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Tropical forests are a key component of the global carbon cycle, and mapping their carbon density is essential for
understanding human influences on climate and for ecosystem-service-based payments for forest protection.
Discrete-return airborne laser scanning (ALS) is increasingly recognised as a high-quality technology for mapping
tropical forest carbon, because it generates 3D point clouds of forest structure from which aboveground carbon
density (ACD) can be estimated. Area-based models are state of the art when it comes to estimating ACD from
ALS data, but discard tree-level information contained within the ALS point cloud. This paper compares area-
based and tree-centric models for estimating ACD in lowland old-growth forests in Sabah, Malaysia. These forests
are challenging to map because of their immense height. We compare the performance of (a) an area-based
Biomass estimation model developed by Asner and Mascaro (2014), and used primarily in the neotropics hitherto, with (b) a tree-
Image analysis centric approach that uses a new algorithm (itcSegment) to locate trees within the ALS canopy height model,
LiDAR measures their heights and crown widths, and calculates biomass from these dimensions. We find that Asner
Object recognition and Mascaro's model needed regional calibration, reflecting the distinctive structure of Southeast Asian forests.
Power-law We also discover that forest basal area is closely related to canopy gap fraction measured by ALS, and use this
Tree delineation . , . . .
Tropical forests ﬁnc}mg Fo refine Asner and Mascaro's model. Finally, we show that our tree-centric approach is less ac'cur.ate at
estimating ACD than the best-performing area-based model (RMSE 18% vs 13%). Tree-centric modelling is ap-
pealing because it is based on summing the biomass of individual trees, but until algorithms can detect understo-
ry trees reliably and estimate biomass from crown dimensions precisely, areas-based modelling will remain the
method of choice.
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Forests are an important component of the global carbon cycle, and
their future management is key to international efforts to abate climate
change. During the 1990s, about 89,000 km? of tropical forests were lost
to agriculture each year, and a further 24,000 km? were degraded
(Nabuurs et al., 2007). Estimates of deforestation rates vary, but some-
where in the region of 230 million hectares of forest were lost per
year between 2000 and 2012 (Hansen et al., 2013). Furthermore,
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some 30% of tropical forests were degraded by logging and/or fire dur-
ing that period (Asner et al., 2009). These changes resulted in significant
releases of greenhouse gases (GHGs) to the atmosphere, constituting
approximately 10% of global emissions (Baccini et al., 2012) and
emphasising the significance of forests in the terrestrial carbon cycle
(Pan et al.,, 2011). Forest conservation and restoration are increasingly
recognised as critical for mitigating climate change (Agrawal et al.,
2011). The climate change agreement brokered at COP21 in Paris, and
signed by over 200 nations, may be significant in this respect. It is
now recognised that, as well as harbouring biodiversity and supporting
a billion livelihoods, tropical forests are essential for climate change
abatement. Even if nations de-carbonise their energy supply chains
within agreed schedules, we are unlikely to avoid 2 °C global warming

0034-4257/© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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unless 500 million ha of degraded tropical forests are protected, and
land unsuitable for agriculture is afforested (Houghton et al., 2015). For-
est protection can offset emissions over the next 40 years, buying time
for humanity to reduce its dependency on fossil fuels (Houghton et al.,
2015).

Accurate monitoring of forest extent and carbon density is essential
for these renewed efforts to protect forests, because this information is
the basis of programmes to reduce emissions from deforestation and
forest degradation and industrial zero-net-emissions programmes,
and airborne laser scanning (ALS) is widely recognised as an essential
component of these projects. Regional ALS maps of carbon density are
all currently generated using “area-based” approaches (Nasset, 2002).
These approaches, applied in over 70 publications (Zolkos et al.,
2013), relate live-wood aboveground carbon density (ACD) estimates
obtained from field plots to simple summary statistics, such as mean
canopy height, derived from the ALS point cloud through statistical
models (Fig. 1). These approaches for mapping structural attributes of
complex multi-layered forests, as outlined by Drake et al. (2002,
2003), have since been applied to carbon mapping in several tropical re-
gions (Englhart et al., 2011; Englhart et al., 2013; Asner et al., 2012,
2013; Vincent et al., 2012; Jubanski et al., 2013; Laurin et al., 2014;
Réjou-Méchain et al., 2015). However, a well-recognised problem is
that many different ALS structural metrics can be used to construct
the multiple regression equations, and so these models are idiosyncratic
by virtue of their local fine-tuning and cannot be applied more widely
than the region in which they were calibrated. An alternative approach,
advocated by Asner and Mascaro (2014), uses a simple power-law func-
tion of mean top-of-canopy height (TCH) to predict carbon density

