Spotted glass slides were held over a beaker of

steaming water cells side up for 30 s before air-drying for at least 1h. Chromosomes were stained in Karyomax Giemsa Stain solution

(ThermoFisher, 10092013) for 5min, briefly washed twice in Gurr’s buffer, pH 6.8 (ThermoFisher, 10582013) and dried. Slides were

mounted in Permount Mounting Medium (VWR, 100496-550). Brightfield images were taken using an Olympus BX51 microscope

using 63x or 100x objective lenses.

Colony Formation Assay
300,000 cells per well of a 6-well plate were seeded and 24h later, treated with formaldehyde for 5h. Cells were washed with 1X PBS

and re-plated at 200 cells/well (HeLa) or 600 cells/well (HBEC) of a 6-well plate in triplicate. 10-14 days later, colonies were washed,

fixedwith 4% formaldehyde for 20min at room temperature and stained in 0.1%crystal violet solution (Sigma, HT90132). The number

of colonies was manually enumerated.

Cycloheximide chase assay
Cells were treated with 100 mg/ml cycloheximide (Sigma, C4859) and in the presence or absence of formaldehyde. DMSO was used

as a control for cycloheximide.

Measuring Cell Proliferation
5000 cells were seeded in each well of 24-well plates. 24h after seeding, time-lapsed images were obtained using an IncuCyte

system (Essen BioScience), with 10x magnification from 9 spots within each well of a 24-well plate every 2 hr over 72 hr. Cell con-

fluency was automatically determined from phase-contrast images at different time points, using the integrated IncuCyte software.

The IncuCyte software utilizes a software algorithm that calculates the area occupied by cells as a percentage of the total area of the

entire field to give the percentage confluency.

Protein extraction and in-solution digestion for SWATH-MS
Cell pellets were suspended in 10M Urea lysis buffer containing complete protease inhibitor cocktail and lysed by sonication at

4�C for 2 min using a VialTweeter device (Hielscher-Ultrasound Technology). Insoluble material was removed by centrifugation

at 18,000 g for 1h. Supernatants were reduced by 10mM Tris-(2-carboxyethyl)-phosphine (TCEP) for 1h at 37�C and 20 mM

iodoacetamide (IAA) in the dark for 45 min at room temperature. Samples were further diluted by 1:6 (v/v) with 100 mM NH4HCO3

and digested with sequencing-grade porcine trypsin (Promega) at a protease/protein ratio of 1:25 overnight at 37�C. The amount

of purified peptides was determined using Nanodrop ND-1000 (Thermo Scientific) and 1.5 mg peptides were injected in each

LC-MS run.
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SWATH mass spectrometry
Peptide samples after digested were measured by SWATHmass spectrometry with liquid chromatographic (LC) (Collins et al., 2013;

Gillet et al., 2012; Liu et al., 2013). Specifically, the mass spectrometer was interfaced with an Eksigent NanoLC Ultra 2D Plus HPLC

system. Peptides were directly injected onto a 20-cmPicoFrit emitter (NewObjective, self-packed to 20 cmwithMagic C18 AQ 3-mm

200-Å material), and then separated using a 90 min gradient from 5%–35% (buffer A 0.1% (v/v) formic acid, 2% (v/v) acetonitrile,

buffer B 0.1% (v/v) formic acid, 98% (v/v) acetonitrile) at a flow rate of 300 nL/min. In the present SWATH-MS mode, the SCIEX

5600 plus TripleTOF instrument was specifically tuned to optimize the quadrupole settings for the selection of 64 variable wide pre-

cursor ion selection windows. The 64-variable window schemawas optimized based on a normal human cell lysate sample, covering

the precursor mass range of 400–1,200 m/z. Please refer to Table S3 for the isolation windows. SWATHMS2 spectra were collected

from 50 to 2,000 m/z. The collision energy (CE) was optimized for each window according to the calculation for a charge 2+ ion

centered upon the window with a spread of 15 eV. An accumulation time (dwell time) of 50 ms was used for all fragment-ion scans

in high-sensitivitymode and for each SWATH-MScycle a survey scan in high-resolutionmodewas also acquired for 250ms, resulting

in a duty cycle of �3.45 s.

