
On the Solution of Differential-Algebraic Equations through Gradient Flow Embedding

Ehecatl Antonio del Rio-Chanonaa, Craig Bakkerc, Fabio Fiorellia, Michail Paraskevopoulosa, Felipe Scottd,
Raúl Conejerosb, Vassilios S. Vassiliadisa,∗

aDepartment of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA,
United Kingdom

bEscuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaiso, Chile
cWhiting School of Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, USA

dGreen Technology Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Chile, Mons.
Álvaro del Portillo 12455, Las Condes, Santiago, 7620001, Chile

Abstract

In this paper Gradient Flow methods are used to solve systems of Differential-Algebraic Equations via a
novel reformulation strategy, focusing on the solution of index-1 Differential-Algebraic Equation systems. A
reformulation is first effected on semi-explicit index-1 Differential-Algebraic Equation systems, which casts
them as pure Ordinary Differential Equation systems subject to an embedded pointwise least-squares problem.
This is then formulated as a Gradient Flow optimization problem. Rigorous proofs for this novel scheme
are provided for asymptotic and epsilon convergence. The computational results validate the predictions of
the effectiveness of the proposed approach, with efficient and accurate solutions obtained for the case studies
considered. Beyond the theoretical and practical value for the solution of DAE systems as pure ODE ones, the
methodology is expected to have an impact in similar cases where an ODE system is subjected to algebraic
constraints, such as the Hamiltonian necessary conditions of optimality in Optimal Control problems.

Keywords: Differential-Algebraic Equations; Gradient Flow; semi-explicit index-1 DAE; Ordinary

Differential Equations;

1. Introduction

There are many applications for which the mathematical model of a physical system can be easily rep-

resented as a system of Differential-Algebraic Equations (DAEs), e.g. mass/energy balances coupled with

physical laws, such as physical property predictions. In chemical engineering, in particular, it was recognized

that problems of this format were important for the effective simulation of dynamic distillation models and

equilibrium laws [17].

DAEs have long been considered a generalization of Ordinary Differential Equations (ODEs) systems [2];

this interpretation has allowed for the resolution of DAE systems employing techniques developed for ODEs.

These ideas can be first seen in [8], where the author shows that problems with both differential and algebraic

equations can be solved by a rather simple implementation. This consists in finding the solution to a method

relying on predictor and corrector equations, specifically a linear system derived from a Newton iteration.

∗Corresponding Author
Email address: vsv20@cam.ac.uk (Vassilios S. Vassiliadis)

Preprint submitted to Computers & Chemical Engineering March 14, 2017

The direct methods that emerged apply ODE techniques directly to higher index DAE systems [1]. The

problem of finding consistent initial conditions was immediately recognized, as it is necessary to satisfy strict

equality conditions in the algebraic part of the DAE system. It was also seen that errors in initialization

could propagate through the simulation. Implicit methods were introduced [12] to find the initial consistent

initial conditions. Further investigation revealed the difficulty in providing a rigorous solution to problems

at initialization [13].

A further important development comes from the ability to transform a higher index system of DAEs into

an equivalent pure ODE system. This allows using more effectively numerical integration techniques with

lower error. The Pantelides algorithm [16], concerned with the identification of consistent and non-redundant

initial conditions, is a widespread implementation of this idea which uses bipartite graphs to find correlations

between variables, therefore allowing for restructuring the problem into a form where the model Jacobian

matrix has low or no nilpotency. Another way to reduce the index is the structural matrix method [19, 7],

which is a symbolic-algebraic method that has been expanded to employ numerical information. By operating

on incidence matrices, it accounts for cancellation of variables in linear expressions, estimating with higher

reliability the correct index of the system.

The work presented in this paper introduces a new framework for the solution of DAEs, based on the

concept of Gradient Flow. Instead of differentiating to obtain a full rank matrix of first derivatives of all

the variables of the DAE system, the techniques introduced here allow a DAE system to be transformed

into an ODE system if reformulated as an embedded least squares optimization problem, and subsequently

employing a simple scaling scheme. Barrlund [3], used a least squares formulation to satisfy the algebraic

constraints in a linear DAE system. This is done such that the squared equality constraints are minimized at

every point in time of the ODE integration, this is then equivalent to solving the ODE system while enforcing

the equality constraints. In this regard, an ODE whose solutions include the solutions of a DAE is called

a completion of that DAE [6]. A disadvantage with the existing approaches of least squares completions is

that the additional dynamics introduced by its use can affect the numerical solution of the DAE [15].

This paper is organized as follows: in section 2 an introduction to Gradient Flow is presented, in section 3

the Gradient Flow techniques are extended to the resolution of DAEs in a matrix-inversion (or factorization)

free format. Convergence analysis is presented in section 4. Applicability of these techniques is presented

via detailed computational case studies in section 5. Finally in section 6 the conclusions of this work are

summarized.

2

2. Gradient Flow

The idea behind the Gradient Flow method (GF) first arose in the study of variational partial differential

equations back in 1908 [9]. This approach was developed due to the necessity to solve these equations, where

each of them has a function f : X → R and the solution to such equation is a minimizer of f . It was a

consequence of this line of research, that to solve these systems of variational partial differential equations

the GF framework (also called method of gradients) was introduced [4].