AREA-BASED APPROACH

within tropical landscapes. This generalised approach has obvious ad-
vantages when it comes to mapping carbon across the tropics. Yet this
power-law model hinges on the assumption that (i) forest basal area
and TCH are closely related and (ii) that average (i.e., 1-ha resolution)
between-plot variation in basal area-weighted wood density is low at
regional scales (Asner and Mascaro, 2014; Vincent et al., 2014;
Duncanson et al., 2015). Currently, however, we do not have a clear un-
derstanding of situations in which these assumptions are supported.
In response to these potential issues with area-based approaches for
estimating ACD from airborne laser scanning, there is current interest in
developing individual-tree-based approaches to make greater use of the
3D information contained in ALS data (Fig. 1; Eysn et al., 2015; Ferraz,
Saatchi, Mallet, and Meyer, 2016; Vauhkonen et al., 2012). Advances
in sensor technology and computational power have generated a prolif-
eration of approaches for detecting individual tree crowns within dis-
crete-return ALS point clouds - including those working with the
rasterized upper surface of the ALS point cloud (e.g. Hyyppa et al.,
2001; Chen et al., 2006; Yu et al,, 2011), and those exploiting the entire
point cloud (Morsdorf et al., 2004; Reitberger et al., 2009; Duncanson et
al,, 2014; Ferraz et al.,, 2016). There are several advantages of individual-
tree-based mapping compared to area-based approaches: (i) it has a
strong fundamental basis because it is conceptually similar to allometric
approaches used in field-based inventories; (ii) uncertainty in the esti-
mation model is much less dependent on plot size, allowing calibration
using individual trees and small plots (Dalponte and Coomes, 2016);
(iii) narrow patches of forest with high conservation value, such as ri-
parian strips, can be mapped; (iv) growth and death of individual
trees can, in principle, be tracked and this information used to
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Fig. 1. Schematic diagram illustrating the key differences between area-based and tree-centric approaches used to estimate aboveground carbon density (ACD) from ALS data. Area-based
approaches rely on summary statistics calculated from the ALS point cloud (e.g., top canopy height in a) to develop statistical relationships for estimating ACD (b). In contrast, tree-centric
mapping aims to identify and measure the crown dimensions of individual trees within the ALS point cloud (c), and then use these to estimate their ACD (d). Data shown in panels (b) and

(d) were taken from Asner and Mascaro (2014) and Jucker et al. (2016), respectively.
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parameterise individual based models of forest dynamics (Shugart et al.,
2015). The main disadvantages are that tree-centric approaches are
computationally intensive, most delineation methods can only distin-
guish trees in the upper canopy, and over- or under-segmentation of
trees can lead to biases in biomass estimation. Nevertheless, if these is-
sues can be resolved, individual based modelling could mark a funda-
mental shift in the way forests are monitored remotely (Shugart et al.,
2015). To our knowledge, only one group has used tree-centric ap-
proaches and airborne ALS data to map carbon in dense tropical forest,
where obscured trees and over/under segmentation may result in sub-
stantial bias (Ferraz et al., 2016).

This paper reports on a generalised tree-centric approach for map-
ping the carbon density of tropical forests - i.e. one where a single
model can be applied reliably across contrasting forest types. The
work focusses on old-growth forests in the Sepilok Forest Reserve in
lowland Sabah, Malaysian Borneo. Sabah has lost much of its lowland
forests in recent decades (Gaveau et al., 2014), but has become an im-
portant testbed for global initiatives to protect and restore forests. We
recently showed that tree-centric approaches to carbon mapping per-
form well in Alpine coniferous forests (12 = 0.98 when field- and ALS es-
timate of carbon stocks are compared) and that a correction factor can
be applied to account for the small obscured trees that were invisible
from the air (Dalponte and Coomes, 2016). However, we recognise
that applying this approach to Sabah's forests is likely to be challenging,
as it contains some of the tallest and densest forests in the tropics. We
therefore compare the tree-centric approach with Asner and
Mascaro's (2014) generalised area-based method, and critically evalu-
ate whether the advantages of working with individual trees outweigh
any disadvantages associated with the accuracy of tree detection.
Sepilok Forest Reserve, within which the study focusses, contains
three distinctive forest types within close proximity, providing an out-
standing opportunity to test the universality of carbon mapping
approaches.

2. Methods
2.1. Study site

Sepilok Forest Reserve (5°10’ N 117°56’ E) is a remnant of lowland
tropical rainforest on the east coast of Sabah, Malaysia, close to the
town of Sandakan (Fox, 1973). This 4294-ha protected area, which
ranges in elevation from 0 to 250 m a.s.l.,, was founded by the Sabah For-
est Department's research centre in 1931. Extensive areas have never
been commercially exploited, although about 670 ha in the northeast
and south of the reserve were selectively logged up until 1957, and sev-
eral hundred hectares in the north had lianas and non-commercial trees
thinned out in 1958 (Dent et al., 2006; DeWalt et al., 2006). Four distinct
forest types are recognised within the reserve: Sandstone hill diptero-
carp forest (hereafter “sandstone hill”) grows on dissected hillsides
and crests; alluvial dipterocarp forest is found in the valleys (hereafter
“alluvial”); heath forest is located on podzols associated with the dip
slopes of cuesta (shallow-sloping slopes following bedding planes;
hereafter “kerangas”); and mangroves flank the bay. The first three of
these species-rich forests have been the focus of much previous re-
search (Dent et al., 2006; DeWalt et al., 2006; Fox, 1973; Nilus et al.,
2011).

2.2. Field data

There are nine permanent forest plots of 4 ha within the Sepilok re-
serve, three for each forest type (Alluvial, Sandstone hills and Kerangas).
Three of these plots (one alluvial and two sandstone) were established
in 1968 (Fox, 1973). An additional six plots were established in 2000-
2001 (Nilus, 2004). All plots have been regularly re-censused since,
with data standardised, quality controlled and curated within the
ForestPlots.net web application and database (Lopez-Gonzalez et al.,

2011). The latest census of these plots carried out between 2013 and
2015 (the “2014 resurvey”) was used for this analysis. For the purposes
of this analysis, each 4 ha plot was subdivided into 1 ha subplots which
were analysed separately - giving a total 36 1-ha plots. We recognise
that spatial autocorrelation could impact the 1-ha plot data; however,
we emphasize that the plots are not being used for landscape sampling,
rather they are intended for calibration and validation purposes only. In
each of the 1-ha plots, all stems > 5 cm in diameter were permanently
tagged, their stem diameter (D, in cm) was measured, they were identi-
fied to species (or closest taxonomic unit), and their position was
marked to the nearest 10 x 10 m subplot (45,214 trees in total). The
standard point of measurement (POM) for diameter was at 1.3 m from
the base of the tree; for trees with buttress or deformity at 1.3 m, POM
was above the non-cylindrical feature. The corners of the plots were
geolocated using a Geneq Sx Blue II GPS, which differentially corrects
using Space Based Augmentation and has a positional accuracy of <2 m.

