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Abstract

The ability to make optimal decisions depends on evaluating the expected rewards associ-

ated with different potential actions. This process is critically dependent on the fidelity with

which reward value information can be maintained in the nervous system. Here we directly

probe the fidelity of value representation following a standard reinforcement learning task.

The results demonstrate a previously-unrecognized bias in the representation of value:

extreme reward values, both low and high, are stored significantly more accurately and pre-

cisely than intermediate rewards. The symmetry between low and high rewards pertained

despite substantially higher frequency of exposure to high rewards, resulting from preferen-

tial exploitation of more rewarding options. The observed variation in fidelity of value repre-

sentation retrospectively predicted performance on the reinforcement learning task,

demonstrating that the bias in representation has an impact on decision-making. A second

experiment in which one or other extreme-valued option was omitted from the learning

sequence showed that representational fidelity is primarily determined by the relative posi-

tion of an encoded value on the scale of rewards experienced during learning. Both variabil-

ity and guessing decreased with the reduction in the number of options, consistent with

allocation of a limited representational resource. These findings have implications for exist-

ing models of reward-based learning, which typically assume defectless representation of

reward value.

Author summary

Many models of learning and decision-making assume that experienced rewards are

stored without error. We examined this assumption experimentally: participants first

learned an association between different options and rewards in a simple two-alternative

choice task. We then asked them to report what reward they expected to receive for each

of the options they had experienced. We checked that the reports we collected matched

performance on the choice task, meaning that the values participants reported were the

same as those they used to decide between options. The results showed that participants

were both less precise (greater variability) and less accurate (greater bias) in their reports

of middling reward values compared to either high- or low-valued options. Reports of

high and low values were similar in quality even though participants had experienced the
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rewards associated with high-value options considerably more often. Whether an option’s

value was stored well or poorly was not fixed, but instead depended on how the value

compared to other options the participant had experienced. These results should lead to

better models of how decisions are made based on experiences of reward.

Introduction

In an uncertain and dynamic environment, rational decision-making depends on the ability to

learn, store and update the reward values associated with different choices or actions [1, 2]. This

ability in turn depends on the coding of reward in neurons of the prefrontal cortex [3–8], sup-

ported by teaching signals carried by projections from the basal ganglia [9–13]. Like neurons

throughout the brain [14], the firing of reward-sensitive neurons is stochastic, i.e. noisy. How-

ever, little is known about how this noise is expressed in the representation of reward value.

Classical learning algorithms [4, 15–17] describe how the values associated with different

options are updated, and the decision rules that determine what choices are taken. These mod-

els typically assume that values are stored flawlessly: suboptimal decisions are instead a result

of noise in reward-generating processes (making experience of past rewards an imprecise

guide to the future), incomplete updating of reward estimates by new information (as parame-

terized by a learning rate), or stochastic decision rules such as �-greedy or softmax. While

these models can provide good approximations to observed learning patterns, they could be

improved by more accurately reflecting what is inevitably an imperfect representation of value

in the nervous system.

A second class of decision models, based on noisy accumulation of evidence [18–20], have

been shown to account for features of deliberation time as well as a number of violations of

rational choice exhibited by human decision-making. In these models, decisions are generated

by leaky integration of value information with random variability in each update step. A key

assumption of these models is that the noise component is constant across different magni-

tudes of reward: this assumption has not previously been tested.

Here, we assessed the fidelity of value representation by first running participants on a typi-

cal reinforcement learning task in which they were trained to associate different options with

particular reward magnitudes. At the end of the learning session, participants were subject to a

surprise test in which they were required to directly report the reward they expected to receive

on choosing each of the previously-experienced options. Because each participant was able to

provide only a single estimate for each learned action-reward pair, a large number of partici-

pants were required to obtain interpretable response distributions; for this reason we ran the

experiments using a crowdsourcing service.

Results

Participants completed a reinforcement learning task (Exp 1; Fig 1a) in which they selected

from pairs of options, represented by fractal image tiles, and received rewards corresponding

to the value of the chosen tile plus random noise. Over the course of 100 trials, participants

learned associations between the tiles and expected rewards: the frequency with which the

option with higher mean value was chosen increased from chance (50%) to reach a plateau at

approximately 75% (Fig 2a).

Because participants observed rewards associated only with tiles they selected, there was

substantial variation in the frequency with which different tile values were presented (Fig 2b).

