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Abstract  
 

Targeting the fusion oncoprotein BCR-ABL with tyrosine kinase inhibitors has 

significantly impacted on chronic myeloid leukemia (CML) treatment, transforming the 

life expectancy of patients; however the risk of relapse remains, due to persistence of 

leukemic stem cells (LSCs). Therefore it is imperative to explore the mechanisms that 

result in LSC survival and develop new therapeutic approaches. We now show that 

MHC-II and its master regulator class II transactivator (CIITA) are downregulated in 

CML compared to non-CML stem/progenitor cells in a BCR-ABL kinase independent 

manner. IFN stimulation resulted in an upregulation of CIITA and MHC-II in CML 

stem/progenitor cells, however the extent of IFN-induced MHC-II upregulation was 

significantly lower than when compared with non-CML CD34+ cells. Interestingly, the 

expression levels of CIITA and MHC-II significantly increased when CML 

stem/progenitor cells were treated with the JAK1/2 inhibitor ruxolitinib (RUX). Moreover, 

mixed lymphocyte reactions (MLRs) revealed that exposure of CD34+ CML cells to 

IFNor RUX significantly enhanced proliferation of the responder CD4+CD69+ T cells. 

Taken together, these data suggest that cytokine-driven JAK-mediated signals, 

provided by CML cells and/or the microenvironment, antagonize MHC-II expression, 

highlighting the potential for developing novel immunomodulatory-based therapies to 

enable host-mediated immunity to assist in the detection and eradication of CML 

stem/progenitor cells.  

 

 

Key Points 

 

 MHC-II and its master regulator CIITA are downregulated in CML stem/progenitor 

cells in a BCR-ABL kinase independent manner. 

 JAK1/2 inhibition increased MHC-II expression, suggesting elevation of CML 

immunogenicity may provide a way to reduce CML persistence. 
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Introduction 

 

The development of tyrosine kinase inhibitors (TKIs) to target BCR-ABL kinase has 

revolutionized the management of chronic phase CML with many patients now 

predicted to have a normal life expectancy.1, 2 Remission is maintained by continuous 

administration of TKI and assessed by quantification of BCR-ABL transcripts in the 

blood. For the 10-20% of patients who achieve deep and durable molecular responses, 

discontinuation studies have been conducted. 3, 4 Approximately 60% of patients 

maintain a major molecular response over time.5 

Prior to TKI introduction, CML was a common indication for allogeneic stem cell 

transplantation (alloSCT). In this setting disease remission was achieved by the 

combination of anti-leukemic chemo-radiotherapy and active graft versus leukemia 

(GVL) effect. The degree of immune recognition of leukemic cells by the donor immune 

system was such that disease relapse, if it occurred, could be managed successfully by 

administration of donor lymphocytes.6 Whilst it is well recognised that the effect of 

alloSCT and GVL is mainly an allo-immune effect mediated through non-disease-

specific minor histocompatibility antigens, it is likely that CML cells express disease-

specific antigens recognizable by the donor immune system. The role of the patient’s 

own immune system in recognizing BCR-ABL-expressing cells, and whether this can be 

boosted for beneficial effect, is currently under investigation in vaccination studies, 

although no convincing results have been reported.7, 8 Similarly, it is not known whether 

immune recognition by the patient’s immune system is playing a part in maintaining 

remission of non-relapsing patients in whom TKI treatment is discontinued. 

While CD8+ cytotoxic T lymphocytes (CTL) are considered to play a major role in 

tumor immunity, CD4+ T helper cells are also important for mediating anti-tumor 

associated immune responses, possibly through optimal induction and maintenance of 

CTL responses, interactions with effector cells and production of anti-tumor-associated 

cytokines such as IL2 and IFN.9, 10 As such, solid tumors (e.g. non small cell lung 

cancer, mammary adenocarcinoma, colorectal and gastric) and hematological cancers 

(B cell lymphomas) display MHC class II (MHC-II) downregulation, reducing the host 

immune response towards the tumor; correlations have been found between higher 

MHC-II expression and better prognosis.11, 12 Our microarray datasets comparing the 

expression of genes between normal and CML stem/progenitor revealed a significant 
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downregulation in the antigen presentation (exogenous antigen) pathway in quiescent 

and dividing CD34+ CML cells.13 Here, we investigate the biological relevance of this 

finding, determining the mechanisms that underlie MHC-II downregulation in CML 

stem/progenitor cells and examining whether its induction could render these cells more 

immunogenic.  
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Materials and Methods 