2.3. ALS acquisition and processing

Airborne ALS data were acquired on 5 November 2014 using a Leica
ALS50-II ALS flown at 1850 m altitude on a Dornier 228-201 travelling at
135 knots. The ALS sensor emitted pulses at 83.1 Hz with a field of view
of 12.0°, and a footprint of about 40 cm diameter. The average pulse
density was 7.3/m?. The total area surveyed was of 26 km?. The Leica
ALS50-II sensor records full waveform ALS, but for the purposes of this
study the data were discretised by the sensor system, with up to 4
returns recorded per pulse. Accurate georeferencing of ALS point cloud
was ensured by incorporating data from a Leica base station running
in the study area concurrently to the flight. The ALS data were pre-proc-
essed by NERC's Data Analysis Node and delivered in standard LAS for-
mat. All further processing was undertaken using LAStools (http://
rapidlasso.com/lastools/). Points were classified as ground and non-
ground, and a digital elevation model (DEM) was fitted to the ground
returns using a TIN (LAStools module las2dem), producing a raster of
1 m resolution. The DEM elevations were subtracted from elevations
of all non-ground returns to produce a normalised point cloud, and a
canopy height model (CHM) was constructed from this on a 0.5 m raster
by averaging the first returns. Finally, holes in the raster were filled by
averaging neighbouring cells. Given the very high point density, this
last procedure was applied to very few pixels (0.02% of the total).

2.4. Height-diameter allometry and crown area measurements

We manually delineated the crowns of 147 trees in images of the
CHM, and measured their maximum heights (H, m) using the CHM. By
walking around in the plots with print outs of the delineated CHM, it
was possible to geo-locate 91 of these trees with confidence, giving us
91 trees for which we had H estimated from ALS and D measured on
the ground. This dataset spanned the full range of tree sizes present at
Sepilok (D: 12-165 cm; H: 16-72 m). Power-law and 3-parameter
Weibull functions were fitted to the H-D relationships using maximum
likelihood estimation, assuming residuals to be normally distributed
and increasing with tree size and the model with the strongest statisti-
cal support was found using the Akaike Information Criterion (AIC) ap-
proach. AICis founded on information theory and offsets the complexity
costs of including additional parameters against likelihood improve-
ments to select models (see Supporting information for code). Variation
in allometry among soil types was also tested using AIC. The best-sup-
ported model (i.e., the one with the lowest AIC) was then used to esti-
mate the heights of all trees recorded in the plots. We compared our
H-D allometry with another dataset of 644 tree heights collected from
a random subset of trees in the plot as part of the 2014 resurvey,
using a Vertex Il hypsometer (Haglof, Sweden). For the 91 trees that
we had hand delineated, crown area (CA, in m?) was calculated in the
imagery, and compared with CAs estimated on the ground from two or-
thogonal crown diameter measurements.


http://ForestPlots.net
http://rapidlasso.com/lastools
http://rapidlasso.com/lastools

80 D.A. Coomes et al. / Remote Sensing of Environment 194 (2017) 77-88

2.5. Estimating tree- and plot-level aboveground carbon density

Field data from the 36 1-ha plots were used to estimate the above-
ground biomass (AGB, in kg) of each individual tree using Chave et
al.'s (2014) pantropical equation:

(M

5 0.976
AGBgieq = 0.0673 x (WD x D? x H)

where WD is wood density (dry mass / wet volume, in g cm™3),
which we obtained from the global wood density database (Chave et
al., 2009; Zanne et al., 2009), D is stem diameter (cm) and H is the esti-
mated height (m) obtained from ground-based allometry, because
heights were recorded for only a fraction of trees in the field survey.
Trees were assigned species-specific WD values (51% of stems) or clos-
est taxonomic unit (92% of stems matched to genus). For each 1 ha plot,
aboveground carbon density (ACD, in Mg C ha~!) was then estimated
by summing the AGB of all trees within the plot and applying a carbon
content conversion factor of 0.47 (Martin and Thomas, 2011).

The dataset of 91 manually-delineated trees was used to obtain a re-
lationship between AGBgieq Values and Hars and CAars measurements.
Regression of manually vs automatically delineated CA produced a
near 1:1 relationship, with R? = 0.85 and RMSE = 43.3, so we regarded
these as equivalent. Jucker et al. (2016) showed that the biomass of
2395 harvested trees in a global dataset was related to height and

crown diameter (where = 2 x /CA/m) according to a power-law func-
tion:

AGB = a x (H x CD)". (2)

Jucker et al. (2016) showed that this function delivered unbiased es-
timates of AGB across six orders of magnitude variation in tree mass,
while o and 3 varied among plant clades, so is most accurate when fitted
to local data. This function was fitted to data from the 91 segmented trees
by least-squares regression of log-log transformed data. Goodness of fit
was evaluated in comparison to a function based on height alone and
on H x CA, the model adopted by Ferraz et al. (2016), using AIC.

2.6. Area-based approach

2.6.1. Generalised ACD equation

Asner and Mascaro (2014) proposed a generalised approach for esti-
mating ACD using a single ALS metric - top canopy height (TCH, in m) -
and minimal field data inputs. The method relates ACD to TCH, stand
basal area (BA; in m? ha~—!) and the community-weighted mean
wood density (WD; in g cm™?) as follows:

ACDgeneral = 3.836 x TCH??8! x BA%972 x WD!376 3)

This function was fitted to data from the 36 Sepilok plots. TCH was
the mean height of CHM pixels within each plot extracted using the ras-
ter package of R. As recommended by Asner and Mascaro (2014), least-
squares regression was used to relate field-measured BA to TCH, and
field-estimated WD to TCH. These two regression relationships were
then included as sub-models in Eq. (3), such that ACD was predicted
solely as a function of ALS derived TCH.

