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Abstract
Iterative load balancing algorithms for indivisible tokens have been studied intensively in the past,
e.g., [21, 18, 24]. Complementing previous worst-case analyses, we study an average-case scenario
where the load inputs are drawn from a fixed probability distribution. For cycles, tori, hypercubes
and expanders, we obtain almost matching upper and lower bounds on the discrepancy, the
difference between the maximum and the minimum load. Our bounds hold for a variety of
probability distributions including the uniform and binomial distribution but also distributions
with unbounded range such as the Poisson and geometric distribution. For graphs with slow
convergence like cycles and tori, our results demonstrate a substantial difference between the
convergence in the worst- and average-case. An important ingredient in our analysis is a new
upper bound on the t-step transition probability of a general Markov chain, which is derived by
invoking the evolving set process.
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1 Introduction

In the last decade, large parallel networks became widely available for industrial and academic
users. An important prerequisite for their efficient usage is to balance their work efficiently.
Load balancing is known to have applications to scheduling [27], routing [9], numerical
computation such as solving partial differential equations [29, 28, 26], and finite element
computations [13]. In the standard abstract formulation of load balancing, processors are
represented by nodes of a graph, while links are represented by edges. The objective is to
balance the load by allowing nodes to exchange loads with their neighbors via the incident
edges. In this work we will study a decentralized and iterative load balancing protocol where
a processor knows only its current load and that of the neighboring processors. Based on
this, decides how much load should be sent (or received).

Load Balancing Models. A widely used approach is diffusion, e.g., the first-order-diffusion
scheme [9, 18], where the amount of load sent along each edge in each round is proportional
to the load difference between the incident nodes. In this work, we consider the alternative,
the so-called matching model, where in each round only the edges of a matching are used
to average the load locally. In comparison to diffusion, the matching model reduces the

∗ The second author was supported by the ERC Starting Grant “Dynamic March”.
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communication in the network and moreover tends to behave in a more “monotone” fashion
than diffusion, since it avoids concurrent load exchanges which may increase the maximum
load or decrease the minimum load in certain cases.

We measure the smoothness of the load distribution by the so-called discrepancy, which
is the difference between the maximum and minimum load among all nodes. In view of
more complex scenarios where jobs are eventually removed or new jobs are generated, the
discrepancy seems to be a more appropriate measure than the makespan, which only considers
the maximum load.

Many studies in load balancing assume that load is arbitrarily divisible. In this so-called
continuous case, load balancing corresponds to a Markov chain on the graph and one can
resort to a wide range of established techniques to analyze the convergence speed [6, 11, 18].
In particular, the spectral gap captures the time to reach a small discrepancy fairly accurately,
e.g., see [25, 21] for the diffusion and see [7, 17] for the matching model.

However, in many applications a processor’s load may consist of tasks which are not
further divisible. That is why the continuous case has been also referred to as “idealized
case” [21]. A natural way to model indivisible tasks is the unit-size token model where one
assumes a smallest load entity, the unit-size token, and load is always represented by a
multiple of this smallest entity. In the following, we will refer to the unit-size token model as
the discrete case.

Initiated by the work of [21], there has been a number of studies on load balancing in the
discrete case. Unlike the deterministic rounding in [21], [24] analyzed a randomized rounding
based strategy, meaning that an excess token will be distributed uniformly at random among
the two communicating nodes. The authors of [24] proved that with this strategy the time to
reach constant discrepancy in the discrete case is essentially the same as the corresponding
time in the continuous case. Their results hold both for the random matching model, where
in each round a new random matching is generated by a simple distributed protocol, and
the balancing circuit model (a.k.a. dimension exchange), where a fixed sequence of matching
is applied periodically. In this work, we will focus on the balancing circuit model, which is
particularly well suited for highly structured graphs such as cycles, tori or hypercubes.

Worst-Case vs. Average-Case Inputs. Previous work has almost always adopted the usual
worst-case framework for deriving bounds on the load discrepancy [21]. That means any
upper bound on the discrepancy holds for an arbitrary input, i.e., an arbitrary initial load
vector. While it is of course very natural and desirable to have such general bounds, the
downside is that for graphs with poor expansion like cycles or 2D-tori, the convergence is
rather slow, i.e., quadratic or linear in the number of nodes n. This serves as a motivation to
explore an average-case input. Specifically, we assume that the number of load items at each
node is sampled independently from a fixed distribution. Our main results demonstrate that
the convergence of the load vector is considerably quicker (measured by the load discrepancy),
especially on networks with slow convergence in the worst-case such as cycles and 2D-tori.

We point out that many related problems including scheduling on parallel machines or
load balancing in a dynamic setting (meaning that jobs are continuously added and processed)
have been studied under random inputs, e.g., [3, 12, 2]. To the best of our knowledge, only
very few works have studied this question in iterative load balancing. One exception is [22],
which investigated the performance of continuous load balancing on tori in the diffusion
model. In contrast to this work, however, only upper bounds are given and they hold for
the multiplicative ratio between maximum and minimum load, rather than the discrepancy.
Another related work is [4], which presents a distributed algorithm for community detection
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that is based on averaging a random {−1, 1} initial load vector.