  

Primary samples cell culture: CD34+ cells were enriched, after informed consent, from 

either CML patient chronic-phase samples at diagnosis (fresh or cryopreserved; Table 

1) or allograft donors/lymphoma patients without bone marrow (BM) involvement as 

“non-CML” controls. The studies were approved by the West of Scotland Research 

Ethics Committee 4, NHS Greater Glasgow and Clyde (UK). Primary CML cells were 

cultured in serum-free medium, supplemented with Flt-3 ligand and SCF (each 100 

ng/mL), IL3 and IL6 (each 20 ng/mL; StemCell Technologies, Cambridge, UK) and G-

CSF (Chugai Pharma, London, UK) overnight. Thereafter for experimental conditions, 

CD34+-enriched CML cells were cultured in SCF, GM-CSF, and MIP-α (all 0.2 ng/mL), 

G-CSF and IL6 (both 1.0 ng/mL) and 0.05 ng/mL leukemia inhibitory factor (StemCell 

Technologies). IFNand TGF were purchased from Peprotech EC Ltd., (London, UK), 

nilotinib (NIL) from Stratech Scientific Ltd., (Newmarket, UK) and imatinib mesylate 

(IM), dasatinib (DAS), SB-505124 (SB) and ruxolitinib (RUX) from Selleckchem 

(Houston, TX). Pan-MHC-II antibody (Ab; purified, clone Tϋ39) used for blocking 

experiments was purchased from BD Biosciences (Oxford, UK). 

 

Microarray analysis: The microarray analysis leading to the initial identification of the 

MHC-II gene family (Figure 1A) was described previously.13 The experimental details 

for the second, larger quiescent/dividing microarray dataset (Figure 1B&C) and the 

CML primitive/progenitor microarray dataset (Figure 1C, Supplementary Figure 1A&B) 

are described previously.14, 15 The processing and normalization procedures for all 

datasets was carried out as described.16 All microarray datasets are summarized with 

respect to sample size, sorting strategy and the relevant figure in Supplemental Table 

1; by combining these datasets, transcriptional profiles of 19 independent CML samples 

and 10 independent normal samples were analyzed. Where genes were represented by 

multiple probes, expression was summarized using the median value.  Any genes not 

represented on all microarray chips were removed. 

 

Gene set enrichment analysis (GSEA): Gene set enrichment was performed using 

GSEA17 (gsea2-2.2.2.jar) as obtained from the Broad Institute 

(http://software.broadinstitute.org/gsea/index.jsp); q values were calculated using 

http://software.broadinstitute.org/gsea/index.jsp
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10,000 permutations of the phenotype label.  The MHC-II geneset analysed by GSEA is 

shown in Figure 1C and is comprised of the Ingenuity pathway shown in Figure 1A and 

“MHC class II” molecules identified by searching Metacore KB 

(https://portal.genego.com). 

 

Flow cytometry: Cells were harvested and resuspended in 1 x 106 cells/100 µL FACS 

Buffer (PBS with 2% FCS and 0.02% sodium azide). All antibodies (Abs) were 

purchased from BD Biosciences unless otherwise stated. Cell staining was performed 

using 0.5 μg of each flurochrome-conjugated Ab for 30 min, 4oC in dark (anti-CD34, -

CD38, -HLA-DP, -DQ, -DR, -CD4, -CD69 Ab). Anti-CD8 and -CD107a Ab were 

purchased from eBioscience (Hatfield, UK). Events were acquired using a 

FACSCanto™ II cytometer and FACSDiva software (BD Biosciences) and data was 

analyzed using FlowJo software (Treestar Inc, Ashland, OR). To isolate CD34+CD38+ 

(bulk) and CD34+CD38- (leukemic stem cell (LSC)) populations, cells were sorted using 

a FACSAria™ cytometer (BD Biosciences).  

 

RT-PCR and Fluidigm analysis: Total RNA was prepared using RNAeasy Plus 

extraction kit (Qiagen, Valencia, CA). RNA (1 μg) was reverse-transcribed using 

SuperScript reverse transcriptase and oligo dT primers (Invitrogen Life Technologies, 

Paisley, UK); or where mentioned, cDNA was prepared from 300 cells using the 

SuperScript™ III One-Step RT-PCR System with Platinum® Taq High Fidelity 

(Invitrogen). PCR analysis was performed on a 48.48 dynamic array using the 

BioMark™HD System (Fluidigm, San Francisco, CA) or Applied Biosystems Prism 

7900HT system (Applied Biosystems, Paisley, UK) as per manufacturers’ instructions. 