A first GF algorithm is the transcription of the Steepest Descent (SD) method into ODE form. The

Gradient Flow method starts with an initial point x0 ∈ X and seeks to find a minimizer of f(φ(t)) by

following a curve φ(t) defined by the ordinary differential equation

dφ(t)
dt

= −∇f(φ(t))

φ(0) = x0

(1)

where ∇f is the gradient of f . The solution is called an integral curve.

For the unconstrained minimization problem:

min
x∈Rn

f(x) (2)

the original method proceeds by updating the iteration point towards finding a minimizer of the objective

function by the following scheme:

xk+1 = xk − αkgk; x ∈ Rn (3)

where gk is the gradient of f(x) at point xk. By considering the step-size to be taken to the limit αk → 0+,

equation (3) can be transcribed into the following ODE system [5]:

dx(t)
dt

= −g(x(t)); x(t0) = x0 (4)

This results in an algorithm that can make use of state-of-the-art integration software to solve optimization

problems. The advantage of using SD is that it always has a descent direction, and the use of the GF form

obviates the need for line-search.

3. Transcription of Systems of Index-1 Via Least-Squares Embedding

The work presented here is based on the idea of embedding via Gradient Flow (GF) a suitable least

squares problem into the ODE part of semi-explicit index-1 DAE systems.

3

3.1. Implicit Index-1 System

We consider in this work only index-1 systems of DAEs. The general system is given by:

f(ẋ(t), x(t), y(t), t) = 0 (5a)

B(ẋ(t0), x(t0), y(t0)) = 0 (5b)

t0 ≤ t ≤ tf

where x, ẋ ∈ RNx and y ∈ RNy have the same meaning as before.

Equation (5b) introduces generalized initial conditions (consistent and non-redundant, see e.g. [16]). It is

noted that for index-1 systems the combined Jacobian matrix [fẋ, fy] must be invertible [14].

For the system in equation (5a) an equivalent pointwise least squares optimization problem will be intro-

duced by first differentiating once the equation with respect to time, t:

fẋẍ+ fxẋ+ fy ẏ = F (ẍ, ẋ, ẏ, x, y, t) = 0 (6)

where ẍ is the second time derivative of the differential variables, and ẏ is the first time derivative of the

the algebraic variables. This allows to extract values for both ẍ and ẏ. System in equation (5b) can then

be replaced by a least squares minimization problem, such that all the constraints in the DAE system are

satisfied at every point in time. The form of the optimization problem is the following, which is to be solved

for all times t in the integration interval:

min
ẍ,ẏ

φ = 1
2F

TF (7a)

where

φ = 1
2 ẍf

T
ẋ fẋẍ+ 1

2 ẋ
T fTx fxẋ+ 1

2 ẏ
T fTy fy ẏ

+ẍfTẋ fẋẋ+ ẍfTẋ fy ẏ + ẋfTẋ fy ẏ (7b)

∀t ∈ [t0, tf]

An embedded gradient flow model can be written from the equivalent ODE system, using the steepest

descent method with a scaling factor µ > 0, µ ∈ R:

4

dx

dt
=ẋ x(t0) = x0 (8a)

dy

dt
=ẏ y(t0) = y0 (8b)

dẋ

dt
=ẍ ẋ(t0) = ẋ0 (8c)

dẍ

dt
=− µ∇ẍφ ẍ(t0) = ẍ0 (8d)

dẏ

dt
=− µ∇ẏφ ẏ(t0) = ẏ0 (8e)

where

∇ẍφ =fTẋ fẋẍ+ fTẋ fxẋ+ fTẋ fy ẏ (8f)

∇ẏφ =fTy fẋẍ+ fTy fxẋ+ fTy fy ẏ (8g)

In all of the above x0, y0 and ẋ0 are consistent initial conditions that must satisfy the following combined

system

f (ẋ0, x0, y0) = 0 (9a)

B (ẋ0, x0, y0) = 0 (9b)

Once ẋ0 is found, then ẍ0 and ẏ0 are found by solving at initialization the linearised system obtained

from equations (9a) and (9b), given by:

fẋẍ0 + fxẋ0 + fy ẏ = 0 (10a)

Bẋẍ0 +Bxẋ0 +By ẏ0 = 0 (10b)

3.2. Semi-Explicit Index-1 System

Although the presentation in the previous subsection is for the most general index-1 system, we focus in

this work on the special class of semi-explicit index-1 systems. The reason for this is that for most practical

applications this is the most usual form of dynamical models of interest. These systems are described by:

5

ẋ = f(x, y, t); x(t0) = x0 (11a)

0 = g(x, y, t) (11b)

t0 ≤ t ≤ tf

For the system to be index-1, the Jacobian matrix gy must be invertible. This is converted to a model

with an embedded pointwise least squares optimization problem as follows:

ẋ = f(x, y, t); x(t0) = x0 (12a)

y = arg minφ(x, y, t) = 1
2g(x, y, t)T g(x, y, t) (12b)

t0 ≤ t ≤ tf

The embedding is transformed from a least squares problem to a pure ODE system via the steepest

descent method using a scaling factor µ > 0, µ ∈ R according to:

ẋ = f(x, y, t); x(t0) = x0 (13a)

ẏ = −µ∇yφ = −µgy(x, y, t)T g(x, y, t); y(t0) = y0 (13b)

t0 ≤ t ≤ tf

where y0 is either solved from the least squares problem at time t0, given the values of x0, or equivalently by

solving the original algebraic equations of the system for y0 at time t0, i.e. g(x0, y0, t0) = 0.