QUANTIFICATION AND STATISTICAL ANALYSIS

In all figures: ns, p-value > 0.05; *, p-value < 0.05; **, p-value < 0.01; ***, p-value < 0.001. The statistical methods used for comparisons

are indicated in the relevant figure legends and in the sections below.

DNA fiber analysis
DNA tract lengths were measured using ImageJ. For replication fork stability assays, at least 250 tracts were counted per condition

and the Mann-Whitney t test was used to determine p values. For sister fork symmetry assays, the ratio of sister forks was achieved

by dividing the length of the longer sister CIdU tract by that of the shorter sister CIdU tract which emanate from the same origin

of replication. At least 70 sister fork ratios were determined for each sample per experiment. The scatterplots in Figures 1B and

7A show combined results for three and two independent experiments respectively and the Mann-Whitney t test was used to

determine statistical significance.

Western blot analysis
Densitometric measurements were carried out used Image Studio Lite version 3.1. In Figure 2B, the histogram plots the mean ± SEM

from three independent experiments. In Figure 3D, the graph plots the mean ± SEM from three independent experiments and the

two-tailed Student’s t test was used to determine statistical significance. In Figures 5A–5C, the histograms plot the mean ± SEM

from eight (Figure 5A) and three (Figures 5B and 5C) independent experiments respectively and the two-tailed Student’s t test

was used to determine statistical significance in Figure 5A. In Figure S1I, the histogram plots the mean ± SEM from two independent

experiments. Where indicated, a single asterisk (*) indicates non-specific bands and a double asterisk (**) indicates probable

degradation products occurring during sample preparation.

Metaphase spread analysis
50 metaphases were analyzed per sample in each experiment. The Mann-Whitney t test was used to determine statistical

significance.

Colony formation assay analysis
Colonies were manually enumerated and the two-tailed Student’s t test was used to determine statistical significance.

Image acquisition and analysis
Stained cells were imaged on a Leica SP5 confocal microscope. Maximum projections of z stacks of each field were generated and

analyzed using Cellomics Bioapplication software using Compartment Analysis 4 (Thermo Scientific) algorithm for nuclei segmenta-

tion (based on nuclear DAPI stain), PCNA nuclear staining (based on average nuclear intensity), nuclear gH2AX and RAD51 foci

counts, EdU and EU staining (based on total nuclear intensity). For Figure 1A, the total nuclear intensity of EdU nuclear staining

per cell was determined using nuclear DAPI staining as a mask for nuclear segmentation. The histogram plots the mean ± SEM

from three independent experiments. For Figures 1C and 1D, thresholds for nuclei segmentation, PCNA average nuclear intensity,

gH2AX foci counts were manually optimized for each independent experiment but kept constant across samples within the same

experiment. At least 1500 cells were counted per sample in each experiment. The histograms in Figures 1C and 1D plot the

mean ± SEM from four and three independent experiments respectively and the two-tailed Student’s t test was used to determine

statistical significance. For Figure S1B, thresholds for nuclei segmentation and RAD51 foci counts were manually optimized for each

independent experiment but kept constant across samples within the same experiment. The histogram plots the mean ± SEM from

three independent experiments. At least 200 cells were counted per sample in each experiment and the two-tailed Student’s t test

was used to determine statistical significance. For Figure S7A, the total nuclear intensity of EU nuclear staining per cell was deter-

mined using nuclear DAPI staining as a mask for nuclear segmentation. At least 200 cells per condition were measured.
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SWATH-MS data analysis
The SWATH-MS identification was performed byOpenSWATH software (Röst et al., 2014) searching against a previously established