Relative gene expression was calculated using the 2-ΔΔCT method.   

 

Mixed lymphocyte reactions (MLRs) and CD107a expression assay: Peripheral blood 

mononuclear cells (PBMCs; responder cells) were isolated from healthy donors by 

density centrifugation using Histopaque (Sigma-Aldrich, Poole, UK). The PBMCs were 

incubated with Dynabeads® Human T-Activator CD3/CD28 (Life Technologies) as per 

manufacturer’s instructions for 48h in RPMI-1640 medium supplemented with 10% heat 

inactivated FCS, penicillin (100 U/mL), streptomycin (100 U/mL) and L-glutamine (2 

mM) (Life Technologies). Activated PBMCs were sequestered from the beads using a 

magnet and labelled with Cell Trace Violet (CTV) (Life Technologies) prior to co-culture 



 7 

with stimulator/target (bulk CD34+ CML) cells.  For MLRs, activated PBMCs were co-

cultured with stimulator cells for up to 6 days at a ratio of 3:1 responder:stimulator. 

Proliferation was measured as a loss of CTV mean fluorescence intensity (MFI) upon 

analysis by flow cytometry. For CD107a expression, activated PBMCs were co-cultured 

with bulk CD34+ CML target cells for up to 6 days at a ratio of 1.5:1 CD4+ T cells:target. 

 

Statistical analysis: Average responses from at least 3 individual CML donors are 

shown (mean ± SEM). Statistical analysis was performed using GraphPad Prism 4 

(GraphPad Software Inc., CA), using students paired or unpaired t-test (*p<0.05; 

**p<0.005; ***p<0.001), as appropriate.  
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Results: 

 

MHC-II expression is downregulated in CML CD34+ stem/progenitor cells, in a BCR-ABL 

kinase independent manner 

Microarray datasets analyzing the expression of genes in either normal or CML CD34+ 

quiescent (HoechstloPyronin Ylo) or dividing (Hst+Py+) cells revealed that the antigen 

presentation pathway was the top deregulated pathway in the CML versus normal 

comparison (p=5.93x10-9; Figure 1A; significantly downregulated components 

highlighted in green).13 To validate this observation in silico, and assess more broadly 

whether the MHC-II gene family is suppressed in CML cells, we extended this genelist 

to include other relevant MHC-II molecules and identified a second, complementary 

dataset14 in which we could perform Gene Set Enrichment Analysis (GSEA)17 of this 

MHC-II gene family. Limited numbers of normal samples prevented such an analysis in 

the original dataset. This analysis confirmed significant downregulation of the MHC-II 

family in both quiescent and dividing CML cells (FDR≤0.15; Figure 1B). The same 

analysis was then performed in another dataset transcriptionally profiling primitive (Lin-

CD34+CD38-CD90+) CML cells against three progressively more mature cell 

populations all from a single cohort of CML patients and non-CML controls.15 While 

some genes are not downregulated individually, there is a trend for downregulation of 

the MHC-II genes in the primitive (Lin-CD34+CD38-CD90+) and the three more mature 

(Lin-CD34+CD38+CD123+CD45RA-; Lin-CD34+CD38+CD123-CD45RA-; Lin-

CD34+CD38+CD123+CD45RAlo) cell populations (Figure 1C and Supplementary Figure 

1A respectively). This represents a significant downregulation of the MHC-II gene family 

overall in all four cell populations, as confirmed by GSEA (Supplementary Figure 1B). 

Overall, this in silico validation process considered 19 independent CML samples and 

10 independent normal samples (Supplementary Table 1). Analysis of co-stimulatory 

molecules indicated that while there was some variation in their expression across the 

populations, TNFSF4 (OX-40L) and CD40 appeared to be downregulated in LSC-

enriched populations compared with non-CML populations (Supplementary Figure 1C). 