4. Convergence Analysis

4.1. Convergence in the limit of µ→ +∞

Theorem 1. Given an original linear time-invariant index-1 DAE system, the solution of a system where

the algebraic equations are formulated by an embedded least squares optimization (LSQR) problem (x(t), y(t))

6

converges to the solution of the original system (xtrue(t), ytrue(t)) in the limit where µ→ +∞ for t0 ≤ t ≤ tf .

Proof. Eigenvalue analysis is presented here to derive properties of when the solution of the LSQR completion

of DAEs converges to their exact solution, as proposed in the work overall.

We consider a completion of the system:

ẋ = f(x, y) (14)

0 = g(x, y) (15)

using a steepest descent embedding as outlined earlier in equations (13a) and (13b). This leads in general to

the scaled system, with arbitrary positive parameter µ ∈ R1, µ > 0:

ẋ = f (16)

ẏ = −µ · (gy)T · g (17)

where arguments for the functions have been dropped, for simplicity.

We next consider the case of a linear autonomous index-1 DAE system as below:

System 1

ẋ = Ax+By + ρ (18)

0 = Cx+Dy + σ (19)

where according to the above, matrixD ∈ Rny×ny is invertible. Matrix A ∈ Rnx×nx is square, and rectangular

matrices B ∈ Rnx×ny and C ∈ Rny×nx to yield a complete DAE system in the x and y state variables. Finally,

ρ and σ are constant vectors of dimensions nx and ny, respectively.

Eigenvalue analysis requires the use of a matrix pencil (generalised eigenvalue analysis) as given below:

det


 A B

C D

− λ
 I 0

0 0


 = 0 (20)

where the identity matrix has appropriate dimensions so that the overall matrices subtracted in the deter-

minant are square. The above simplifies to solving the following generalized eigenvalue equation:

7

det


 A− λI B

C D


 = 0 (21)

Using the property that determinants of a (block) matrix are not influenced by linear combinations of

columns or rows, the following holds true [18]:

det


 A− λI B

C D

 ·
 I 0

−D−1C I


 = 0 ⇒

det


 A− λI −BD−1C B

0 D


 = 0 (22)

By the property of triangular block matrices it holds that:

det


 A− λI B

C D

 ·
 I 0

−D−1C I


 = det

[
A− λI −BD−1C

]
· det [D] (23)

Hence, substituting into the previous equation, the eigenvalue equation becomes (by dropping the constant

value det[D]):

det
[
A− λI −BD−1C

]
= 0 (24)

The application of the scaled steepest descent least squares completion yields:

System 2

ẋ = Ax+By + ρ (25)

ẏ = −µ
(
DTC

)
x− µ

(
DTD

)
y − µDTσ (26)

Eigenvalue analysis for this system yields the following eigenvalue equation:

det


 A B

−µDTC −µDTD

− λ
 I 0

0 I


 = 0 (27)

where the identity matrices have appropriate dimensions so that the overall matrices subtracted in the

determinant are square. The above becomes:

8

det


 A− λI B

−µDTC −µDTD − λI


 = 0 (28)

The determinant above is equivalent, by using again block matrix determinant properties, to the following:

det


 A− λI B

−µ (DC) −µDTD − λI


 =

det


 A− λI B

−µDTC −µDTD − λI

 ·
 I 0

−
(
−µDTD − λI

)−1
µDTC I




(29)

The lower left block in the second matrix in the determinant becomes:

−
(
−µDTD − λI

)−1
µDTC =

(
µDTD + λI

)−1
µDTC (30)

With further algebraic manipulation the determinant equation becomes:

det


 A− λI −B

(
µDTD + λI

)−1
µDTC B

0 −
(
µDTD + λI

)

 = 0 (31)

Using the properties of determinants for block matrices it is finally obtained that:

det
[
A− λI −B

(
µDTD + λI

)−1
µDTC

]
· det

[
−
(
µDTD + λI

)]
= 0 (32)

The product results in two polynomial terms multiplying each other, and thus the eigenvalues of the

system are determined by two independent eigenvalue equations:

det
[
A− λI −B

(
µDTD + λI

)−1
µDTC

]
= 0 (33)

det
[
−
(
µDTD + λI

)]
= 0 (34)

The second eigenvalue equation (34) determines the eigenvalues of the system due to the inclusion of the

embedding of the LSQR approach via the steepest descent method. It can be seen that its dynamics can be

made as fast as required by increasing the value of µ.

The first eigenvalue equation (33) is more complicated and requires some further manipulation. The

9

inverse matrix term in the parenthesis of the first equation, by multiplying internally (taking out a common

factor DTD), can be re-written as:

(
µDTD + λI

)−1 =
(
DTD ·

(
I + λ

µ
D−1D−T

))−1 1
µ

=
(
I + λ

µ
D−1D−T

)−1
D−1D−T

1
µ

(35)

Taking this result into the first eigenvalue equation above yields:

det
[
A− λI −B

(
I + λ

µ
D−1D−T

)−1
D−1C

]
= 0 (36)

Some rearrangement yields:

det
[
A− λI −B

(
I + λ

1
µ

(
DTD

)−1
)−1

D−1C

]
= 0 (37)

It can be seen that if µ→ +∞, then the second eigenvalue system yields infinitely fast dynamics (adjust-

ment of the y variables in time), while the first system is uninfluenced and yields the correct eigenvalues as

for the unmodified (by embedding) case.