1.1 Notation and Background
We assume that G = (V,E) is an undirected, connected graph with n nodes labeled in
[0, n − 1]. Unless stated otherwise, all logarithms are to the base e. The notations P [E ]
and E [X] denote the probability of an event E and the expectation of a random variable
X, respectively. For any n-dimensional vector x, disc(x) = maxi xi −mini xi denotes the
discrepancy. By 1

n we denote the vector with all values being 1
n .

Matching Model. In the matching model (sometimes also called dimension exchange model),
every two matched nodes in round t balance their load as evenly as possible. This can
be expressed by a symmetric n by n matching matrix M(t), where with slight abuse of
notation we use the same symbol for the matching and the corresponding matching matrix.
Formally, matrix M(t) is defined by M(t)

u,u = 1/2, M(t)
v,v = 1/2 and M(t)

u,v = M(t)
v,u = 1/2 if

{u, v} ∈M(t) ⊆ E, and M(t)
u,u = M(t)

v,v = 1, M(t)
u,v = 0 (u 6= v) if u, v are not matched.

Balancing Circuit. In the balancing circuit model, a specific sequence of matchings is applied
periodically. More precisely, let M(1), . . . ,M(d) be a sequence of d matching matrices, also
called period 1. Then in step t ≥ 1, we apply the matching matrix M(t) := M(((t−1) mod d)+1).
We define the round matrix by M :=

∏d
s=1 M(s). If M is symmetric, we define λ(M) to

be its second largest eigenvalue (in absolute value). Following [21], if M is not symmetric
(which is usually the case), we define λ(M) as the second largest eigenvalue of the symmetric
matrix M ·MT , where MT is the transpose of M. We always assume that λ(M) < 1, which
is guaranteed to hold if the matrix M is irreducible. Since M is doubly stochastic, all powers
of M are doubly stochastic. A natural choice for the d matching matrices is given by an edge
coloring of G. There are various efficient distributed edge coloring algorithms, e.g. [20, 19].

Balancing Circuit on Specific Topologies. For cycles, we will consider the natural “Odd-
Even” scheme meaning that for M(1), the matching consists of all edges {j, (j + 1) (mod n)}
for any odd j, while for M(2), the matching consists of all edges {j, (j + 1) (mod n)} for any
even j. More generally, for r-dimensional tori with vertex set [0, n1/r − 1]r, we will have
2 · r matchings in total, meaning that for every dimension 1 ≤ i ≤ r we have two matchings
along dimension i, similar to the definition of matchings for the cycle. For hypercubes, the
canonical choice is dimension exchange consisting of d = log2 n matching matrices M(i) by
M(i)

u,v = 1/2 if and only if the bit representation of u and v differ only in bit i.

Continuous Case vs. Discrete Case. In the continuous case, load is arbitrarily divisible.
Let ξ(0) ∈ Rn be the initial load represented as a row vector, and in every round two matched
nodes average their load perfectly. We consider the load vector ξ(t) after t rounds in the
balancing circuit model (that means, after the executions of t · d matchings in total). This
process corresponds to a linear system ξ(t) = ξ(t−1) M, which results in ξ(t) = ξ(0) Mt.

Let us now turn to the discrete case with indivisible, unit-size tokens. Let x(0) ∈ Nn be
the initial load vector with average load x :=

∑
w∈V x

(0)
w /n, and x(t) be the load vector at

the end of round t. In case the sum of tokens of the two paired nodes is odd, we employ the
random orientation (or randomized rounding) [21, 24]. More precisely, if there are two nodes

1 Note that d may be different from the maximal degree (or degree) of the underlying graph.
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u and v with load a and b being paired by matching M(t), then node u gets either
⌈
a+b

2
⌉
or⌊

a+b
2
⌋
tokens, with probability 1/2 each. The remaining tokens are assigned to node v.

The Average-Case Setting. We consider a setting where each entry of the initial load
vector x(0) is chosen from an exponentially concentrated probability distribution D with
expectation µ and variance σ2 (see Definition 1.1). Our main results in this paper hold for
all distributions satisfying the following definition.

I Definition 1.1. A distribution D over N ∪ {0} with expectation µ and variance σ2 is
exponentially concentrated if there is a constant κ > 0 so that for any X ∼ D, δ > 0,

P [|X − µ| ≥ δ · σ] ≤ exp (−κδ) .

In the following, we refer to average-case when the initial number of load items on each
vertex is drawn independently from a fixed exponentially concentrated distribution.

I Lemma 1.2. The uniform distribution, binomial distribution, geometric distribution and
Poisson distribution are all exponentially concentrated.