At the protein level we demonstrated a significant reduction in MHC-II surface 

expression on CML stem/progenitor cells, both in the bulk CD34+ population and in the 

CD34+CD38- LSC population, compared with normal hematopoietic stem cell (HSC) 

populations (Figures 1D&E; Supplementary Figure 2). IFN, an established activator of 
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MHC-II expression18 which signals through the JAK/STAT pathway, upregulated MHC-II 

expression in CML stem/progenitor cells (Figures 1D&E; Supplementary Figure 2). 

However, the level of IFN-induced MHC-II upregulation in CML cells was significantly 

reduced compared with non-CML HSCs (Figures 1D&E; Supplementary Figure 2). 

Analysis of the master regulator of MHC-II expression, class II transactivator (CIITA),19 

revealed a downregulation of this gene in CML stem/progenitor cells compared to non-

CML cells (Figure 1F). Supporting the MHC-II data, IFN increased CIITA transcription 

in CML stem/progenitor cells, but not to the level observed in IFN-treated non-CML 

cells (Figure 1F). These data indicate that CML stem/progenitor cells exhibit MHC-II 

downregulation, which may assist in their evasion from host immunity.  

Treatment of bulk CD34+ and CD34+CD38- CML cells for 48h with TKIs (NIL, 

DAS, IM) had no effect on either MHC-II or CIITA expression, demonstrating that BCR-

ABL activity did not significantly influence CIITA or MHC-II expression on CML 

stem/progenitor cells, in the absence or presence of IFN (Figure 2; Supplementary 

Figure 3). This suggests that MHC-II regulation in CML is BCR-ABL kinase 

independent. 

 To determine whether MHC-II expression remains downregulated upon 

extended treatment with TKI, bulk CD34+ CML stem/progenitor cells were cultured in 

the presence or absence of IM for 7 days prior to analysis of the residual cells in vitro. 

Over this time, IM may be expected to act either by inducing reversible changes in 

expression of genes that are kinase dependent, or by selecting for a population of cells 

expressing higher or lower levels of certain genes as the result of killing more mature 

CD34+ cells that are sensitive to apoptosis. Surface protein and gene expression of 

MHC-II in d7 cultured CML cells was normalized to untreated (UT) d0 expression 

levels. Although no significant differences in MHC-II expression were observed 

between d7 IM treated and UT CML cells, either on the surface of CD34+CD38+ or 

CD34+CD38- LSC populations, or in the expression of MHC-II genes in bulk CD34+ 

CML cells (HLA-DR, HLA-DP, HLA-DQ; Figure 3A-C; Supplementary Figure 4), there 

was a trend towards further downregulation of MHC-II expression in 7 day IM treated 

CML cells. This was supported by a downregulation in CIITA in IM treated cells when 

comparing to UT on d7 (Figure 3D). When IM treated cells at d7 were compared to UT 

cells at d0, the observed trends reached significance for surface expression of MHC-II 

on CD34+CD38- LSC CML cells, and CIITA expression (Figure 3A, B&D). These data 

suggest that the regulation of MHC-II expression in CD34+CD38+ or CD34+CD38- LSC 
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CML populations is BCR-ABL kinase independent, as it is not normalized after 48h 

(Figure 2) or 7 day of IM treatment (Figure 3). These data also suggest that by killing 

more mature cells within the CD34 compartment IM enriches for cells with lower 

expression of MHC-II and CIITA, inferring that these surviving cells would be even less 

susceptible to immune attack. 

 

MHC-II/CIITA expression is not modulated by aberrant methylation or TGF-mediated 

signaling in CML stem/progenitor cells 

Aberrant DNA hypermethylation of the CIITA promoter has been identified as a 

mechanism for diminished IFN-induced CIITA and MHC-II expression in both 

hematopoietic and solid tumors.20, 21 Analysis of CIITA promoter methylation did not 

reveal any statistical differences between CML and normal stem/progenitor cells 

(Supplementary Figure 5). Moreover, treatment of CML cells with methyltransferase 

inhibitor 5-azacytidine, did not lead to increased MHC-II expression (Supplementary 

Figure 6).  

TGF has previously been shown to antagonize CIITA18, 22, 23 and MHC-II 

expression in the presence and absence of IFN.19 Indeed, previous work has shown 

that TGF-mediated signals are activated in CML cells,24 and CML has been 

demonstrated to drive deregulated cytokine expression in mouse models.25 Initially, to 

analyse the impact of TGFon CIITA/MHC-II, we treated CML and non-CML cells with 

SB (TGFRI, ALK4 and ALK7 inhibitor26). While CML stem/progenitor cells were slightly 

more responsive to TGF-mediated downregulation of MHC-II levels than non-CML 

cells, SB treatment did not effect MHC-II/CIITA expression on CML stem/progenitor 

cells (Supplementary Figure 7).  