SWATH assay library which contains mass spectrometric query parameters for 10,000 human proteins with unique Swiss-Prot iden-

tities (Rosenberger et al., 2014). OpenSWATH first identified the peak groups from all individual SWATH maps at a target FDR = 1%

and then aligned between SWATH maps using a novel TRIC (TRansfer of Identification Confidence) algorithm that was specifically

developed for targeted proteomic data analysis (Röst et al., 2016). The re-quantification feature in OpenSWATHwas enabled but only

those peptide signals detected in at least eight of the ten samples in both FA or control groups were accepted for the protein level

quantification, resulting in 34,575 peptide peak groups assigned to 4219 unique SwissProt proteins. The expression data matrix was

median normalized (using a simple normalization factor calculated by summing all the peak group signals per sample). To quantify the

protein abundance levels across samples, we summed up the most abundant peptides for each protein (i.e., top 3 peptide groups

based on intensity were used for those proteins identified with more than three proteotypic peptide signals whereas all the peptides

were summarized for other proteins) which allow for reliable estimation of global protein levels (Liu et al., 2015; Ludwig et al., 2012;

Wilhelm et al., 2014). The quantitative protein level matrix was then log2 transformed for statistical and bioinformatics analysis. The

fold changes were calculated based on the normalized SWATH-MS intensities for each protein. The two-tailed Student’s t test was

used to determine statistical significance and corrections for multiple hypothesis testing was carried out by Benjamini-Hochberg

correction of p values, which are reflected in the volcano plot (Figure 4C).

DATA AVAILABILITY

Our SWATH-MS proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (Vizcaı́no et al., 2016)

partner repository. The accession number for these data is ProteomeXchange: PXD006106.
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Supplemental Figures

Figure S1. Related to Figure 2

(A) Growth curves of HeLa Kyoto cells. Mean ± SD from nine fields of view.

(B) Number of RAD51 foci per cell in HeLa Kyoto cells 3h after exposure to 5 Gy ionising radiation. Mean ± SEM, n = 3.

(C–E) IdU tract length frequency distributions in HeLa Kyoto cells after treatment with different doses of FA for 5h.

(F–H) IdU tract length frequency distributions in HeLa Kyoto cells after treatment with 80mM FA for different lengths of time.

(I) BRCA2 protein levels in BRCA2+/+ or BRCA2+/999del5 human breast epithelial cells. Normalized BRCA2 band intensities are represented in the histogram.

Mean ± SEM, n = 2.



Figure S2. Related to Figure 2

(A) BRCA2 protein levels in wild-type HeLa Kyoto cells 24h after transfection with 50nM short interfering RNAs to Luc (siLuc) or BRCA2 (siBRCA2).

(B–D) IdU tract length frequency distributions of wild-type HeLa Kyoto cells treated with (siBRCA2) or without (siLuc) BRCA2 knockdown under the indicated

conditions.

(E) BRCA2 protein levels in EUFA423 cells and EUFA423 cells complemented with FLAG-BRCA2. D27 refers to the exon 27 truncated variant from the BRCA2

9900insA mutant allele. The truncated product from the BRCA2 7691insAT allele was not detectable.

(F–H) IdU tract length frequency distributions of EUFA423 cells, with or without FLAG-BRCA2 complementation, treated under the indicated conditions. Results in

(B)–(D) and (F)–(H) represent two independent experiments.



Figure S3. Related to Figure 3

(A) BRCA2 protein levels at the indicated time points in wild-type HeLa Kyoto cells. Cells were treated with 100mM FA for 5h, washed and harvested for western

blotting at the indicated time points. Numbers below the BRCA2 blot represent densitometric measurements of BRCA2 band intensities normalized to loading

control and the 0h time point.

(B) BRCA2 protein levels in cells from four different cell lines after treatment with the increasing doses of formaldehyde for 5h.

(C) BRCA2 protein levels in different cellular fractions of wild-type HeLa Kyoto cells after exposure to the indicated treatments for 3h. Different exposures of

BRCA2 are shown, with red boxes highlighting the appropriate exposures for the various fractions.