The reward associated with the highest-valued tile was presented almost three times as
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frequently as the lowest-valued (8.2 ± 0.4 vs 21.3 ± 0.5; M ± SE), and at the end of the learning

session on average more than seven times as many trials had elapsed since the last selection of

the lowest-valued tile compared to the highest-valued (26.2 ± 1.8 vs 3.5 ± 0.3).

Despite these strong differences in the frequency and recency with which rewards were pre-

sented, by the end of the learning session the probability of choosing the correct tile varied

only weakly between trials involving the highest- and lowest-valued tiles (Fig 2c, black sym-

bols; mean difference between symmetrically-valued pairs of tiles [e.g. 0.875 vs 0.125]: 3.7% ±
1.5%). Instead, we observed that probability correct followed an approximately U-shaped func-

tion of value, with trials involving the extreme-valued tiles substantially more likely to be cor-

rect than those involving intermediate values (mean difference between extreme- and middle-

valued tiles: 9.8% ± 1.7%).

While the superior performance for trials involving extreme-valued options could reflect

differences in the representational fidelity of extreme versus intermediate values, it could also

be artifactual, arising because trials involving an extreme-valued option on average have a

larger disparity in value between the two options presented. To address this, we examined

probability correct for pairs of tiles separated by the minimum relative value difference of

0.125. We again found that performance was significantly better for extreme-valued than inter-

mediate-valued tiles (p< 0.03), confirming that these performance differences are not due to

differences in value disparity (no significant effects were observed for larger relative value dif-

ferences, p> 0.16; probability correct for each tile pair is shown in Fig 2d).

Fig 1. Experimental task. (a) During the learning session, participants chose from pairs of options

represented by fractal tiles and were presented with rewards represented by coins that varied in size. (b)

During an unexpected testing session, participants were instructed to report the expected reward associated

with each tile by dragging a slider to change the size of a coin.

doi:10.1371/journal.pcbi.1005405.g001
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The learning session was followed by a surprise testing session (Fig 1b), in which partici-

pants were required to report the value they associated with each of the options they had been

presented with during learning. Fig 3 (grey bars) plots the distributions of response estimates

for each mean reward value. Note that, because of the random variability in presented item val-

ues, the mean observed value of a tile during the learning session could differ from the tile’s

expected value. However, these deviations were very small (mean absolute deviation < 0.01)

compared to the observed variability in reproduction (mean absolute error 0.16), indicating

that internal noise was by far the dominant factor in determining response variability. We

therefore do not consider these deviations further.

Before we draw inferences on the basis of these distributions, we would like to ensure that

they reflect the true variability in the representations of value used by participants to make

Fig 2. Results from the learning session. (a) Proportion of trials on which the higher-valued tile was chosen, as a function of trial number.

Blue dashed line indicates chance performance. Red dashed line indicates the proportion predicted based on reports in the subsequent

testing session. (b) Frequency with which tiles of each value were revealed during the learning session (black), and number of trials elapsed

since the last presentation of a tile value at the end of the session (blue). (c) Proportion of trials (black symbols) on which the higher-valued

tile was chosen, as a function of presented tile value, at the end of the session (final 25 trials). Every trial on which a tile of a specific value

was presented as an option is included in each data point, therefore each trial contributes to two datapoints. Red symbols indicate the

proportion predicted based on data from the testing session. (d) Proportion of trials on which the higher-valued tile was chosen, for each of

the possible pairs of tiles (ordered by increasing value).

doi:10.1371/journal.pcbi.1005405.g002
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Fig 3. Value estimates. Bars indicate distributions of value estimates reported in the testing session, for true

tile values indicated by arrows (increasing top to bottom). Red curves are maximum likelihood fits of the

mixture model illustrated in Fig 4.

doi:10.1371/journal.pcbi.1005405.g003
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their decisions in the learning task. This is particularly pertinant as the distributions are

obtained across, rather than within, participants, with each participant contributing a single

sample to each of the histograms in Fig 3. We therefore calculated the frequency with which

participants would choose correctly on each trial if their internal representations of value

matched their reports in the testing session (see Methods).