 

Inhibition of JAK elevates MHC-II expression in CML stem/progenitor cells and 

increases their immunogenicity. 

The cytokine IL4 is also known to antagonise MHC-II and CIITA expression18, 22 

suggesting that aberrant alterations in cytokine production within the niche may be 

responsible for their deregulation. Moreover, IL4 has been shown to maintain survival of 

Ph+ cells upon TKI inhibition.27 We demonstrate elevated transcript levels of IL4 in CML 

compared with non-CML stem/progenitor cells (Figure 4A). As IL4 and many cytokines 

signal via the JAK/STAT pathway we analyzed the impact of cytokine-mediated 

signaling on CIITA/MHC-II, treating CML cells with RUX (a broad spectrum JAK1/2 
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inhibitor28). RUX treatment of CML stem/progenitor cells significantly increased MHC-II 

and CIITA expression both on bulk CD34+ cells (Figures 4B, D&E) and CD34+CD38- 

LSC populations (Figures 4C,D&F). As IFN activates the JAK/STAT pathway and RUX 

inhibits the same pathway, it was anticipated that RUX treatment combined with IFN 

might reduce the level of MHC-II upregulation compared to that of IFN alone. However 

this reduction was not significant, suggesting that IFN signaling was not fully inhibited 

in the presence of a JAK inhibitor (Figure 4B-F). Supporting this, analyzing genes 

associated with the IFN response, only the GBP1 response was partially modulated 

downwards in CML cells when IFN and RUX treatments were combined 

(Supplementary Figure 8). These data indicate that RUX-mediated elevation in MHC-II 

may result from an inhibition of JAKs downstream of IL4-receptors, thus arresting 

antagonistic signals and enhancing MHC-II expression.22  

To determine whether the IFN- or RUX-mediated elevation in MHC-II 

expression on CML cells could induce an immune response from alloreactive CD4+ T 

cells we co-cultured previously treated or control (UT) CML CD34+ stem/progenitor cells 

with CD3/CD28 activated PBMCs. No increase in expression of the cytolytic marker 

CD107a (LAMP1) was observed on CD4+ T cells after exposure to the CML targets, 

suggesting that there was no induction of cytotoxic CD4+ T cells (Supplementary Figure 

9). However, when MLRs were conducted, IFN and RUX treatments enhanced 

proliferation of responder CD4+CD69+ T cells, as indicated by decreased mean 

fluorescence intensity of CTV (Figure 5A). Importantly, the induction of proliferation was 

MHC-II dependent, as addition of anti-MHC-II blocking Ab blocked cellular proliferation 

in the cultures containing IFN and RUX treated CML cells (Figure 5A). 
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Discussion:  

 

Eradicating CML LSCs represents a significant therapeutic challenge that will not be 

addressed with TKI therapy alone, and requires novel treatments to enable removal of 

the disease reservoir to pave the way to a cure. One potential mechanism utilized by 

CML stem/progenitor cells to maintain a reservoir of LSCs is to evade the immune 

system by downregulating MHC-II expression. Our studies demonstrate that modulation 

of MHC-II is associated with an increase in CML cell immunogenicity in a JAK-

dependent manner, leading us to propose a cytokine-mediated pathway for MHC-II 

deregulation in CML cells (Figure 5B). MHC-II and CIITA expression was independent 

of BCR-ABL kinase activity, as TKI treatment of CML cells did not significantly alter 

expression levels. Indeed, during IM exposure over 7d the levels of MHC-II and CIITA 

were even further downregulated, rather than normalized. Of note, in silico analysis of 

co-stimulatory molecules revealed a mixed pattern of expression depending on the 

dataset, although it does appear that OX40L is consistently downregulated in more 

quiescent CML cell subsets, compared with non-CML cells. These findings suggest that 

in addition to downregulating MHC-II genes, CML stem/progenitor cells may 

downregulate additional co-stimulatory molecules, further enhancing immune evasion. 

Exploitation of therapies that enhance CML stem cell immunogenicity to host immune 

cells could intensify immune responses against CML LSCs, thereby assisting in the 

elimination of this population, and ultimately the disease. 