2.6.2. Local ACD equation

To reduce uncertainty in ACD estimates, Asner and Mascaro (2014)
suggest that, when possible, regionally-calibrated equations for esti-
mating ACD from TCH, BA and WD should be developed. The data pre-
sented in this manuscript comes from a single reserve, albeit with

diverse forest types, so we refer to our models as “local” rather than “re-
gional”, which is more appropriate if plots are widely dispersed in the
region of interest. Least-squares regression was used to estimate the pa-
rameters of the following power-law model relating ACD to TCH, BA and
WD values in the Sepilok dataset:

ACDj,e = a x TCH® x BA® x WD¢ (4)

As for the generalised ACD model, BA and WD were first estimated
as a function of TCH, and these functions used as sub-models in Eq. (4).

2.6.3. Gap fraction as an estimator of basal area

Central to robustly estimating ACD using ALS data is identifying a
metric which captures variation in BA among stands, which is consider-
able in Sepilok (Fig. S1). Asner and Mascaro's (2014) power-law models
make the assumption that TCH can be used as a strong predictor of BA.
However, this may not universally be the case (Duncanson et al., 2015;
Spriggs, 2015). We tested whether gap fraction (GF) - the proportion of
area not occupied by crowns at a given height aboveground - could be
used as an alternative ALS metric for predicting BA (Fig. 2b). Gap frac-
tion GFy, is calculated by creating a plane horizontal to the ground in
the canopy height model (CHM), at height h above ground, and
counting the number of pixels for which the CHM lies beneath the
plane, divided by the total number of pixels in the plot. GF was calculat-
ed for heights of 1 to 50 m.

Goodness of fit of global, local and gap-fraction-modified models are

compared by reporting RMSE, calculated as /Y (y—j/)2 /(Ny), where y
are the data,y is the mean, y are the model estimates, N is the number of
observations. %Bias is reported as > (y—3)/(Ny).

2.7. Tree-centric approach

As an alternative to area-based approaches, we tested whether ACD
could be accurately estimated by summing the biomass of individual
tree crowns (ITCs; Fig. 1). The itcSegment algorithm was used to delin-
eate trees within each of the 36 plots and a 10 m buffer zone around
them. itcSegment is implemented in R and made freely available on
CRAN  (https://cran.r-project.org/web/packages/itcSegment/index.
html). It works by finding local maxima in the raster CHM, regarding
these maxima as tree tops, then growing crowns around them by local
searching of the raster CHM and point cloud. This approach was initially
developed for coniferous forests (Dalponte et al,, 2014; Eysn et al., 2015;
Dalponte, 2015; Dalponte and Coomes, 2016) following the concept of
Hyyppa et al. (2001). It has three stages (see Supporting information
for further details):

1. Smoothing the Canopy Height Model. A Gaussian low-pass filter is
applied to the raster CHM to smooth it, improving the reliability of the
region-growing code by removing sharp changes in height within
crowns that might otherwise be inferred to be crown edges.

2. Locating local maxima in the CHM. To function effectively in tropical
forests, we found it necessary to introduce variable window sizes when
searching for local maxima around the central pixel of the window. If a
particular pixel in the CHM is high above the ground, then it is assumed
to belong to a large tree, so a relatively large search window is needed to
find the top of that tree. The dimension of the search window for a CHM
pixel of elevation z is equivalent to crown radius of a wider-than-aver-
age tree of that height, ensuring that even the widest crowns in the im-
ages were not over-segmented. This crown radius was obtained by
fitting an allometric function to the relationship between crown radius
and height of 147 manually segmented trees, using quantile regression
(quantreg package of R), with tau = 0.9 such that 90% of data-points sat

Fig. 2. (a) ALS-generated Digital Elevation Model (lighter shades corresponding to higher elevation) of Sepilok Nature Reserve, Sabah, showing sandstone hills (outlined in black), a cuesta
supporting kerangas forest (orange), mangrove (yellow) and alluvial areas; locations of nine 4-plots ha in the sandstone hill (grey), kerangas (orange) and alluvial (light blue) forests are
shown; (b) canopy height model; (c-e) magnified to show typical canopies of the three forest types; (f-g) boxplots contrasting the structural attributes of the three forest types, based on

measurements taken in 36 1-ha plots.
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below the regression line (Fig. S4). A look-up table was created so that a
window size could be obtained quickly for a given value of z based on
this allometry.

3. Region growing around local maxima: The algorithm then
searches iteratively around each local maximum for neighbouring
pixels that are slightly lower in elevation but not greatly lower (i.e.
off the crown's edge) or higher (i.e. belonging to a neighbouring
tree), and regards these as being part of the same crown. The algo-
rithm has various stopping rules to constrain the growth of each
crown: crown width cannot exceed those observed in manually de-
lineated crowns and crown depth cannot exceed a fixed percentage
of height. Once regions are fully grown, the algorithm explores the
ALS point cloud and uses the data to create a 2-D convex-hull poly-
gon representing the crown.

Once trees are delineated in the imagery, the next step is to estimate
their individual biomass. This was achieved by predicting biomass using
Eq. (2), which was parameterised using the crown diameters and
heights of the 91 trees. We then summed the AGB of segmented trees,
and multiplied by a carbon density of 0.47, to obtain ACD estimates
for each of the 1 ha plots. The final step is to calculate a correction factor
to account for understorey trees that were not segmented because they
are obscured by the upper canopy, and large trees that were over-seg-
mented. This correction factor was obtained by fitting a regression
line, passing through the origin, to the relationship between ACDas
and ACDf;elg (Dalponte and Coomes, 2016).