The red dashed line in Fig 2a shows the mean predicted proportion correct calculated on

this basis. This value (76.6% ± 1.3%) was highly consistent with empirically-observed perfor-

mance at the end of the learning session (last 25 trials: 76.4% ± 1.4%, p = 0.46). Red symbols in

Fig 2c plot the predicted proportion correct as a function of tile value: empirical frequencies

obtained over the last 25 learning trials were statistically indistinguishable from the predictions

based on reported values in the testing session (all p> 0.16). We conclude that the distribu-

tions of reported value estimates over participants accurately correspond to the actual value

information used by participants in decision-making.

Consistent with results from the learning session, we found only very weak correlations

between error on the report task and the frequency or recency with which a reward was pre-

sented during learning (frequency, mean r = −0.087, p = 0.002; recency, mean r = 0.058,

p = 0.042).

To capture the key properties of the distributions shown in Fig 3 we fit them with a mixture

of two component distributions. One, corresponding to an imprecise report of the true value

of a tile, was represented by a beta distribution centered on the true value with some bias (the

beta distribution is a bell-shaped distribution similar to the normal but confined to the range

0–1); the other, corresponding to random guessing, by a normal distribution centered in the

middle of the value range (we used a normal rather than a uniform distribution to capture any

bias in guesses towards the center of the range; in the absence of such a bias, the normal com-

ponent could approximate a uniform distribution to arbitrary exactness). The mixture model

is illustrated in Fig 4.

We tested three different mixture models, differing in whether the width of the beta distri-

bution, the mixture proportion, or both could vary across different tile values. In the best fit-

ting model, the mixture proportion was fixed, indicating that the probability of guessing did

Fig 4. Mixture model. The model of value estimates consisted of a mixture of a beta distribution (blue),

corresponding to imprecise recall of the target value, and a normal distribution (green), capturing guessing.

doi:10.1371/journal.pcbi.1005405.g004
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not vary with tile value; however the width of the beta distribution did vary, indicating that

there were differences in how precisely the different options were represented (AICc: width-

only −840.5, both −836.2, mixture-only −715.5; BIC: width-only −757.0, both −721.5, mixture-

only −632.0). The fits of the best fitting model are plotted in red in Fig 3.

Fig 5a & 5b plot the bias and variability, respectively, of the beta component of the best-fit-

ting model as a function of option value. We observed significant biases towards lower values

for intermediate reward values only (asterisks in Fig 5a indicate significance; we also observed

a very small but statistically significant bias towards higher values for the highest-valued tile).

Symmetrically-valued pairs of tiles (i.e. those on opposite sides of the middle tile value) had

similar biases (0.875 vs 0.125: difference = 0.002, p> 0.05; 0.75 vs 0.25: difference = 0.026,

p< 0.05; 0.625 vs 0.375: difference = 0.016, p> 0.05).

Variability also depended strongly on tile value (Fig 5b): the standard deviation of responses

around the correct tile value was approximately three times higher for the middle-valued tiles

than for either of the extreme-valued tiles (0.15 vs {0.049, 0.050}, p < 0.01). There were no sig-

nificant differences in variability between symmetrically-valued pairs of tiles (all p > 0.05).

An additional analysis confined to only those participants (89 in total) who demonstrated a

strongly significant (p< 0.01) correlation between estimated and true tile values, revealed very

similar magnitudes of effect of tile value on bias and variability, indicating that these effects

were not limited to observers with poor overall recall.

These results indicate that extreme-valued options are represented more precisely and with

less bias than intermediate-valued options. This effect could reflect either the relative value of

an option within the range of values experienced, or it could reflect the absolute value relative

to the bounds on possible responses in the testing session. To disambiguate these two possibili-

ties we ran a second experiment (Exp 2) in which only six tiles were presented (one fewer than

in Exp 1). The excluded tile was either the lowest- or the highest-valued tile from Exp 1.

Fig 6a & 6b illustrate the predictions of the two models for representational variability. If

variability is determined by a tile value’s absolute position within the range of possible

responses, the standard deviations of responses of participants who experienced all but the

lowest-valued tile (Fig 6a, red) should exactly overlie those of participants who experienced all

Fig 5. Maximum likelihood model parameters. (a) Bias of the fitted beta distribution mean relative to the

true tile value. Asterisks indicate significant deviation from zero (* p < 0.05; ** p < 0.01). (b) Standard

deviation of the fitted beta distribution.