While a number of mechanisms regulate MHC-II expression, one main cause for 

the loss of constitutive or inducible MHC-II expression, in both hematopoietic and non-

hematopoietic tumor cells, is epigenetic silencing of the gene encoding CIITA.29, 30 

CIITA acts as a scaffold, interacting with DNA-binding transcription factors, regulatory 

factor X family, NF-Y and CREB, which interact with and induce MHC-II expression.31, 32 

In addition to recruiting transcription factors, CIITA orchestrates the recruitment of 

histone acetyltransferases and histone methyltransferases to MHC-II gene promoters to 

regulate MHC-II expression.33 While aberrant DNA hypermethylation of the CIITA 

promoter and breaks (non-random chromosomal translocations) can aid in the 

downregulation of MHC-II in hematopoietic malignancies,21, 29, 31 analyses of 

methylation marks on the CIITA promoter of CML LSCs revealed no difference in the 

CpG methylation profiles compared with non-CML stem/progenitor cells. Supporting 

this, 5-azacytidine treatment did not lead to increased MHC-II expression on CML cells. 
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These data indicate that MHC-II downregulation in CML does not occur as the result of 

CIITA promoter hypermethylation, suggesting other molecular mechanisms are 

responsible for regulating CIITA/MHC-II expression in CML. 

MHC-II and CIITA expression can be modulated by a number of cytokines with 

TGF, TNF, IL4 and IL10 known to antagonise their expression,18, 22, 23 while IFN 

upregulates expression (Figure 5B). Therefore it is likely that the cytokine profile of the 

BM microenvironment and/or of the leukemic cells themselves would have a significant 

impact on surface MHC-II expression of CML stem/progenitor cells. Indeed CML LSCs 

have been demonstrated to produce higher levels of growth factors, via an autocrine 

loop, including elevated levels of TNF34 and IL4 in CD34+ CML cells. Furthermore, 

analysis of the BM stroma in CML patients and CML mouse models revealed elevated 

IL1, IL6, GCSF and TNF, which together confer a growth advantage of CML LSCs 

over normal HSCs.25, 35 These findings indicate that modulation of the cytokine profile in 

the CML BM will have a significant impact not only on CML versus normal 

stem/progenitor cell survival, but also on CML LSC immunogenicity.  

One family of protein kinases responsible for relaying signals downstream of 

cytokine receptors are the JAKs. BCR-ABL+ cells exhibit constitutively active JAK/STAT 

signaling, with JAK2 playing a central role in BCR-ABL-induced leukemogenesis.36 

However STAT5 activation is not dependent on JAK2 activity,37 and JAK2 can also act 

independently of STAT5 by activating Myc,38 -catenin,39 or acting directly as a histone 

modifier,40 indicating that JAK2 may have pleiotropic roles in CML cells. Moreover one 

of the main roles of JAK signalling is in immune cell activation/regulation.41 Here, we 

showed that treatment of cells with the JAK1/2 inhibitor RUX enhanced the expression 

of MHC-II on CML stem/progenitor cells, enhancing CD4+ T cell proliferation. While we 

demonstrated the induction of a helper T cell response through RUX-mediated 

induction of MHC-II expression, CD4+ T cells have also been demonstrated to function 

as cytotoxic effectors against leukemic cells.42, 43 Upon assessment of the cytolytic 

marker CD107a in vitro, we were unable to detect an elevation in expression, indicating 

that under our experimental conditions cytotoxic CD4+ T cells were not induced. These 

results may reflect the limitations of the assay regarding the polyclonality of the CD4+ T 

cell population, or a requirement for optimization at the level of effector/target ratio or 

co-culture duration prior to assessing for the presence of cytotoxic CD4+ T cells.42, 43  

Recently RUX has been shown to modulate immune responses in mouse 

models of graft versus host disease (GVHD) and hemophagocytic lymphohistiocytosis 
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by dampening the hyperactive immune responses typical of these conditions.44, 45 

However, despite its anti-inflammatory properties, RUX was able to preserve the GVL 

effect in GVHD mouse models comprising in vivo tumour inoculation.46, 47 Some of 

these selective effects were explained by differential responses of distinct T cell 

subsets to RUX particularly when used at different concentrations.45 It is therefore 

possible to speculate that the modulation of the immune system by RUX is cell context 

dependent and potentially affected by the intensity of the inflammatory responses. 