The above constitutes a theoretical proof that in the limit, as 1
µ

(
DTD

)−1 → 0 for µ→∞, the embedded

problem trajectory converges to that of the true solution for the variables x and y.

It is finally noted that the least squares matrix DTD is full rank by the fact that matrix D is invertible

(full rank Jacobian matrix with respect to variables y of the algebraic equations).

4.2. Proof of ε-convergence

All proofs in this section use as norm the Euclidean norm (norm-2).

Lemma 1. Norm of matrix-vector product of a real symmetric matrix G with a real vector ψ.

Proof. Assume G ∈ Rn is a symmetric positive definite matrix with eigenvalues λi and eigenvectors ξi, for

i = 1, 2, . . . , n. By the definition of G, λi ∈ R and λi > 0 and ξi⊥ξj for i 6= j. Under these conditions

the eigenvectors can be chosen as orthonormal with ‖ξi‖ = 1. It is further assumed that the eigenvalues are

ordered such that λi ≥ λi−1.

We can represent a vector ψ ∈ Rn as ψ =
∑n
i=1 αiξi, with ‖ψ‖

2 =
∑n
i=1 α

2
i . Also Gψ =

∑n
i=1 αiλiξi with

‖Gψ‖2 = ‖
∑n
i=1 αiλiξi‖

2 =
∑n
i=1 α

2
iλ

2
i .

10

Given ε > 0 there exists a µ > 0 such that for any µ ≥ µ the solution of the embedded system, (x(t), y(t)),

for t ∈ [t0, tf], converges to that of the original system (xtrue(t), ytrue(t)) according to ‖x2(t)− x1(t)‖ ≤ ε

and ‖y2(t)− y1(t)‖ ≤ ε.

Proof. Original system:

ẋ = Ax+By + ρ (38a)

0 = Cx+Dy + σ (38b)

Gradient Flow formulation:

ẋ = Ax+By + ρ (39a)

ẏ = −µDT (Cx+Dy + σ) (39b)

Considering that equations (38a) and (38b) of the original system yield the true solution (xtrue, ytrue)

and that equations (39a) and (39b) from the GF formulation yield a solution (x, y) (the time argument, t,

is omitted from x and y for simplicity in the derivations below) by replacing the solution of x in constraint

(38b) we can obtain a value ỹ, so that:

0 = Cx+Dỹ + σ (40)

with

ỹ = −D−1(Cx+ σ) (41)

It can be seen that ỹ is the value of y that satisfies the algebraic equations (40) for any value of x. In this

way, a measure w for a deviation from the solution of the GF formulation constraint can be obtained as:

w = y − ỹ (42)

By replacing in equation (42)

w = y +D−1(Cx+ σ) (43)

11

and

y = w −D−1(Cx+ σ) (44)

By differentiating equations (42) and (41) it is obtained

ẇ = ẏ − ˙̃y (45)

and

˙̃y = −D−1Cẋ (46)

By considering equation (39b), equation (45) yields:

ẇ = −µDT (Cx+Dy + σ) +D−1Cẋ (47)

thus, by substituting ẋ from equation (39a)

ẇ = −µDT (Cx+Dy + σ) +D−1C(Ax+By + ρ)

= (D−1CA− µDTC)x+ (D−1CB − µDTD)y

+(D−1Cρ− µDTσ) (48)

The second term of this equation, (D−1CB − µDTD)y, can be rearranged by using equation (44) as

(D−1CB − µDTD)y = (D−1CB − µDTD)(w −D−1(Cx+ σ))

= (D−1CB − µDTD)w − (D−1CB − µDTD)D−1(Cx+ σ)

= (D−1CB − µDTD)w − (D−1CBD−1 − µDT)Cx

−(D−1CBD−1 − µDT)σ

Thus by replacing this expression in equation (48)

12

ẇ = (D−1CA− µDTC)x+ (D−1CB − µDTD)w

−(D−1CBD−1 − µDT)Cx− (D−1CBD−1 − µDT)σ

+(D−1Cρ− µDTσ)

= (D−1CA−D−1CBD−1C)x+ (D−1CB − µDTD)w

+(D−1Cρ−D−1CBD−1σ)

which can be written as:

ẇ = αx+ (D−1CB − µDTD)w + β (49)

where α = (D−1CA−D−1CBD−1C) and β = (D−1Cρ−D−1CBD−1σ).

On the other hand by replacing equation (44) in equation (39a) results in

ẋ = Ax+B(w −D−1(Cx+ σ)) + ρ

= (A+BD−1C)x+Bw + (ρ−BD−1σ) (50)

Now if we assume that at some t = t1, t1 ∈ [t0, tf] with w = εw, ‖w‖ = ‖εw‖ = ε1 > 0, if sign(εw)◦ẇ(t1) ≤

0, then d
dt ‖w(t)‖ ≤ 0, and ‖w(t)‖ ≤ ε1 for t ∈ [t1, t1 + δ], δ > 0 (i.e. if ẇ forces w towards 0 from either side,

the norm of w decreases).

In equation (49), the negative term, −µDTDw by positive definitiveness of DTD, will always force

w to zero and the terms αx + D−1CBw + β may force w away from zero, so that, if
∥∥−µDTDw

∥∥ ≥∥∥αx+D−1CBw + β
∥∥, then sign(εw) ◦ ẇ(t1) ≤ 0.