doi:10.1371/journal.pcbi.1005405.g005
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Fig 6. Absolute versus relative coding affecting variability. (a) Predicted variability for a model in which

variability is determined by the absolute value within the bounds [0, 1]. Blue curve indicates participants for

whom the highest-valued tile was omitted, red the lowest-valued. The model predicts that the two curves will

exactly overlap. (b) Predicted variability for a model in which variability is determined by the relative value

within the range of all rewards experienced during learning. The model predicts that the two curves will be

translated relative to each other. (c) Empirical standard deviations obtained in Exp 2.

doi:10.1371/journal.pcbi.1005405.g006

Fig 7. Absolute versus relative coding affecting bias. (a) Predicted bias for a model in which bias is

determined by the absolute value within the bounds [0, 1]. Blue curve indicates participants for whom the

highest-valued tile was omitted, red the lowest-valued. The model predicts that the two curves will exactly

overlap. (b) Predicted bias for a model in which bias is determined by the relative value within the range of all

rewards experienced during learning. The model predicts that the two curves will be translated relative to each

other. (c) Empirical biases obtained in Exp 2.

doi:10.1371/journal.pcbi.1005405.g007
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but the highest-valued tile (blue). In contrast, if variability is determined by the relative posi-

tion within the range of experienced tile values, the two curves should be displaced along the

x-axis by a difference of one tile value (Fig 6b). Fig 6c plots the observed data. The two curves

do not overlap (significant difference at tile value 0.25, p< 0.05), however a formal model

comparison could not consistently distinguish between the two possibilities (AICc difference

[relative − absolute]: 8.8 ± 15.9, p> 0.05; BIC difference: 4.9 ± 15.9, p> 0.05).

Fig 7 presents results of an identical analysis for representational bias. Here, model compar-

ison found strong evidence in favour of a relative coding of value representations (AICc differ-

ence [relative − absolute]: −43.2 ± 20.3, p< 0.05; BIC difference: −47.1 ± 20.3, p< 0.05)

As in Exp 1, we found minimal correlation between error on the report task and the fre-

quency or recency of reward (frequency, mean r = −0.040, p = 0.071; recency, mean r = 0.042,

p = 0.067).

Comparing the distributions of value estimates between the experiments with six and seven

tiles revealed an overall increase in mean variability of the beta component with increasing

number of tiles (σB = 0.088 vs 0.097, p< 0.05) and an increase in guessing (α = 0.67 vs 0.58,

p< 0.05). There was no significant effect on the mean bias of the beta component (ε = −0.033

vs −0.043, p> 0.05) nor the width of the normal (guessing) component (σN = 0.25 vs 0.26,

p> 0.05).

Discussion

We examined the nature of internal representation of reward by following a standard rein-

forcement learning task with an unexpected test, in which participants directly reported the

rewards they associated with previously-experienced choices. The results demonstrated a sub-

stantial advantage in the fidelity of representation for extreme values: both low and high value

rewards were represented with lower variability and less bias than intermediate values. These

differences in fidelity mapped onto the decisions participants made during learning, retrospec-

tively predicting how accurately participants chose between the different options.

In our interactions with the world, we preferentially exploit options that we associate with

the largest rewards. For this reason, our experience unequally samples the distribution of avail-

able rewards, favoring higher values. This effect was apparent in our reinforcement learning

task: although the lowest and highest rewards were made available on equal numbers of trials,

the frequency with which participants were exposed to the highest rewards was many times

that of the lowest. Remarkably, this oversampling of high rewards had negligible impact on the

fidelity with which reward values were maintained: the lowest values were represented with

the same bias and variability as the highest. This effect on action-reward associations differs

dramatically from that observed for memory of other stimuli, e.g. word lists, where the accu-

racy with which associations are recalled depends strongly on both the frequency and recency

of presentation [21, 22]. A future study could test the effects of presenting both chosen and

unchosen tile values on each trial: given the absence of frequency and recency effects in the

present study, we predict that this would have minimal impact on response fidelity.

Theoretically, differences in the fidelity of reported value representations could be deter-

mined by a reward’s relative position in the range of experienced values, or they could depend

on the reward’s absolute position on the scale of permitted responses. I.e., the more accurate

reproduction of the highest reward values could arise because the reward is the highest of

those experienced during learning, or because the reward is close to the edge of the response

range. The absolute-coding hypothesis makes the prediction that, if one of the extreme values

in the learning task is omitted, fidelity of the remaining values will not depend on which value

was omitted, as this does not change their position on the absolute scale of responses. The

Fidelity of the representation of value in decision-making
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relative-coding hypothesis makes the opposite prediction, because omitting an extreme value

changes the relative position of the other values on the scale of experienced values. We per-

formed this experiment: a model comparison based on report variability did not clearly disam-

biguate the two hypotheses, suggesting both may play a role, whereas a model comparison

based on report bias strongly favoured the relative-coding hypothesis.