Figure S4. Related to Figure 4

(A) Coefficient of variation (CV) distribution of the normalized SWATH intensities for FA-treated samples (left panel, 10 replicates), untreated samples (middle

panel, 10 replicates), and all samples (right panel, 10 + 10 samples). The line of CV at 25% is illustrated by the horizontal dotted line.

(B) Normalized peptide intensities of individual peptides in at least 8 out of 10 biological replicates of 9 representative proteins showing statistically significant

depletion of protein abundances by more than 25% after formaldehyde treatment.



Figure S5. Related to Figure 5

(A) BRCA2 protein levels in BRCA2+/+ and BRCA2+/999del5 human breast epithelial cells (HBECs) treated with increasing doses of FA for 5h. Numbers below the

BRCA2 blot represent densitometric measurements of BRCA2 protein levels normalized to loading control and untreated BRCA2+/+ cells (lane 1). Although

BRCA2+/999del5 �1 HBECs have lower pre-existing levels of BRCA2 protein than their BRCA2+/+ counterparts, similar levels are reached after formaldehyde

exposure. However, sinceBRCA2+/999del5�1HBECs exhibit replication tract instability after formaldehyde exposure whereas theirBRCA2+/+ counterparts do not

(Figure 2), these observations may reflect differences between these non-isogenic human cell lines in the kinetics of aldehyde-induced BRCA2 depletion, and/or

in the level of BRCA2 that is adequate for function.

(B) Experimental set-up for the siRNA knockdown DNA fiber experiment.

(C) BRCA2 protein levels of wild-type HeLa Kyoto cells following transfection with BRCA2 short interfering RNA (siBRCA2) in combination with the indicated

treatments. Numbers below the BRCA2 blot show the densitometric measurements of BRCA2 band intensities normalized to loading control and relative to the

untreated control (lane 1).

(D–F) IdU tract length frequency distributions of wild-type HeLa Kyoto cells treated under the indicated conditions.

(G) BRCA2 protein levels in wild-type HeLa Kyoto cells after treatment with 100mM and 300mM FA for 5h and 8h.

(H–I) IdU tract length frequency distributions in wild-type HeLa Kyoto cells after treatment with 100mM and 300mM FA for 5h and 8h respectively.



Figure S6. Related to Figure 6

(A) Frequency of chromosomal aberrations in metaphase spreads of HBECs treated with or without 100mM FA for 5h. Red lines indicate the mean, n = 2.

(B) Representative images of a colony formation assay of human breast epithelial cells treated with or without 100mM FA for 5h. UT, untreated. The scatterplot

shows the number of colonies per well from triplicate wells with red lines indicating the mean number of colonies per well. Representative of two independent

experiments.



Figure S7. Related to Figure 7

(A) Immunofluorescence images of wild-type HeLa Kyoto cells treated with the transcription inhibitor, 5,6-dichloro-1-b-D-ribofuranosylbenzimidazole (DRB) at

100mM for the indicated lengths of time and subsequently labeled with EU for 1h as measure of total RNA synthesis. The scatterplot shows the total nuclear

intensities of EU signal from at least 200 nuclei per condition with red lines indicating the median and each dot representing a single nucleus.

(B and C) IdU tract length frequency distributions in HeLa Kyoto cells after concurrent treatment with 100mM FA and 100mM DRB for 5h.

(D) BRCA2 protein levels in HeLa Kyoto cells expressing mCherry or mCherry-RNase H1 vectors after exposure to 100mM FA for 5h. Numbers below the

BRCA2 blot represent densitometric measurements of BRCA2 protein levels normalized to loading control and lane 1 of the BRCA2 blot. Different

(legend continued on next page)



exposures of mCherry blots show expression of mCherry and mCherry-RNase H1 as indicated. Double asterisks (**) indicate probable degradation

products.

(E) BRCA2 protein levels in wild-type HeLa Kyoto cells after treatment with increasing doses of acetaldehyde for 5h.

(F–H) IdU tract length frequency distributions in HeLa Kyoto cells after treatment with 2, 3 or 4 mM acetaldehyde for 5h.
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