Thus from Lemma 1:

∥∥−µDTDw
∥∥ = µ

∥∥DTDw
∥∥ ≥ µλmin(DTD) ‖w‖ = µλmin(DTD)ε1

We also have

‖α‖ ‖x‖+
∥∥D−1CB

∥∥ ε1 + ‖β‖ ≥
∥∥αx+D−1CBεw + β

∥∥ (51)

From the above if

13

µλmin(DTD)ε1 ≥ ‖α‖ ‖x‖+
∥∥D−1CB

∥∥ ε1 + ‖β‖

then

∥∥−µDTDw
∥∥ ≥ ∥∥αx+D−1CBw + β

∥∥
where

µ ≥
‖α‖ ‖x‖+

∥∥D−1CB
∥∥ ε1 + ‖β‖

λmin(DTD)ε1

Now, assume ‖x‖ ≤ xmax ∀t ∈ [t1, tf], sign(w) ◦ ẇ(t) ≤ 0 , ∀t ≥ t1, and

µ ≥
‖α‖xmax +

∥∥D−1CB
∥∥ ε1 + ‖β‖

λmin(DTD)ε1
(52)

From this equation

ε1 ≤
‖α‖xmax + ‖β‖

µλmin(DTD)− ‖D−1CB‖
(53)

which yields a minimum necessary condition for µ

µ >

∥∥D−1CB
∥∥

λmin(DTD) (54)

Considering the following

max
t≥t1
‖w(t)‖ = ε1

if t1 = 0, then ε1 is the maximum error in feasibility over the whole integration time span.

On the other hand, by replacing equation (41) in equation (38a) results in

ẋtrue = Axtrue +Bỹ + ρ

= Axtrue +B(−D−1(Cxtrue + σ)) + ρ

= (A−BD−1C)xtrue + (ρ−BD−1σ)

which by subtracting from equation (39a) yields

14

ẋ− ẋtrue = (A−BD−1C)(x− xtrue) +Bw

Let εx = x− xtrue, and ε2 = ‖εx‖, so that

ε̇x = (A−BD−1C)εx +Bw

‖ε̇x‖ ≤
∥∥A−BD−1C

∥∥ ‖εx‖+ ‖B‖ ‖w‖ ≤
∥∥A−BD−1C

∥∥ ε2 + ‖B‖ ε1

(N.B. ε1 = maxt ‖w‖)

Since

d

dt
‖εx‖ ≤

∥∥∥∥dεxdt
∥∥∥∥

and for µ as specified in equation (52), the previous expression becomes

ε̇2 ≤
∥∥A−BD−1C

∥∥ ε2 + ‖B‖ ε1

by integrating both sides of the equality above, it is obtained

ε2 ≤ ‖B‖ε1
‖A−BD−1C‖

(
e‖A−BD

−1C‖(t−t0) − 1
)

+ ε2(t0)e‖A−BD
−1C‖(t−t0)

which by further expanding the upper bound on the previous inequality results in

ε2 ≤ ‖B‖ε1
‖A−BD−1C‖

(
e‖A−BD

−1C‖(tf−t0) − 1
)

+ ε2(t0)e‖A−BD
−1C‖(tf−t0)

Further assuming that both the original system and the embedded system (GF formulation) are started

from the same initial condition, x(t0) = x0, then ε2(t0) = 0 which results in:

ε2 ≤ ‖B‖ε1
‖A−BD−1C‖

(
e‖A−BD

−1C‖(tf−t0) − 1
)

15

Now let

εy = y − ytrue

= w + ỹ − ytrue

= w −D−1(Cx+ σ) +D−1(Cxtrue + σ)

= −D−1C(x− xtrue) + w

ε3 = ‖εy‖ ≤
∥∥D−1C

∥∥ ‖εx‖+ ‖w‖ ≤
∥∥D−1C

∥∥ ε2 + ε1

ε3 ≤
∥∥D−1C

∥∥ ε2 + ε1 =
(∥∥D−1C

∥∥ ‖B‖
‖A−BD−1C‖

(
e‖A−BD

−1C‖(tf−t0) − 1
)

+ 1
)
ε1

From the above it can be seen that within the interval t ∈ [t0, tf] the error in the x and y, respectively

given by ε2 and ε3, are bounded above by ε1. This in turn has been shown to be possible to be made

arbitrarily small, depending on the choice of scaling factor µ, which concludes the proof for ε-convergence.

�

4.3. Implementation

The ODE systems resulting from the application of the methods proposed in this work were solved in

Mathematicar using the ODE capabilities of the NDSolver framework with default options, and using the

Backward Differentiation Formula (BDF) method [11]. The resulting solutions were compared with the direct

solution of the DAE problems by NDSolver in Mathematicar, using again the BDF method and default

options. CPU time (seconds), the number of integration steps and the number of evaluations, right hand

side of the ODEs made during integration (RHS) and the number of residual evaluations for DAEs, were

collected during runs and used as performance indicators.

5. Computational Results

In this section computational case studies are presented to demonstrate the capabilities of the novel

Gradient Flow methodology for the solution of DAEs. In the following results "error" refers to the residual

of the algebraic equations over the solution of the DAE system.