An additional consideration also supports the relative-coding hypothesis: the distributions

of value estimates obtained by direct report very accurately reproduced performance on the

learning task, indicating that the fidelity of reproduction faithfully reflected fidelity of the rep-

resentations used to make choices in the preceding task. Critically, at the time these choices

were made, participants had no knowledge or experience of the report task. This strongly

argues against any specific effect of the response space in generating our results. We conclude

that it is the value relative to the range of values experienced during learning that most strongly

determines fidelity. This finding is consistent with observations of context-dependence in

decision-making [23, 24] and relative coding in neural representations of value [25–27], which

may be a consequence of divisive normalization [28].

While we have focused on the fidelity with which value is represented, a recent study [29]

has obtained converging results by examining the salience of reward memories. This study

presented participants with options that led with equal frequency to an extreme or an interme-

diate reward. On a subsequent memory test, participants were asked to report which outcome

came most readily to mind when presented with each option in turn. The experimenters

observed a strong bias towards reporting the extreme value over the intermediate value associ-

ated with each option. Participants also overestimated the frequency with which the extreme

value was awarded in comparison with the intermediate value.

Recent advances in our understanding of working memory have focused on the concept of

a limited memory resource that determines how precisely information is maintained [30].

Two observations have led to this characterization: first, the fidelity of representation of simple

visual elements, such as orientations, declines monotonically with increasing number of ele-

ments in memory [31–33]; second, differences in the salience or goal relevance of elements

results in enhanced fidelity for high priority elements and a consequent decrease in fidelity for

those of lower priority [34–36]. The present results pertaining to the internal representation of

value may be best understood within a similar framework. Thus, during learning, information

regarding action-reward associations accumulates, increasing the fidelity of representation

until an upper bound is reached resulting from a resource limit. The fidelity with which reward

values are maintained at this limit may be determined by their motivational salience, favoring

accurate representation of the lowest and highest values over motivationally-neutral interme-

diate values.

If fidelity is determined by a limit on available representational resources, rather than lim-

ited experience with each action-reward pair, this would account for the absence of frequency

and recency effects. Further evidence consistent with a resource account comes from a com-

parison between learning with six and seven different action-reward pairs. The fidelity of value

reproduction for all pairs was enhanced when the total number reduced, as a consequence of a

decrease in both variability and guessing. Although the two conditions also differed in the fre-

quency and recency with which the different rewards were presented, the very weak correla-

tions between these factors and response error suggest they are unlikely to have contributed

substantially to the difference between conditions. Nonetheless, the present study was not

designed to test a resource hypothesis for reward representation, and this proposal, and the

link to working memory, remain speculative at this time.

Consideration of how value is represented in cortical spiking activity provides an alternative

to the motivational-salience account of the representational advantage for extreme values. In

Fidelity of the representation of value in decision-making
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prefrontal cortex, reward-coding neurons display two opposing patterns of activity: roughly

half of neurons increase their firing linearly with increasing value, whereas the other half

decrease their firing [37, 38]. Spiking activity in cortex is approximately Poisson, i.e. standard

deviation increases with the square root of the mean: hence higher firing rates encode informa-

tion with greater fidelity [39]. We propose that, in such an opponent-coding system, the high-

est and lowest values, which elicit maximum firing in half the neural population, can be

decoded with greater precision than intermediate values, which produce an intermediate firing

rate in the whole population. While this would provide a parsimonious explanation for the dif-

ferences in precision observed in our experiments, it should be noted that opponent-coding

schemes are not universal in the brain: neither subcortical nor parietal reward-sensitive neu-

rons display inverse relationships between firing rate and value [12, 40].

With respect to the increased underestimation bias observed for intermediate values, we

speculate this may have a Bayesian explanation: greater uncertainty in the internal representa-

tion of these values leads to a greater bias towards prior expectations. This would imply that

participants’ prior belief is that individual actions will result in small rewards. This could be a

fixed prior, similar to the low-velocity prior evident in perception [41], or it could depend on

details of how a participant’s expectations are set up by the instructions and study design.