I Lemma 1.3. Let D be an exponentially concentrated distribution and let X ∼ D. Then,

P [|X − µ| ≤ 8/κ · σ logn] ≥ 1− n−3.

In particular, the initial discrepancy satisfies disc(x(0)) = O(σ · logn) with probability 1−n−2.

The advantage of Lemma 1.3 is that we can use a simple conditioning trick to work with
distributions that have a finite range and can therefore be analyzed by Hoeffding’s inequality.
Therefore in the analysis we may simply work with a bounded-range distribution D̃, which
is D under the condition that only values in the interval [µ− 8/κ · σ logn, µ+ 8/κ · σ logn]
occur.

1.2 Our results
Our first contribution is a general formula that allows us to express the load difference
between an arbitrary pair of nodes in round t.

I Theorem 1.4. Consider the balancing circuit model with an arbitrary round matrix M in
the average case. Then for any pair of nodes u, v and round t, it holds for any δ > 0 that

P
[∣∣∣x(t)

u − x(t)
v

∣∣∣ ≥ δ · 16
√

2/κ · σ · logn ·
∥∥Mt

.,u −Mt
.,v

∥∥
2 +

√
64 logn

]
≤ 2 · e−δ

2
+ 2n−3.

Furthermore, for any pair of vertices u, v, we have the following lower bound:

P
[∣∣∣x(t)

u − x(t)
v

∣∣∣ ≥ σ/(2√2 log2 σ) ·
∥∥Mt

.,u −Mt
.,v

∥∥
2 −

√
64 logn

]
≥ 1

16 .

I Remark. The lower bound above is useless if σ is small, say, at most a constant. However
for sufficiently large σ, the lower bound gives a useful result (see also Section 4 & 5).

The proof of the upper bound Theorem 1.4 is the easier direction, and it relies on a
previous result relating continuous and discrete load balancing from [24]. The lower bound
is technically more challenging and applies a generalized version of the central limit theorem.

Together, the upper and lower bound in the above result establish that the load deviation
between any two nodes u and v is essentially captured by

∥∥Mt
.,u −Mt

.,v

∥∥
2. However, in
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some instances it might be desirable to have a more tangible estimate at the expense of
generality. To this end, we first observe that

∥∥Mt
.,u −Mt

.,v

∥∥2
2 ≤ 4 · maxk∈V

∥∥∥Mt
.,k − 1

n

∥∥∥2

2
(see Lemma 3.1). Hence we are left with the problem of bounding the t-step probability
vector Mt

.,k.
For reversible Markov chains, the last expression has been analyzed in several works. For

example, [15, Lemma 3.6] implies that for random walks on graphs, Pt
u,v = O(deg(v)/

√
t).

However, the Markov chain associated to M is not reversible in general. For irreversible
Markov chains, [14] used the so-called evolving set process to derive a similar bound.
Specifically, they proved in [14, Theorem 17.17] that if P denotes the transition matrix of a
lazy random walk (i.e., a random walk with loop probability at least 1/2) on a graph with
maximal degree ∆, π the stationary distribution of P, then for any vertex x ∈ V :∣∣Pt

x,x − πx
∣∣ ≤ √2∆5/2

√
t

.

Such estimates have been used in applications besides load balancing, including distributed
random walks and spanning tree enumeration [23, 15]. Here we generalize this result to Markov
chains with an arbitrary loop probability and to arbitrary t-step transition probabilities:

I Theorem 1.5. Let P be the transition matrix of an irreducible Markov chain and π its
stationary distribution. Then we have for all states x, y and step t,∣∣Pt

x,y − πy
∣∣ ≤ π

3/2
max

π
3/2
min
· 2
β1/2α

√
1− β + α

αt
,

where α := min
u 6=v

Pu,v > 0 and β := min
u

Pu,u > 0.

Applying this bound to a round matrix M formed of d = O(1) matchings we obtain∣∣Mt
u,v − 1/n

∣∣ = O(t−1/2). It should be noted that [24, Lemma 2.5] proved a weaker version
where the upper bound is only O(t−1/8) instead of O(t−1/2). As proven in Lemma 4.2, the
bound O(t−1/2) is asymptotically tight if we consider the balancing circuit model on cycles.

Combining the bound in Theorem 1.5 with the upper bound in Theorem 1.4 yields:

I Theorem 1.6. Consider the balancing circuit model with an arbitrary round matrix M
consisting of d = O(1) matchings in the average case. The discrepancy after t rounds is
O(t−1/4 · σ · (logn)3/2 +

√
logn) with probability 1−O(n−1).

Since the initial discrepancy in the average case is O(σ·logn) (see Lemma 1.3), Theorem 1.6
implies that in the average case, there is a significant decrease (roughly of order t−1/4) in
the discrepancy, regardless of the underlying topology. For round matrices M with small
second largest eigenvalue, the next result provides a significant improvement:

I Theorem 1.7. Consider the balancing circuit model with an arbitrary round matrix M
consisting of d matchings in the average case. We can derive that the discrepancy after t
rounds is O(λ(M)t/4 · σ · (logn)3/2 +

√
logn) with probability 1−O(n−1).