16

5.1. DAE reaction system case study

This example presents the case of simple chemical kinetics, and is formulated as a DAE in the following

equations:

ẋ1 = −r1; x1(0) = 1. (55a)

ẋ2 = r1 − r2; x2(0) = 0. (55b)

ẋ3 = r2; x3(0) = 0. (55c)

r1 = 1.0 x1 (55d)

r2 = 0.25 x2 (55e)

0 ≤ t ≤ 30

Four different levels of the value of the scaling parameter µ are used so as to demonstrate convergence

of the method: µ = 1, 101, 102, 105. The numerical solution of the DAE system with transformation is

presented in Figures 1–3. Higher values of µ were indistinguishable from µ = 10 so they were omitted for the

most part, except for visualization of the residuals. The integration tolerances for the numerical integrator

NDSolver in Mathematicar were set to 10−10 for the absolute precision and to the same value for the

relative precision. The direct solution of the DAE system is shown in Figure 4. Table 1 summarizes the

computational requirements for the five runs (including the solution of the original system).

17

(a)

Figure 1: Trajectory for differential state variables in the DAE reaction system case study for µ = 1. Figure (a) shows the molar
fractions of compounds 1 to 3 while (b) shows the reaction rates r1 and r2.

18

(a)

(b)

Figure 2: Trajectories for the differential variables, panel (a), and algebraic variables, panel (b), in the DAE reaction system
case study when µ = 10.

19

(a)

(b)

Figure 3: Residual norm of the algebraic equations when the DAE reaction system case study was solved using the method
proposed in this work with values of µ set to 1.0, panel (a), and 10.0, panel (b).

20

(a)

(b)

(c)

Figure 4: Solution of the problem posed in the DAE reaction system case study using NDSolver in Mathematicar. Values of
the differential and algebraic variables are shown in panels (a) and (b). Panel (c) displays the residual norm of the algebraic
equations.

21

Table 1: DAE reaction system case study: computational run indicators for different µ values

Run µ CPU time (s) # Integration steps # RHS evaluations
1 1 0.04 432 903
2 101 0.06 662 1285
3 102 0.06 402 692
4 105 < 0.04 381 618
5 Direct solution 0.3 525 694

of DAE system

As can be seen from the results presented in Figures 2 to 4 the strategy presented in this work is able to

solve successfully this example system. In particular, the accuracy in terms of the satisfaction of the algebraic

equations in the DAE system, as shown in Figure 3, is very acceptable for a value of µ ≥ 101. The size of

the algebraic equations residual is larger at the beginning and is directly proportional to the value of µ. It is

notable that as the size of the scaling parameter increases, the number of right hand side (RHS) evaluations

and integration steps are reduced, while CPU time remains on the same approximate levels.

5.2. Discharge pressure valve case study

This example models a system consisting of a compressor with a suction-throttle valve to control discharge

pressure [10]. This system is described by the following non-dimensional equations:

ẋ1 = 1
20 (y1 − x1) (56a)

ẋ2 = − 1
75 (y2 − 99.1) (56b)

ẋ3 = (y4 − y5) (56c)

y1 = x2 −
1
15y2 (56d)

y2 = y3
(
3.35− 0.075 y2

5
)

(56e)

y3 = x3

20 (56f)

y4 =
√

Ψ(t) (56g)

y5 =
(
23090.3

(
8.03494× 1010 exp (−3t) + 7452.56 exp (−t) + 3.00391× 10−5) (56h)

sech(10− t)3 x1 + y4 x
3
1 x3 − 347.222(3−

√
Ψ(t))2x4

) 1
x3 x3

1

Ψ(t) = (15 + 5 tanh (t− 10))2 (56i)

0 ≤ t ≤ 50

22

Table 2: Initial values for discharge pressure valve system

Variable Value Variable Value
x1 0.25 x2 6.857
x3 734.0 y1 0.3078
y2 98.23 y3 36.70
y4 10.0 y5 2.996

The integration horizon was t ∈ [0, 50] with initial values presented in Table 2, including consistent values

for the algebraic variables. To investigate the effect of the value of µ on the convergence of the method,

four different values of this scaling parameter were used: µ = 102, 103, 104, 105. Figures 5–11 show the

solution obtained with the method introduced in this work. Again, most graphs with µ ≥ 102 were omitted.

This time the residuals were also omitted as the only thing that changed between one graph and the other

was the magnitude, which scaled down in agreement to the size of µ. The direct solution of the DAE

system by the commercial solver NDSolver in Mathematicar is shown in Figure 8. Table 3 summarizes

the computational requirements for the five runs. The integration tolerances for the numerical integrator

NDSolver in Mathematicar were set to 10−10 for the absolute precision and to the same value for the relative

precision.

Variables
x(1)

x(2)

x(3)

0 10 20 30 40 50

0

200

400

600

800

1000

time

D
iff

er
en

tia
lV

ar
ia

bl
e

V
al

ue
s

Figure 5: Trajectory for differential state variables in the discharge pressure valve case study when µ was set to 100.

23

Variables
y(1)

y(2)

y(3)

y(4)

y(5)

0 10 20 30 40 50

-1000

-500

0

500

time

A
lg

eb
ra

ic
V

ar
ia

bl
e

P
ro

fil
es

Figure 6: Values of the algebraic state variables along time for the the discharge pressure valve case study. The solution was
obtained for µ = 100.

0 10 20 30 40 50

10-5

10-4

0.001

0.010

0.100

1

10

time

In
fin

ity
N

or
m

of
A

lg
eb

ra
ic

E
qu

at
io

n
R

es
id

ua
ls

Figure 7: Residual norm of the algebraic equations in the discharge pressure valve case study for µ = 100.