The accuracy of the ITC delineation was assessed by comparing the
numbers of delineated trees within stem diameter classes with the
numbers observed in the field plots. To do this, the heights of the delin-
eated trees were used to estimate stem diameters, using an allometric
function derived from the 91 trees co-located on the ground and in
the aerial imagery.

3. Results
3.1. Comparison of forest types

Alluvial, sandstone hill and kerangas forest types are clearly visible
in the CHM and DEM of Sepilok Reserve (Fig. 2). In the three panels
showing magnified-CHMs of the forest types, the alluvial forest is seen

to contain the tallest trees (some reaching 70 m in height), while also
exhibiting large gaps between emergent trees (Fig. 2d). The sandstone
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hill forest appears less tall (50-60 m) and is more densely packed
(Fig. 2c); while the kerangas is much shorter with densely packed
trees (Fig. 2e). Summary statistics from the plots corroborate these de-
scriptions: the sandstone forests have the greatest above-ground car-
bon density, not because they are the tallest but because they have
high basal areas (Fig. 2g-i), whereas the kerangas has low biomass by
virtue of its height, despite having high wood densities (Fig. S1). The
sandstone hill and kerangas forests have unimodal distribution of ALS
returns with height, which is typical of the signal returned from forest
canopies (Fig. 3). However, the alluvial has a distinctive bimodal distri-
bution, resulting from a dense subcanopy sitting beneath the scattered
emergent trees (Fig. 3). This strong variation in forest structure makes
it challenging to map carbon density using a single model, as is our aim.

3.2. Allometric relationships

ALS-estimated heights (Ha;s) were related to field-measured diam-
eters (D) as follows: Hyjpar = 5.29 x D%>0 (red circles and curve; Fig.
3a). This power-law function was better-supported statistically than a
3-parameter Weibull (see Supporting information). The ALS-estimated
heights are mostly within the upper quartile of data points obtained
from field-measurements, and the power-law regression line through
the field data is systematically different to the ALS dataset (grey circles
and curves; Fig. 3a). The allometric function obtained from the field
data is more similar to previous reports than our ALS-based function es-
timates (See Fig. 3a; Morel et al., 2011, Feldpausch et al., 2011 and Chave
etal,,2014), so it seems likely that our approach for segmenting ALS im-
agery is preferentially sampling emergent trees that have systematically
different HD allometries. For this reason, we used field-based allome-
tries to estimate heights of trees, and generate forest-type-specific al-
lometries (see Supporting information). If we had used the ALS-based
allometry, ACD would have been 1.19x greater than the ones present-
ed; this underscores the need to collect terrestrial LIDAR, ALS and field
datasets across multiple sites in the tropics, to get a better handle on
tree allometry.

As expected, a linear relationship was found between field and re-
motely measured crown areas, although field estimates are 30% smaller
on average, with large uncertainty (Fig. 3b), probably because estimates
based on field data assume that crowns are symmetrical ellipses, based
on just two diameter measurements, whereas the ALS approach allows
the margins to be determined more accurately (e.g. Fig. S4).
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Fig. 3. Panel (a) compares the H-D relationship for trees where H was measured from the ground (grey circles) with those where ALS was used to measure height (red circles) Stem
diameters (D) were measured on the ground. Power function fitted to these datasets are shown. In addition, the dashed black curve is the allometry reported from another study in
lowland Sabah (Morel et al., 2011), the solid black curve is a pan-SE Asia allometry reported by Feldpausch et al. (2011), and the blue curve is calculated from Eq. (6) in Chave et al.
(2014) with E = —0.147. Panel (b) shows the relationship between CA measured from the ground versus manual delineation from the ALS data.
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Fig. 4. Relationship between (a) basal area and top canopy height, (b) basal area and gap fraction at 19 m aboveground, and (c) basal area-weighted mean wood density and top canopy
height. Regression lines fitting to all three sites are shown as dashed lines and %RMSE values provided.

3.3. Area-based approaches

3.3.1. Generalised model of Asner and Mascaro (2014)

The generalised model (Eq. (3)) gave accurate estimates of ACD
when sub-models of the relationships between BA, WD and TCH were
fitted to the Sepilok datasets. We obtained the following relationship
between basal area and top canopy height (Fig. 4a):

BA = TCH x 1.062 (5)

Note the relationship is forced through the origin for reasons ex-
plained by Asner and Mascaro (2014). The basal area-weighted mean
WD is estimated from TCH as follows (Fig. 4c):

WD = 1.541 x TCH %78 (6)

By entering Egs. (5) and (6) into Asner and Mascaro's (2014) gener-
alised model (Eq. (3)), we get ACDgeneratised = 7.37 x TCH%®7°, This
function produces biased estimates of biomass when applied to the
Sepilok Forest Reserve, underestimating ACDgelq by 19% on average

(Fig. 5a).

3.3.2. Local ACD equation

A local model, obtained by fitting Asner and Mascaro's (2014)
power-law model to the data available from Sepilok yielded the

following relationship:

ACDygey = 0.719 x TCH*628 « BA0% » wpO687 (7)

where TCH was obtained from the ALS survey, and BA and WD from
the field data collected from the 36 plots. Entering the BA and WD rela-
tionships into Eq. (7), gives the following relationship: ACDLocal =
1.030 x TCH'*3%, As shown in Fig. 5b, the local model is unbiased, but
its accuracy remains low (%RMSE =27%). It is clear that the sandstone
hill and kerangas plots fall along a line, but that the alluvial plots deviate
from the line, and that there is no correlation between field- and ALS-
predicted ACD among these plots.