In Section 4, we derive bounds on the discrepancy for concrete topologies (see Figure 1).
Finally, we discuss our results and compare them with the convergence of the discrepancy

in the worst-case in Section 5. On a high level, these results demonstrate that on all the
considered topologies, we have much faster convergence in the average-case than in the
worst-case. However, if we are only interested in the time to achieve a very small, say,
constant or poly-logarithmic discrepancy, then we reveal an interesting dichotomy: we have a
quicker convergence than in the worst-case iff the standard deviation σ is smaller than some
threshold depending on the topology. We observe the same phenomena in our experiments.

ICALP 2017
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Graph disc(x(t))
Cycle t−1/4 · σ

r-dim. Torus t−r/4 · σ
Expander λt/4 · σ
Hypercube 2−t/2 · σ

Figure 1 Discrepancy bounds (without logarithmic factors) for different topologies.

2 Proof of the General Bound (Theorem 1.4)

2.1 Proof of Theorem 1.4 (Upper Bound)
We will use the following result from [24] that bounds the deviation between the continuous
and discrete load, assuming that we have ξ(0) = x(0).

I Theorem 2.1 ([24, Theorem 3.6(i)]). Consider the balancing circuit model with an arbitrary
round matrix M. Then for any round t ≥ 1 it holds that

P
[
max
w∈V

∣∣∣x(t)
w − ξ(t)

w

∣∣∣ ≤√16 · logn
]
≥ 1− 2n−3.

The basic proof idea is as follows. Since ξ(t)
u − ξ(t)

v =
∑
w∈V ξ

(0)
w · (Mt

w,u −Mt
w,v), it is

a weighted sum of n i.i.d. random variables and its expectation is 0. We then can apply
Hoeffding’s inequality to obtain the theorem.

2.2 Proof of Theorem 1.4 (Lower Bound)
The proof of the lower bound will use the following quantitative version of a central limit
type theorem for independent but non-identical random variables.

I Theorem 2.2 (Berry-Esseen [5, 10] for non-identical r.v.). Let X1, X2, ..., Xn be independently
distributed with E [Xi] = 0, E

[
X2
i

]
= Var(Xi) = σ2

i , and E
[
|Xi|3

]
= ρi <∞. If Fn(x) is the

distribution of X1+...+Xn√
σ2

1+σ2
2+...+σ2

n

and Φ(x) is the standard normal distribution, then

|Fn(x)− Φ(x)| ≤ C0ψ0,

where ψ0 =
(∑n

i=1 σ
2
i

)−3/2 ·
∑n
i=1 ρi and C0 > 0 is a constant.

With this concentration tool at hand, we are able to prove the lower bound in Theorem 1.4.
Unfortunately, it appears quite difficult to apply Theorem 2.2 directly to ξ(t)

u − ξ(t)
v , since we

need a good bound on the error term ψ0. To this end, we will first partition the vertex set V
into buckets with equal contribution to ξ(t)

u − ξ(t)
v . Then we will apply Theorem 2.2 to the

bucket with the largest variance.

Proof of Theorem 1.4 (Lower Bound). We first consider ξ(t)
u − ξ(t)

v :

dev := ξ(t)
u − ξ(t)

v =
∑
w∈V

ξ(0)
w ·

(
Mt

w,u −Mt
w,v

)
,

which is a weighted sum of i.i.d. random variables with expectation µ and variance σ2.
As mentioned earlier, we have E [dev] =

∑
w∈V E

[
ξ

(0)
w

]
·
(
Mt

w,u −Mt
w,v

)
= 0 since M is a
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doubly stochastic matrix. Of course, we could apply Theorem 2.2 directly to dev, but it
appears difficult to control the error term ψ0. Therefore we will first partition the above sum
into buckets where the weights of the random variables are roughly the same.

More precisely, we will partition V into 2 log2 σ buckets, where for each i we have
Vi :=

{
w ∈ V : |Mt

w,u −Mt
w,v| ∈ (2−i−1, 2−i]

}
for 1 ≤ i ≤ 2 log2 σ − 1, and V2 log2 σ :={

w ∈ V :
∣∣Mt

w,u −Mt
w,v

∣∣ ≤ 1
σ2

}
.

Further, let us consider the variance of dev, since Var(aX) = a2Var(X) and the inputs
are independent random variables:

σ2
dev =

∑
w∈V

(
Mt

w,u −Mt
w,v

)2
σ2.

Then by the pigeonhole principle there exists an index 1 ≤ i ≤ 2 log2 σ such that∑
w∈Vi

(
Mt

w,u −Mt
w,v

)2
σ2 ≥ 1

2 log2 σ
· σ2

dev.