24

(a)

(b)

(c)

Figure 8: Solution of Example 2 obtained using NDSolver in Mathematicar. Panels (a), (b) and (c) shows the trajectories of
differential, state variables and the norm of the algebraic equations, respectively.

As shown in Figure 7, the infinity norm of the residuals of the algebraic equations is larger for µ = 102

25

Table 3: Discharge pressure valve case study: computational run indicators for different µ values

Run µ CPU time (s) # Integration steps # RHS evaluations
1 102 1.20682 2484 3509
2 103 0.777882 4362 9031
3 104 9.26759 101514 525981
4 105 1.38479 7139 16547
5 Direct solution 1.20682 3509 2484

of DAE system

compared to the results obtained for the direct solution of the DAE problem by NDSolver in Mathematicar.

This norm can be reduced to comparable values by increasing the value of the scaling parameter µ if more

precision is needed. A trade-off exists between the precision and the time required to obtain a solution as

shown in 3, although it is not a linear relationship. Thereby, an adaptive scheme to automatically choose the

value of µ by approximating the integration error will be studied in future research.

5.3. Distillation column case study

The following is a DAE system representing a binary distillation column with 41 trays, a condenser and

a reboiler. Each tray includes an equilibrium algebraic equation and a dynamic mass balance. The feed

tray was selected to be the one in the middle and the feed is saturated liquid. The distillate and bottoms

flowrates were fixed and both liquid and vapour flow are considered constant across the column. To make

the problem more challenging for solution, the feed composition is changing with time. The dimensionless

equations describing the system are the following:

Condenser
dxC
dt

= V y1 − (L+Dist)xC
MC

c→ (i = 0) (57a)

Rectifying Section
dxi
dt

= V yi+1 + Lxi−1 − V yi − Lxi
MTr

∀ i ∈ [1, . . . , 20] (57b)

Feed Tray
dx21

dt
= V y22 + Fxfeed + Lx20 − V y21 − (L+ F)x21

MTr
(57c)

Stripping Section

dxC
dt

= V yi+1 + (L+ F)xi−1 − V yi − Lxi
MTr

∀ i ∈ [22, . . . , 41] (57d)

Reboiler
dxR
dt

= V y1 + (L+ F)x41 −BxR
MR

R→ (i = 42) (57e)

26

Feed
dxfeed
dt

= − 0.1
t+ 1 xfeed(0) = 0.8 (57f)

Equilibrium

yi (1 + (α− 1)xi) = αx1 ∀ i ∈ [1, . . . , 42] (57g)

Here x represents the liquid concentration of the component of interest, while y is its vapour concentration.

V is the vapour flow and L the liquid flow. F is the feed flow, B the bottoms flow and Dist the distillate

flow. Finally α is the relative volatility parameter, which is selected to be low (α = 3.0) to make the system

more difficult to solve. The integration horizon was selected to be t ∈ [0, 50]. Parameter values are given in

Table 4.

Four different levels of the value of the scaling parameter µ are used so as to demonstrate convergence

of the method: µ = 104, 105, 106, 107. The numerical solution of the DAE system with transformation is

presented in Figures 9–11 with dimensionless values. The solution by the commercial solver NDSolver in

Mathematicar is shown in Figure 12. Table 5 summarizes the computational requirements for the five runs.

The integration tolerances for the numerical integrator NDSolver in Mathematicar were set to 10−10 for

the absolute precision and to the same value for the relative precision.

27

Figure 9: Trajectory for differential state variables, liquid mass fraction of the component of interest for 42 stages, including
condenser and reboiler. Calculated for µ = 104.

28

Figure 10: Trajectory for algebraic state variables, vapour mass fraction for the component of interest. Calculated for µ = 104.

29

Table 4: Distillation column case study parameters and initial conditions

Parameter/Variable Value Parameter/Variable Value
L 60.0 α 3.0
V 130.0 Mi∈{C,Tr,R} 10.0
F 100.0 xfeed 0.8
Dist 70.0 B 30.0
y(0)i∈{1,...,41} 0.75 x(0)i∈{0,...,42} 0.5

(a)

(b)

Figure 11: Residual norm of the algebraic equations in the distillation column case study for µ = 104 (panel a) and µ = 107

(panel b).

From the performance seen in terms of the satisfaction of the algebraic equations in the DAE system, as

shown in Figure 11, the accuracy achieved is close to the scale that could be achieved by solving directly the

original DAE system with the commercial solver NDSolver. Even though a higher scaling parameter was

30

Figure 12: Solution by NDSolver in Mathematicar of differential variables. x(0) to x(42) represent liquid mass fractions for
the stages of the column.

Table 5: Distillation column case study: computational execution indicators for different µ values

Run µ CPU time (s) # Integration steps # RHS evaluations
1 104 8.66 3240 5144
2 105 7.48 2914 4751
3 106 8.78 2868 4736
4 107 8.5657 2957 4974
5 Direct solution 14.87 2313 3148

of DAE system

31

Figure 13: Solution by NDSolver in Mathematicar of algebraic variables, vapour phase mass fractions in the distillation column
case study.

32

0 10 20 30 40 50

10-14

10-13

10-12

10-11

10-10

10-9

time

In
fin

ity
N

or
m

of
A

lg
eb

ra
ic

E
qu

at
io

n
R

es
id

ua
ls

Figure 14: Solution by NDSolver in Mathematicar: residual norm of the equations for the distillation column case study.

selected at the onset, the error computed by the presented strategy is very low overall.