3.3.3. Gap fraction as an estimator of basal area

The primary reason why Eq. (7) is inaccurate in its prediction is that
BA is so poorly correlated with TCH (Fig. 5a). However, we find that gap
fraction at 19 m above ground (GF;g) is closely related to BA (Fig. 5b) as
follows:

BA = 23.4 x GF;2 % (8)

GF19 was chosen after a comparison of models including gap fraction
calculated at all heights between 1 and 50 m (Fig. S3). When Eq. (8) is
used as a sub-model within Eq. (7), the estimation equation becomes:
ACDyyea = 25.93 GFrg 2% TCH* 4% 9)

and a much closer relationship was obtained between field and ALS

350 (a) 350 (b) 350 (C)
300 . 300 - 300 .
o~ 250 o 4] 250 0 250 «® 0
[ . . ° S
2 % "/ ® % £ b o.. .
200 o q ¢ 200 . o o 200 %o
o e Wt ., o0,
g 150 e 150 4 * 150 | N
== S e - . )
= v K
2 100 o 100 100
[a]
Q
<L 504 . 50 , 50 )
i ok i + Alluvial
,~RMSE=20% Bias=-18% - RMSE=27% Bias=-2% -~ RMSE=13% Bias=0% . Sa:::mne
04.” 0.’ 0. Kerangas
T T T T T T T T T T T T T T T T T T T T T T T
0 50 100 150 200 250 300 350 O 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350

ACDyipar (Mg C ha)

Fig. 5. Relationship between aboveground carbon density (ACD) estimated from field data and (a) ACD estimated using Asner and Mascaro's (2014) generalised model (Eq. (3)), (b) ACD
estimated using a locally-calibrated model in which basal area is estimated from TCH, and (c) a locally-calibrated model in which basal area is estimated from gap fraction. The one-to-one
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Fig. 6. Detection of individual tree crowns in ALS imagery using itcSegment for (a) sandstone hill, (b) alluvial and (c) kerangas forests. Within diameter size classes, the (d) numbers and (e)
aboveground carbon density of trees detected by itcSegment are compared with values obtained in permanent plots (light and dark bars, respectively), with ITC vs field values given in

percentage terms above the bars.

estimates (Fig. 5¢). The RMSE was 29 Mg C ha™ !, corresponding to a
percentage RMSE of 13%.

3.4. Individual tree crown (ITC) approach

AGB (kg) is related to the height and crown diameter of 91 delineat-
ed stems as follows:

AGB = 0.136 x (H x CD)"? (10)

where CD is crown diameter. The allometric model has R? = 0.74
and %RMSE = 11.8% and had lower AIC than alternative models (AIC
=190, 197, 209 for H x CD, H x CA and H, respectively). Introducing
variable window sizes when searching for local maxima allowed detec-
tion of both large and small trees within the rainforest canopies (Fig. 6a—
¢). Without this flexibility, the algorithm either omits small trees when
the window was large, or over-segments large ones when the window
was small. Nevertheless, because itcSegment only searches for maxima

in the canopy height model, it cannot find subcanopy trees, detecting
only 9.5% of stems in the 10-30 cm size class. Trees in the 10-30 cm
size class contribute 23% of ACD, so represent a significant pool of car-
bon (Fig. 6e). Furthermore, carbon stored in very large trees was
overestimated. Only 63 trees exceeded 110 cm diameter within the 36
plots, representing a tiny fraction of stems (0.2%) but a more significant
percentage of carbon (10%). The ITC analysis recognised 65 trees over
100 cm diameter, but overestimated their carbon by 124%. These prob-
lems were mostly restricted to the four plots at a single alluvial site,
within which the very tallest trees are located.

In our previous work with conifers in the Italian Alps, we found that
ITC-based estimates of ACD were consistently less than field estimates,
because obscured trees were by far the most important source of bias
in the tree-centric approach (Dalponte and Coomes, 2016). This allowed
us to use a single correction factor to all plots. However, here we find
that ACDxs is greater than the field estimates in five of the 36 plots
(Fig. 7a). The bias is removed when ACD,; s values are multiplied by a
single correction (1.21) but the RMSE remains high (20%). Even when
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Fig. 7. Relationship between aboveground carbon density (ACD) estimated from field data and ACD estimated using the tree-centric approach; (a) without correcting for undetected sub-
canopy trees; (b) applying a universal correction factor; (c) applying forest-specific correction factors to the ACD estimates obtained from the tree-centric approach to account for missing
stems. The one-to-one line is given for reference in all panels (dashed black lines); the solid red line in (a) is a regression line fitted to all plots from which the universal correction factor
(1.21) is obtained.
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separate correction factors are applied to the three forest types (alluvial
= 1.07, sandstone hill = 1.30, kerangas = 1.32), the #RMSE of tree-cen-
tric approach remains greater than that obtained by area-based model-
ling (RMSE = 18 vs 13%). Note once again that the alluvial forest is
problematic to model, because over-segmentation in one site causes
the correction factor to differ greatly from the other forest types.

4. Discussion
4.1. Area-based approaches

The power-law modelling approach developed by Asner and
Mascaro (2014) was effective for mapping forest carbon in the old-
growth lowland rainforests of Sabah once adjustments had been made
for use in this region. Their generalised model parameterised mostly
from Neotropical datasets (Eq. (3)) gave biased results when applied
to the Sepilok data, even when local BA-TCH and WD-TCH sub-models
were used, so locally parameterised power-law functions were devel-
oped. Furthermore, basal area was better modelled as a function of
gap fraction rather than top-of-canopy height.