This is equivalent to

∑
w∈Vi

(
Mt

w,u −Mt
w,v

)2 ≥ 1
2 log2 σ

·
∑
w∈V

(
Mt

w,u −Mt
w,v

)2
.

Firstly, if such index i is just 2 log2 σ, we can prove the lower bound easily. Now we can
derive that, for all w in Vi,∥∥Mt

.,u −Mt
.,v

∥∥2
2 ≤

∥∥Mt
.,u −Mt

.,v

∥∥
∞ ·
∥∥Mt

.,u −Mt
.,v

∥∥
1 ≤

1
σ2 · 2 = O(σ−2).

Then in Theorem 1.4
∥∥Mt

.,u −Mt
.,v

∥∥
2 is O(σ−1) and the lower bound holds trivially. There-

fore, we will assume in the remainder of the proof that i < 2 log2 σ.
We now decompose dev into dev = S + Sc, where

S :=
∑
w∈Vi

ξ(0)
w ·

(
Mt

w,u −Mt
w,v

)
and Sc :=

∑
w 6∈Vi

ξ(0)
w ·

(
Mt

w,u −Mt
w,v

)
.

Let us first analyze S. We need to apply Theorem 2.2 to S. Before applying Theorem 2.2,
we scale the original distribution to ξ

′(0)
w = ξ

(0)
w − µ to make the expectation be 0. In

preparation for this, let us first upper bound ψ0. Using the definition of exponentially
concentrated distributions, it follows that for any constant k, the first k moments of ξ

′(0)
w are

all bounded from above by O(σk). Hence,

ψ0 =

∑
w∈Vi

E
[∣∣∣ξ′(0)

w ·
(
Mt

w,u −Mt
w,v

)∣∣∣3](∑
w∈Vi

E
[(
ξ

′(0)
w ·

(
Mt

w,u −Mt
w,v

))2
])3/2 ≤

O(σ3) ·
∑
w∈Vi

∣∣Mt
w,u −Mt

w,v

∣∣3
σ3
(∑

w∈Vi

(
Mt

w,u −Mt
w,v

)2
)3/2 .

Recalling that for any w ∈ Vi,
∣∣Mt

w,u −Mt
w,v

∣∣ ∈ (2−i−1, 2−i], we can simplify the above
expression as follows:

ψ0 = O

(
|Vi| · 2−3i

|Vi|3/2 · 2−3i

)
= O(|Vi|−1/2).

ICALP 2017
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In the following, we will assume that |Vi| ≥ C1, where C1 > 0 is a sufficiently large
constant to be specified later. Since Var(aX) = a2Var(X), we have

Fn(x) = P

∑w∈Vi
ξ

′(0)
w ·

(
Mt

w,u −Mt
w,v

)
σ
√∑

w∈Vi

(
Mt

w,u −Mt
w,v

)2
≤ x


= P

S − E [S] ≤ xσ
√∑
w∈Vi

(
Mt

w,u −Mt
w,v

)2

 .
Since |Vi| ≥ C1, there is a constant C2 = C2(C1, C0) > 0 such that C0 · ψ0 ≤ C2 and

P

S − E [S] ≥ xσ
√∑
w∈Vi

(
Mt

w,u −Mt
w,v

)2

 ≥ Φ(−x)− C0ψ0 ≥ Φ(−x)− C2.

Now let Φc(x) denote the complement of the standard normal distribution. By using [1,
Formula 7.1.13] and substitution we get:

1
√
π(x+

√
x2 + 2)ex2 < Φc(x) 6 1

√
π(x+

√
x2 + 4/π)ex2 .

Hence by Φ(−x) = Φc(x), choosing x = 1 and C1 sufficiently large,

P

S − E [S] ≥ σ
√∑
w∈Vi

(
Mt

w,u −Mt
w,v

)2

 ≥ 1
16 .

Similarly, we can derive that

P

E [S]− S ≥ σ
√∑
w∈Vi

(
Mt

w,u −Mt
w,v

)2

 ≥ 1
16 .

Hence, independent of what the value Sc is, there is still a probability of at least 1/16 so
that |S + Sc| ≥ σ/2 ·

√
1/(2 log2 σ) ·

√∑
w∈V

(
Mt

w,u −Mt
w,v

)2, which completes the proof
for the case |Vi| ≥ C1. The case |Vi| < C1 is similar and omitted here. The basic idea is not
to apply Berry-Esseen but simply use the fact that any exponentially distributed random
variable deviates from the expectation by Ω(σ) with constant probability. J

3 Proof of the Universal Bounds (Theorem 1.6, Theorem 1.7)

In the previous section we proved that the deviation between the loads of two nodes u and
v is essentially captured by

∥∥Mt
.,u −Mt

.,v

∥∥
2. However, in some cases it might be hard to

compute or estimate this quantity for arbitrary vertices u and v. Therefore we will establish
Theorem 1.6 which gives a more concrete estimate.