Moreover using different doses of RUX might enable titration of its effects, thus 

maximising its ability to enhance immunogenicity of CML cells while sparing T cell 

immune function.  

In conclusion our studies suggest a key role for cytokines, such as IL4, in 

reducing CML immunogenicity, and offer a novel therapeutic route to aid in the 

elimination of CML LSCs. Due to the BCR-ABL-independent nature of MHC-II 

downregulation, combination therapies of JAK inhibitors with TKI could target the 

disease bulk and the LSCs.39, 48 Indeed recent studies demonstrate synergy between 

RUX and NIL, inducing apoptosis in CML LSCs.49 Our studies could suggest that LSCs 

remaining after dual RUX/TKI treatment may have a reduced ability to evade host 

immunity, due to re-expression of MHC-II. Analysis of MHC-II surface expression on 

LSCs of patients treated with RUX in combination with NIL in current clinical trials 

(clinicaltrials.gov NCT 01751425; 02253277; 01702064; 01914484) would be of great 

interest to test this in vivo. Boosting MHC-II expression on CML stem/progenitor cells 

may represent a valid therapeutic approach to reduce disease persistence and our 

findings should promote the development of novel immunomodulatory-based therapies 

for CML patients. These therapeutic strategies could enable CML stem cells to be more 

readily detected and eradicated by the host immune response, which in turn will deliver 

long-term remission or cure for patients. 
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Sample 

No. 

Sample ID Source Gender Stage FISH/ 

t(9:22) 

Figures 

1 Spirit CML 0762 PB M CP ND 1, 2, 5 

2 CML 339 Leukapheresis F CP + 2, 4, 5 

3 CML 340 Leukapheresis M CP +* 4, 5 

4 CML 341 (Fresh) Leukapheresis M CP +* 1, 2 

5 CML 378 Leukapheresis F CP + 1, 2 

6 CML 381 Leukapheresis F CP + 1, 2 

7 CML 385 Leukapheresis M CP +* 1, 2 

8 CML 388 Leukapheresis F CP +* 1, 2 

9 CML 411 (Fresh) PB F CP ND 4, 5 

10 CML 412 (Fresh) Leukapheresis M CP ND 2, 4, 5 

11 CML 441 Leukapheresis M CP + 2 

12 CML 442 PB F CP + 4, 5 

13 CML 450 PB M CP + 5 

14 CML 452 Leukapheresis M CP + 2 

15 CML 454 (Fresh) Leukapheresis M CP ND 3 

16 CML 456 Leukapheresis F CP ND 3 

17 CML 457 (Fresh) PB M CP ND 3,4 

18 CML 459 Leukapheresis M CP ND 3 

19 CML 460 (Fresh) Leukapheresis F CP ND 1, 3, 4 

20 CML 461 (Fresh) Leukapheresis F CP ND 3, 5 

 
Table 1: Source of clinical samples 

PB, peripheral blood; CP, chronic phase; * indicates that the CD34+CD38- CML LSCs 

were also confirmed to be Ph+ by FISH after sorting; ND, not determined. 
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Figure Legends: 
 

Figure 1. MHC-II and CIITA are selectively downregulated in CML stem/progenitor 

cells. (A) Ingenuity's Antigen Presentation Pathway overlaid with deregulation in CML 

versus normal G0 CD34+ cells (n=5 CML, n=2 non-CML).  Deregulated members for 

MHC II-α and II-β (including HLA-DP, DQ, DR) are shown expanded in the bottom left. 

Significantly downregulated components highlighted in green; (B) GSEA analysis 

demonstrating significant (FDR≤0.15) downregulation of the extended MHC-II gene 

family in a larger, complementary microarray dataset of G0/quiescent (left) and dividing 

(right) CML and normal cells;14 (C) Heat map showing deregulation (as represented by 

logFC, see colour scale below heatmap) of the MHC-II gene family across multiple CML 

populations as compared to corresponding non-CML cells from distinct microarray 

datasets as indicated.14,15 The data derived from the original dataset13 is highlighted by 

the orange bar above the corresponding columns. Average normalized MFI of surface 

MHC-II expression in primary (D) CD34+CD38+ CML and non-CML stem/progenitor 

cells or (E) CD34+CD38- CML LSCs and non-CML HSCs cultured for 48h in the 

presence or absence (untreated (UT)) of IFN (100U/mL; n=6 for CD34+CD38+, n=4 for 

LSC; ± SEM). CD34+CD38- cells, when stringently gated, represent ~1-5% of bulk 

CD34+ cells and overlap considerably with either Hstlo/Pylo or CD34+ CFSEmax 

popoulations described previously.13 (F) Average gene expression of CIITA in bulk 

CD34+ CML and non-CML stem/progenitor cells cultured for 48h ± IFN (mean fold 

change; n=6; ± SEM). Statistical significance was calculated between UT CML sample 

and all other samples, and if significant, it is indicated by asterisks above the bars. 