Furthermore, the error is clearly sensitive to the larger values of µ, as seen in the example. In terms of

performance, the system solved with the GF embedding method requires less CPU time than the one solved

directly as a DAE by NDSolver, while maintaining the same quality of solution.

6. Conclusions

In this paper, Gradient Flow methods were employed to solve DAE systems of index-1 by embedding a

pointwise optimization problem within the ODE part of the system. A theoretical support of the methodology

is also provided, showing both asymptotic convergence in the limit of the scaling scheme introduced, as well

as ε-convergence for the case of linear DAE systems.

The computational evidence presented supports both the validity and efficacy of the proposed novel

approach. The test problems solved are representative of models encountered in chemical engineering practice.

The results indicate that a smaller number of integration steps was on average required for a comparable

quality solution to a state-of-the-art commercial DAE solver.

Future research will focus on a number of aspects, such as (a) stepwise adaptation of the scaling parameter

µ during the integration process, similar to stepsize selection as implemented in standard integrators. This will

be done such that appropriate µ values are determined by the algorithm for the problem under consideration.

(b) investigation of alternative optimization embedding schemes to steepest descent, chosen in this work for

convenience and as a first attempt, and (c) expansion of applications to larger case studies via the production

of a dedicated customized integration solver.

33

Acknowledgements

Author E. A. del Rio-Chanona would like to acknowledge CONACyT scholarship No. 522530 for funding

this project.

References

[1] Ascher, U., Petzold, L. R., 1998. Computer methods for ordinary differential equations

and differential-algebraic equations. Society For Industrial & Applied Mathematics, U.S.,

Philadelphia.

[2] Ascher, U. M., Petzold, L. R., 1993. Stability of Computational Methods for Constrained

Dynamics Systems. SIAM Journal on Scientific Computing 14 (1), 95–120.

[3] Barrlund, A., 1991. Constrained least squares methods for linear timevarying DAE sys-

tems. Numerische Mathematik 60 (1), 145–161.

[4] Behrman, W., 1998. An Efficient Gradient Flow Method for Unconstrained Optimiza-

tion. Ph.D. thesis, Stanford University.

[5] Brown, A. A., Bartholomew-Biggs, M. C., 1989. Some effective methods for uncon-

strained optimization based on the solution of systems of ordinary differential equations.

Journal of Optimization Theory and Applications 62 (2), 211–224.

[6] Campbell, S. L., Kunkel, P., 2009. Completions of nonlinear DAE flows based on in-

dex reduction techniques and their stabilization. Journal of Computational and Applied

Mathematics 233 (4), 1021 – 1034.

[7] Chowdhry, S., Krendl, H., Linninger, A. A., 2004. Symbolic Numeric Index Analysis

Algorithm for Differential Algebraic Equations. Industrial & Engineering Chemistry Re-

search 43 (14), 3886–3894.

[8] Gear, C. W., 1971. Simultaneous Numerical Solution of Differential-Algebraic Equations.

IEEE Transactions on Circuit Theory 18 (1), 89–95.

34

[9] Hadamard, J., 1908. Mémoire Sur Le Probleme D’analyse Relatif a L’équilibre Des

Plaques Élastiques Encastrés. Imprimerie Nationale de France, Paris.

[10] Hairer, E., Roche, M., Lubich, C., 1989. The Numerical Solution of Differential-Algebraic

Systems by Runge-Kutta Methods. Vol. 1409 of Lecture Notes in Mathematics. Springer

Berlin Heidelberg.

[11] Hairer, E., Wanner, G., 1996. Solving Ordinary Differential Equations II, 2nd Edition.

Vol. 14 of Springer Series in Computational Mathematics. Springer Berlin Heidelberg,

Berlin, Heidelberg.

[12] Kröner, A., Marquardt, W., Gilles, E., 1992. Computing consistent initial conditions for

differential-algebraic equations. Computers & Chemical Engineering 16, S131–S138.

[13] Kröner, A., Marquardt, W., Gilles, E., 1997. Getting around consistent initialization of

DAE systems? Computers & Chemical Engineering 21 (2), 145–158.

[14] Navarro, A. K. W., Vassiliadis, V. S., 2014. Computer algebra systems coming of age:

Dynamic simulation and optimization of DAE systems in MathematicaTM. Computers

& Chemical Engineering 62, 125–138.

[15] Okay, I., Campbell, S. L., Kunkel, P., 2007. The additional dynamics of least squares

completions for linear differential algebraic equations. Linear Algebra and its Applica-

tions 425 (2), 471 – 485.

[16] Pantelides, C. C., March 1988. The Consistent Initialization of Differential-Algebraic

Systems. SIAM Journal on Scientific and Statistical Computing 9 (2), 213–231.

[17] Pantelides, C. C., Gritsis, D., Morison, K., Sargent, R., 1988. The mathematical mod-

elling of transient systems using differential-algebraic equations. Computers & Chemical

Engineering 12 (5), 449–454.

[18] Powell, P. D., 2011. Calculating determinants of block matrices. arXiv preprint

arXiv:1112.4379.

35

[19] Unger, J., Kröner, A., Marquardt, W., 1995. Structural analysis of differential-algebraic

equation systems-theory and applications. Computers & Chemical Engineering 19 (8),

867–882.

36