3.1 Proof of Theorem 1.6
The proof of Theorem 1.6 is fairly involved and we sketch the high level ideas. We first show
that

∥∥Mt
.,u −Mt

.,v

∥∥2
2 can be upper bounded in terms of the `2-distance to the stationary

distribution.
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I Lemma 3.1. Consider the balancing circuit model with an arbitrary round matrix M.
Then for all u, v ∈ V , we have ‖Mt

.,u −Mt
.,v‖2

2 ≤ 4 ·maxk∈V ‖Mt
.,k − 1

n‖
2
2. Further, for any

u ∈ V we have maxv∈V ‖Mt
.,u −Mt

.,v‖2
2 ≥ ‖Mt

.,u − 1
n‖

2
2.

The next step and main ingredient of the proof of Theorem 1.6 is to establish that
‖Mt

.,k − 1
n‖∞ = O(1/

√
t). This result will be a direct application of a general bound on

the t-step probabilities of an arbitrary, possibly non-reversible Markov chain, as given in
Theorem 1.5 from page 5:

In this subsection we prove Theorem 1.6, assuming the correctness of Theorem 1.5 whose
proof is deferred to Section 3.2.

Proof of Theorem 1.6. By Theorem 1.4 and Lemma 3.1, we obtain

P
[∣∣∣x(t)

u − x(t)
v

∣∣∣ ≥ δ · 16
√

2/κ · σ · logn ·max
k∈V

∥∥∥∥Mt
.,k −

1
n

∥∥∥∥
2

+
√

64 logn
]
≤ 2e−δ

2
+ 2n−3.

Hence we can find a δ =
√

3 logn so that the latter probability gets smaller than 4n−3. Further,
by applying Theorem 1.5 with α = β = 2−d to P = M we conclude that ‖Mt

.,k − 1
n‖∞ =

O(t−1/2), since d = O(1). Using ‖.‖2
2 ≤ ‖.‖∞ · ‖.‖1, ‖Mt

.,k − 1
n‖

2
2 = O(t−1/2) and the union

bound, disc(x(t)) = O(t−1/4 · σ · (logn)3/2 +
√

logn) with probability at least 1− 4n−1. J

3.2 Proof of Theorem 1.5
This section is devoted to the proof of Theorem 1.5. Our proof is based on the evolving-set
process, which is a Markov chain based on any given irreducible, not necessarily reversible
Markov chain on Ω. For the definition of the evolving set process, we closely follow the
exposition in [14, Chapter 17].

Let P denote the transition matrix of an irreducible Markov chain and π its stationary
distribution. Pt is the t-step transition probability matrix. The edge measure Q is defined
by Qx,y := πxPx,y and Q(A,B) =

∑
x∈A,y∈B Qx,y.

I Definition 3.2. Given a transition matrix P, the evolving-set process is a Markov chain
on subsets of Ω defined as follows. Suppose the current state is S ⊂ Ω. Let U be a random
variable which is uniform on [0, 1]. The next state of the chain is the set

S̃ =
{
y ∈ Ω : Q(S, y)

πy
≥ U

}
.

This chain is not irreducible because ∅ and Ω are absorbing states. It follows that

P [y ∈ St+1 |St] = Q(St, y)
πy

since the probability that y ∈ St+1 is equal to the probability of the event that the chosen
value of U is less than Q(St,y)

πy
.

I Proposition 3.3 ([14, Proposition 17.19]). Let (Mt) be a non-negative martingale with
respect to (Yt), and define Th := min{t ≥ 0 : Mt = 0 or Mt ≥ h}. Assume that for any h ≥ 0

For t < Th, Var(Mt+1 |Y0, . . . , Yt) ≥ σ2, and
MTh

≤ Dh.
Let T := T1. If M0 is a constant, then P [T > t] ≤ 2M0

σ

√
D
t .

We now generalize [14, Lemma 17.14] to cover arbitrarily small loop probabilities.
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I Lemma 3.4. Let (Ut) be a sequence of independent random variables, each uniform on
[0, 1], such that St+1 is generated from St using Ut+1. Then with β := min

u
Pu,u > 0,

E [π(St+1) |Ut+1 ≤ β, St = S] ≥ π(S) +Q(S, Sc),

E [π(St+1) |Ut+1 > β, St = S] ≤ π(S)− βQ(S, Sc)
1− β .

The derivation of the next lemma closely follows the analysis in [14, Chapter 17].

I Lemma 3.5. For any two states x, y,
∣∣Pt

x,y − πy
∣∣ ≤ πy

πx
· P{x} [τ > t] .

Now we want to use Proposition 3.3 to bound P{x} [τ > t]. To apply it, we substitute
the following parameters: M0 is be π({x}), Yt is St, and T = T1 := min{t ≥ 0 : π(St) =
0 or π(St) ≥ 1}. Hence in our case, τ is the same as T (or T1) in the proposition. The
following two lemmas elaborate on the two preconditions (i) and (ii) of Proposition 3.3.