Additional comparisons between samples are indicated by lines. 

 

Figure 2. MHC-II and CIITA downregulation occurs independently of BCR-ABL 

kinase activity in CML stem/progenitor cells. Primary (A) CD34+CD38+ CML cells 

and (B) CD34+CD38- CML LSCs were cultured for 48h with TKIs (5 µM NIL, 150 nM 

DAS, 5 µM IM) or no drug control (NDC) in the presence or absence of IFN. Average 

normalized MFI of MHC-II expression was determined using flow cytometry (n=5; ± 

SEM); (C) CIITA expression levels in CD34+CD38+ CML cells were analyzed by qRT-

PCR (n=5; ± SEM; calibrated to UT NDC sample). Statistical significance was 

calculated between UT CML sample and all other samples, and if significant, it is 

indicated by asterisks above the bars. 
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Figure 3. Extended treatment of CML cells with IM does not normalise MHC-II or 

CIITA expression. Primary CD34+ CML were treated with 5 µM IM for 7d. Average 

surface MHC-II expression levels were determined by flow cytometry, normalized to 

CML UT (d0) sample for (A) CD34+CD38+ CML cells and (B) CD34+CD38- CML LSCs; 

(C) The average expression of MHC-II encoding genes HLA- DR, HLA-DP and HLA-DQ 

was determined in CD34+ CML cells by qRT-PCR (n=7, calibrated to UT (d0) CML 

sample). (D) The average gene expression of CIITA was determined in CD34+ CML 

cells by qRT-PCR.  Statistical significance was calculated between d0 UT CML sample 

and all other samples, and if significant, it is indicated by asterisks above the bars. 

Additional comparisons between samples are indicated by lines. NS – not significant. 

 

Figure 4. JAK inhibition elevates MHC-II expression in CML stem/progenitor cells. 

(A) qRT-PCR of RNA/cDNA generated from either non-CML or CML stem/progenitor 

samples for IL4 transcripts revealed higher expression levels of IL4 in CML cells. Data 

is expressed relative to the reference gene HPRT1; Primary (B) CD34+CD38+ CML 

cells and (C) CD34+CD38- CML LSCs were treated with IFN and/or JAK inhibitor 

(RUX (200 nM)), as indicated. The average MHC-II expression levels were determined 

by flow cytometry, normalized to CML UT sample. NS – not significant; (D) 

Representative histograms showing MHC-II expression on CD34+CD38+ and 

CD34+CD38- CML cells treated with IFN and/or RUX as indicated; Primary CD34+ 

CML stem/progenitor cells were treated with IFN and/or RUX, as indicated above. 

Thereafter, 300 cells were sorted for either (E) CD34+CD38+ CML and (F) CD34+CD38- 

CML LSC populations and the average gene expression of CIITA was determined by 

qRT-PCR (n=6 for CD34+CD38+, n=3 for LSC; calibrated to UT CML sample). 

Statistical significance was calculated between UT CML sample and all other samples, 

and if significant, it is indicated by asterisks above the bars. 

 

Figure 5. Elevated MHC-II expression is associated with an increase in CD34+ 

CML cell immunogenicity. (A) Activated and CTV labelled T cells (MNCs from healthy 

donors) were co-cultured with bulk CD34+ CML cells for 72h (± treatment as indicated; 

Block – 10 g/mL anti-pan HLA-class II blocking Ab). Proliferation of the responder cells 

was measured as a reduction in the MFI of CTV-labelled CD4+CD69+ T cells (n=6 ± 

SEM; n=3 for MHC-II blocking assays); (B) The autocrine or paracrine growth 
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factor/cytokine signaling pathways that regulate MHC-II expression. Statistical 

significance was calculated between UT CML sample and all other samples, and if 

significant, it is indicated by asterisks above the bars. 
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