4.1.1. Distinctiveness of SE Asian forests
Asner and Mascaro's (2014) paper shows that tropical forests from
14 regions differ greatly in structure, exemplified by the TCH-BA
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scatterplot in Fig. 8. Remarkably, they found that a generalised power-
law relationship could be fitted that transcended all these contrasting
forests types, once regional differences in structure were incorporated
as sub-models relating BA and WD to TCH. However, that generalised
model delivered biased results when applied to Sepilok forest datasets,
underestimating ACD by 19% when the models were fitted with local
data (Fig. 5a). The explanation for this bias is the dominance of lowland
forests by trees in the Dipterocarpaceae, which make them distinctive
from all other tropical forests (Corlett, 2009). The height-diameter al-
lometry of these dipterocarp dominated forests are different from
those found elsewhere - they have particularly narrow stems for their
height (Feldpausch et al., 2011; Banin et al., 2012). The basal area of
the plots in Sabah is not especially high compared with those in the
Asner and Mascaro dataset (Fig. 8a), but ACD is in the upper quantiles
of other forest of comparable basal area (Fig. 8a): the extraordinary
height of the alluvial and sandstone hill forests gives rise to high ACDs,
while high wood density in the stunted kerangas trees are the underly-
ing cause of their high ACD. The ACD values in Sepilok Reserve (sand-
stone hill, alluvial and kerangas contain on average 226, 190, 150 Mg
C/ha, respectively) are not dissimilar to those reported from other
unlogged plots in lowland Sabah (176 Mg C/ha; Morel et al., 2011) or
to regional estimates derived remotely (160 Mg C/ha Avitabile et al.,
2016), but they are among the greatest ACD recorded anywhere on
the planet (Avitabile et al., 2016; Sullivan et al,, 2017).
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Fig. 8. Relationship between (a) field-estimated aboveground carbon density and basal area, (b) field-estimated aboveground carbon density and top canopy height, (c) basal area and top
canopy height, and (d) basal-area weighted mean wood density and top canopy height in Asner and Mascaro's (2014) database (open circles) and at Sepilok (filled circles).
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The kerangas forests at Sepilok contain many stems of Tristaniopsis
merguensis and Cotylelobium melanoxylon, which have dense wood
(0.94 and 0.83 g cm ™3, respectively) reflecting adaptation to the nutri-
ent-poor soils. The distinctive structure of the Sepilok forest compared
with anything used to calibrate the power-law model previously
meant that it needed be custom-fitted with data only from that forest.
Rainforests of SE Asia are structurally diverse (Corlett, 2009), and it re-
mains to be seen whether a generalised model can be produced for
this region, as found previously for 14 forest types in the Asner and
Mascaro dataset.

4.1.2. Predicting basal area by gap fraction

ACD is more closely related to basal area than to height (Fig. 8), so it
is essential that the basal-area sub-model predicts basal area accurately
from ALS statistics. Here we found that gap fraction at 19 m above
ground (GFj9) was a better predictor of basal area than TCH. This
makes intuitive sense if one considers an open forest comprised of just
a few trees - the crown area of each tree scales with its basal area so
the gap fraction at ground level of a plot is negatively related to the
basal area of its trees. A similar principle applies in denser forests, but
now that canopies overlap, the best-fitting relationship between gap
fraction and basal area is no longer at ground level, but is instead further
up the canopy. Our study is the first to formally introduce gap fraction
into the modelling framework of Asner and Mascaro (2014), but several
other studies have concluded that gap fraction is an important variable
to include in multiple regression models of forest biomass (Colgan et al.,
2012a; Li et al., 2014; Spriggs, 2015; Singh et al., 2016). Additionally,
(Colgan et al., 2012b) used fractional canopy cover (CC = 1 — GF) to
modify the relationship between aboveground carbon density and
TCH for African woodland savannas. In a follow-on paper to this one,
we develop a state-wide carbon model for Sabah, including secondary
as well as old-growth forests. Modelling basal area as a function of can-
opy cover at 19-m height is once again shown to improve goodness of
fit, although the functional form is different (Coomes et al. archived).
In the specific case of Sepilok, GF,9 proved particularly effective for
predicting basal area, as it was able to clearly distinguish between allu-
vial forests - where large emergent crown tower over a dense understo-
ry layer - and the more compact vertical distribution of crowns in
sandstone hill and kerangas forests (Fig. S2). Incorporating GF,g into
the basal area sub-model yielded the best predictions of ACD (Fig. 5¢),
with an RMSE of 29.0 Mg C ha™ L. This is slightly greater than the
RMSE 24.7 Mg C ha~ ! reported by Asner and Mascaro (2014) for their
generalised model fitted to 14 forest types, but their study included sec-
ondary forest, which have lower variance in ACD (Fig. 8), so a lower
RMSE was anticipated.

4.2. Tree-centric approach

ITC delineation has the potential to make much fuller use of the in-
formation within 3D ALS point clouds compared to area-based ap-
proaches, yet in the present study, the end result was less accurate
ACD estimates than those achieved by area-based approaches (RMSE
= 18% vs 13%). Our previous work in the Italian Alps showed tree-cen-
tric approaches to give marginally more accurate results (R* = 0.98 vs
0.96), but that paper focussed on structurally simple conifer-dominated
forests. Another recent study working in dense tropical forests also
found the tree-centric approach to underperform compared to area-
based methods. Ferraz et al. (2016) developed an algorithm capable of
detecting both sub-canopy as well as canopy crowns, yet it too delivered
less accurate results than an area-based model using TCH as in input
variable when applied to the 50-hectare plot on Barro Colorado island
in Panama (RMSE = 13.8% vs 12.5% at the 1-hectare scale).