I Lemma 3.6. For any time t and S0 = {x}, VarSt(π(St+1)) ≥ βπ2
minα

2.

Finally, we derive an upper bound on the amount by which St can increase in one iteration.

I Lemma 3.7. For any time t and S0 = {x}, π(St+1) ≤
(

1−β
α + 1

)
πmax
πmin

· π(St).

The proof of Theorem 1.5 follows then by combining Proposition 3.3, Lemma 3.4, Lemma
3.5, Lemma 3.6 and Lemma 3.7.

3.3 Proof of Theorem 1.7
We now prove the following discrepancy bound that depends on the λ(M), as defined in
Section 1.1.

Proof of Theorem 1.7. By [24, Lemma 2.4], for any pair of vertices u, v ∈ V ,
∣∣Mt

u,v − 1
n

∣∣ ≤
λ(M)t/2. Hence by Lemma 3.1,

∥∥Mt
.,u −Mt

.,v

∥∥
2 = O(λ(M)t/4). The bound on the discrep-

ancy follows from Theorem 1.4 and the union bound over all vertices. J

4 Applications to Different Graph Topologies

Cycles. Recall that for the cycle, V = {0, . . . , n− 1} is the set of vertices, and the distance
between two vertices is dist(x, y) = min{y − x, x+ n− y} for any pair of vertices x < y.

The upper bound on the discrepancy follows directly from Theorem 1.6, and it only
remains to prove the lower bound. To this end, we will apply the lower bound in Theorem 1.4
and need to derive a lower bound on ‖Mt

.,u − 1
n‖

2
2. Intuitively, if we had a simple random

walk, we could immediately infer that this quantity is Ω(1/
√
t). Since after t steps, the

random walk is with probability ≈ 1/
√
t at any vertex with distance at most O(

√
t). To

prove that this also holds for the load balancing process, we first derive a concentration
inequality that upper bounds the probability for the random walk to reach a distant state:

I Lemma 4.1. Consider the standard balancing circuit model on the cycle with round matrix
M. Then for any u ∈ V and δ ∈ (0, n/2− 1), we have∑

v∈V : dist(u,v)≥δ

Mt
u,v ≤ 2 · exp

(
− (δ − 2)2

8t

)
.

With the help of Lemma 4.1, we can indeed verify our intuition:
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I Lemma 4.2. Consider the standard balancing circuit model on the cycle with round matrix
M. Then for any vertex u ∈ V , ‖Mt

.,u − 1
n‖

2
2 = Ω(1/

√
t).

Lemma 4.2 also proves that the factor
√

1/t in the upper bound in Theorem 1.5 is the
best possible. The lower bound on the discrepancy now follows by combining Lemma 4.2
with Theorem 1.4 and Lemma 3.1 stating that for any vertex u ∈ V , there exists another
vertex v ∈ V such that ‖Mt

.,u −Mt
.,v‖2

2 ≥ ‖Mt
.,u − 1

n‖
2
2 = Ω(1/

√
t).

Tori. In this section we consider r-dimensional tori, where r ≥ 1 is any constant. For
the upper bound, note that the computation of Mt

.,. can be decomposed to independent
computations in the r dimensions, and each dimension has the same distribution as the cycle
on n1/r vertices. Specifically, if we denote by M̃ the round matrix of the standard balancing
circuit scheme on the cycle with n1/r vertices and M is the round matrix of the r-dimensional
torus with n vertices, then for any pair of vertices x = (x1, . . . , xr), v = (y1, . . . , yr) on the
torus we have Mt

x,y =
∏r
i=1 M̃t

xi,yi
. From Theorem 1.5, |M̃t

xi,yi
− 1

n1/r | = O(t−1/2), and
therefore, since r is a constant,

Mt
x,y ≤

r∏
i=1

(
1

n1/r +O(t−1/2)
)

= O(t−r/2 + n−1),

and thus
∥∥Mt

x,y − 1
n

∥∥2
2 = O(t−r/2) for any pair of vertices x, y. Hence by Lemma 3.1,∥∥Mt

.,u −Mt
.,v

∥∥2
2 = O(t−r/2). Plugging this bound into Theorem 1.4 yields that the load

difference between any pair of the nodes u and v at round t is at most O(t−r/4 · σ · log3/2 n+√
logn) with probability at least 1−4n−1. The bound on the discrepancy now simply follows

by the union bound.
We now turn to the lower bound on the discrepancy. With the same derivation as in

Lemma 4.2 we obtain the following result:

I Lemma 4.3. Consider the standard balancing circuit model on the r-dimensional torus
with round matrix M. Then for any vertex u ∈ V , ‖Mt

.,u − 1
n‖

2
2 = Ω(t−r/2).

The lower bound on the torus follows by combining Lemma 4.3 and Theorem 1.4.

Expanders. The upper bound O(λ(M)t/4 · σ · (logn)3/2 +
√

logn) for expanders follows
immediately from Theorem 1.7. For the lower bound, since the round matrix consists of d
matchings, it is easy to verify that whenever Mt

u,v > 0, we have Mt
u,v ≥ 2−d·t. Consequently,

for any vertex u ∈ V ,
∥∥Mt

.,u − 1
n

∥∥2
2 = Ω(2−d·t). Plugging this into Theorem 1.4 yields a

lower bound on the discrepancy which is Ω(2−d·t/2 · σ/
√

log σ).

Hypercubes. For the hypercube, there is a worst-case bound of log2 log2 n + O(1) [16,
Theorem 5.1 & 5.3] for any input after log2 n iterations of the dimension-exchange, i.e., after
one execution of the round matrix. Hence, we will only analyze the discrepancy after s
matchings, where 1 ≤ s < log2 n. By applying the same analysis as in Theorem 1.7, but now
with |

∏t
s=1 M(s)

u,v− 1
n | ≤ 2−t, we obtain that the discrepancy is O(2−t/2 ·σ ·(logn)3/2+

√
logn).

Applying Theorem 1.4, we obtain the lower bound Ω(2−t/2 · σ/
√

log σ).

5 Discussion and Empirical Results

We will now compare our average-case to a worst-case scenario on cycles, 2D-tori and
hypercubes. For the sake of concreteness, we always assume that the input is drawn from a
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uniform distribution Uni[0, 2K]. Our choice for the worst-case load vector will have (roughly)
the same number of tokens and initial discrepancy. However, the exact definition of the
vector will depend on the underlying topology.

Cycles and 2D-Tori For the worst-case setting on cycles, fix an arbitrary node u ∈ V and
let all nodes with distance at most n/4 initially have a load of 2K while all the other nodes
have load 0. This gives rise to a load vector with nK tokens and initial discrepancy 2K. For
2D-tori, fix an arbitrary node u ∈ V and assign a load of 2K to the n/2 nearest neighbors
and load 0 otherwise. This defines a load vector with nK tokens and initial discrepancy 2K.

The next result provides a lower bound on the discrepancy for cycles and 2D-tori in the
aforementioned worst-case setting. It essentially shows that for worst-case inputs, Ω(n2)
rounds and Ω(n) rounds are necessary for the cycle, 2D-tori, respectively, in order to reduce
the discrepancy by more than a constant factor. This stands in sharp contrast to Theorem 1.6,
proving a decay of the discrepancy by ≈ t−1/4, starting from the first round.

I Proposition 5.1. For the aforementioned worst-case setting on the cycle, it holds for
any round t > 0 that disc(x(t)) ≥ 1

8 ·K ·
(

1− exp
(
− n2

2048t

))
−
√

64 logn, with probability
at least 1 − n−1. Further, for 2D-tori, it holds for any round t > 0 that disc(x(t)) ≥
1
8 ·K ·

(
1− exp

(
− n

2048t
))
−
√

64 logn, with probability at least 1− n−1.

Hypercube. We will consider only log2 n rounds, since the discrepancy is log2 log2 n+O(1)
after log2 n rounds and O(1) after 2 log2 n rounds [16]. A natural corresponding worst-case
distribution is to have load 2K on all nodes whose log2 n-th bit is equal to 1 and 0 otherwise.
This way the discrepancy is only reduced in the final round log2 n.

Experiments. For each of the cycle, 2D-torus and hypercube, we consider two comparative
experiments with an average-case initial load vector and a worst-case initial load vector.

The first experiment considers a “lightly loaded case”, where the theoretical results
suggest that a small (i.e., constant or logarithmic) discrepancy is reached before the expected
worst-case load balancing time, which are ≈ n2 for cycles and ≈ n for 2D-tori. The second
experiment considers a “heavily loaded case”, where the theoretical results suggest that a
small discrepancy is not reached faster than in the worst-case.

For cycles and 2D-tori we choose for the lightly loaded case K =
√
n and for the heavily

loaded case K = n2. The experiments confirm the theoretical results in the sense that for
both choices of K, we have a much quicker convergence of the discrepancy than in the worst
case. However, the experiments also demonstrate that only in the lightly loaded case we
reach a small discrepancy quickly, whereas in the heavily loaded case there is no big difference
between worst-case and average-case if it comes to the time to reach a small discrepancy.

On the hypercube, our bounds on the discrepancy suggest a smaller K in comparison
to the experiments on cycles and 2D-tori. That is why we choose K = n1/4 in the lightly
loaded case and K = n in the heavily loaded case. With these adjustments of K in both
cases, the experimental results of the hypercube are inline with the ones for the cycle and
2D-tori. More details including the plots can be found in the full version [8].
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