Three key factors contributing to uncertainty in ACD estimates are
over-segmentation of large trees, incomplete detection of sub-canopy
trees, and uncertainty in AGB estimates from ITC information. These
are discussed in turn:

Over-segmentation of emergent dipterocarps, such as the one
shown in Fig. S4, was observed. This is concerning given that 90% of bio-
mass in alluvial plots is held in just 12% of large trees, compared to 36%
in the kerangas plots and 23% in the sandstone hill plots. Yet over-seg-
mentation is not actually such a problem, because of the Hx CD term
in the tree biomass function (i.e., AGB = 0.136 x (H x CD'?). To illus-
trate this point, imagine we split a tree in two, vertically. If we only
modelled AGB as a function of H, we would severely overestimate
ACD. However, by including crown diameter (CD) in the equation this
error is reduced, because the two resulting trees would each have half
the CD of the original. This functional form has been shown previously
to provide unbiased estimates of biomass when applied to a global
dataset of AGB, H and CD values (Jucker et al., 2016). In contrast,
Ferraz et al. (2016) found that the sum of WD x > _ CA x H was the func-
tion that gave the closest relationship between field- and ALS-estimates
of ACD. Including crown dimensions in regression modelling may be
useful when mapping regions with diverse forest types, because
Blanchard et al. (2016) report that CA-D allometry is less variable
among forest types than H-D relationships.

Incomplete detection of understory trees accounted for
46 Mg C ha™ ! of missed carbon in the Sepilok forest, a significant frac-
tion of total ACD. Detecting more understory trees will help reduce
bias in carbon estimation. Recent years have seen substantial progress
in segmentation, as both ALS instruments and the algorithms used to
delineate trees from ALS data have improved considerably (Popescu et
al., 2003; Yao et al.,, 2012; Duncanson et al., 2014; Paris, Valduga and
Bruzzone 2016; Shendryk et al.,, 2016). Several recent papers point the
way forward. Duncanson et al. (2014) developed an approach that
first finds trees in the upper canopy, then strips points from the 3D
point cloud that are associated with these trees, before searching the re-
maining point cloud for further trees. Ferraz et al. (2016) developed a
“bandwidth model”, which estimates the likely crown dimensions of
trees of a certain height, based on information gained by manual delin-
eation of crowns from the imagery, and uses this information to search
the entire point cloud for trees. Paris et al. (2016) developed a segmen-
tation method that was able to correctly delineate the crowns of 97%
and 77% of canopy dominant and understorey trees, respectively, as
well as accurately measuring the crown dimensions of all segmented
trees. Equally promising is Shendryk et al.’s (2016) algorithm which
segments trees from the bottom up, mimicking the approach used to
process terrestrial laser scanning data (Calders et al., 2015). Neverthe-
less, our less-sophisticated approach of segmenting only the trees in
the upper canopy, and applying a correction factor to account for missed
carbon, may deliver similar precision provided the size distribution of
forests in known, such as a power-law or Weibull distribution
(Spriggs, 2015). Comparisons of the effectiveness of different algo-
rithms when applied to the same tropical forest plots will help the re-
finement of approaches.

Estimates of biomass from ITC information have high variance, be-
cause the allometric relationship between tree-AGB and (H x CD) has
high residual variance (see also Jucker et al., 2016): our model predicts
that a 50 m tall tree contains 2300 kg C with 95% confidence intervals of
1870-2920 kg C, which is very wide. One reason for this uncertainty is
that ALS measures tree volumes and is generally poor at estimating
wood density: we found a strong relationship between TCH and WD
at plot level, but the relationship between individual H and WD values
was very weak.

5. Conclusions: is it worth trying to see both the forest and the trees?

Individual-based modelling performed less well than area-based ap-
proaches, as also found by Ferraz et al. (2016) working in Panama. Given
that ITC approaches are computationally demanding, is there any justi-
fication in using them? We argue that researchers should certainly per-
sist in their development for several reasons. First, maps of trees are of
practical value. For example, farm owners in several tropical countries
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are legally obliged to protect strips of riparian forests on their land, but
enforcing such laws has proven difficult for lack of fine-scale maps of ri-
parian zone extents and the fate of trees within them: individual based
mapping is an excellent tool for this. Similarly, the high carbon stock
(HCS) approach developed in partnership with the Roundtable on Sus-
tainable Palm Oil commits oil palm companies to protect and restore
forests on their estates to make them carbon neutral (http://
highcarbonstock.org/), and fine-scale mapping of carbon in these forest
fragments could be valuable in this context. Secondly, there is great in-
terest in tracking the dynamics of the largest trees in tropical forest, be-
cause they account for a large fraction of forest carbon and are known to
be especially vulnerable to drought, acting as early-warning signals of
the effects of climate change (Nepstad et al., 2007; Bennett et al.,
2015). Repeat surveying with ALS could prove valuable for this, but
only area-based approached have been used to date (e.g., Simonson et
al, 2016).

Another advantage of the ITC approach is that it is directly analogous
to well-established field-based approaches for measuring carbon, and
so has a strong theoretical basis in terms of identifying and minimising
sources of uncertainty and bias, and propagating error. For example, dif-
ferences in height estimates between ALS and ground measurements
(Fig. 3) shine a light on a major source of bias in ACD estimates
(Hunter et al., 2013). With area-based approaches, prediction error de-
creases with increasing plot sizes due to reduced edge effects (Goetz
and Dubayah, 2011). The same is true of ITC approaches but the errors
are less dependent on plot size (Dalponte and Coomes, 2016). Intrigu-
ingly, Ferraz et al. (2016) showed the coefficients of models developed
by a ITC approach were invariant of scale, whereas the coefficients of
power-law models varied with scale. ITC approaches could allow a
more explicit characterisation of such issues. For the moment, area-
based approaches are likely to remain the method of choice for mapping
tropical forest carbon, but ITC approaches are advancing rapidly and
could offer a viable alternative as algorithms, sensors and analysis
platforms mature.
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