One caveat to our conclusions is that they are based on learning of action-reward associa-

tions on a short timescale, on the order of tens of minutes. While this is typical of laboratory

studies of human reinforcement learning (e.g. [4, 42–44]), under ecological conditions we

often make decisions based on associations learned over much longer periods, even years.

Future research will examine whether the observations on fidelity presented here extend to

longer timescales of learning. Another consideration is that we have examined only the repre-

sentation of positive rewards; future work could investigate the fidelity with which behavioral

costs are represented. Based on the success of the relative-coding hypothesis (Exp 2), we pre-

dict that if the range of experienced option values extended from negative to positive, fidelity

would increase with absolute value; however, this will need to be confirmed by future

experiments.

We found that the distribution of reported reward values was well-described by a mixture

of two-components: one centered on the target value with some bias and variability, the other

independent of the target but having some bias towards the center of the value range. While

we have described the latter distribution as due to “guessing”, it may not be the case that these

responses are purely random. Based on findings in the psychophysics and working memory

literature, it is probable that some of these responses actually reflect so-called “swap” errors, in

which a participant incorrectly responds with the value corresponding to a tile other than the

one they are cued to report (e.g. [45, 46]). Assessments of the frequency of guessing will also

depend on the choice of distribution for the non-guessing component: we chose a beta distri-

bution as it is a normal-like distribution in common use with support on the range zero to

one. In conjunction with a normally-distributed guessing component, this distribution proved

qualitatively to be a good fit to data, however we do not rule out the possibility that the true

distribution of “on-target” responses differs from the beta, e.g. by virtue of being long-tailed

[47].

Established models of reinforcement learning [15–17] do not typically consider the possi-

bility of bias or variability in value representation. Where noise enters into the models at all it

is typically at the decision stage, for example as a softmax decision rule [4]. In contrast, the

present results suggest that a major contribution to the stochasticity in decision-making is due

to variability in the internal representation of value, rather than in its evaluation. Taking into

account the fidelity of reward representation, and in particular the biases favoring extreme val-

ues, will be critical for developing a fuller understanding of reward-based learning.

Fidelity of the representation of value in decision-making
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Methods

Ethics statement

All participants gave informed consent, in accordance with the Declaration of Helsinki. The

study was approved by the Cambridge Psychology Research Ethics Committee.

Participants

Six hundred participants were recruited and run using Amazon Mechanical Turk (https://

www.mturk.com). They were paid $0.50 for their time plus a bonus determined by rewards

accumulated during the task (typically in the range $0.50 to $1). Participants completed the

experimental tasks on their own computers or laptops; touchscreen devices were automatically

excluded. Participants completed a demographic survey, reporting their sex, age, location, edu-

cation, current illnesses and any vision problems. Twenty-six participants were subsequently

excluded from analysis because they reported problems with their vision, or their age fell out-

side the range 18–60.

Experiment 1

Two hundred participants took part in Exp 1. The experiment was divided into two parts: in

the learning session, participants made choices between pairs of options (“tiles”) and received

rewards. In the subsequent testing session, participants reported the reward value they associ-

ated with each option. The learning session was introduced by a short tutorial which did not

mention the existence of the testing session.

The learning session consisted of 100 trials. On each trial, two tiles (fractal images) were

presented (Fig 1a, top) and the participant selected one with a mouse click. The selected tile

moved to reveal a reward (Fig 1a, bottom), represented by a coin: the diameter of the coin indi-

cated the reward value, with larger coins corresponding to more reward. Participants were

instructed to collect as much reward as possible, which would be converted into a bonus pay-

ment at the end of the experiment. A running total of the reward accumulated so far was pres-

ent at all times in the upper-right of the screen.

The two tiles presented on each trial were selected randomly without replacement from a

set of seven. Each tile was associated with a different mean reward value, evenly-spaced in

the range 0.125–0.875, where a reward of 0 was indicated by no coin and a reward of 1 was

indicated by the largest coin. The actual reward value obtained on each trial was drawn from

a beta distribution with mean corresponding to the selected tile’s value and standard devia-

tion 0.035. The assignment of fractal images to mean reward values was randomized for each

participant.

In the testing session, which followed immediately after the end of the learning session,

each of the seven tiles used in the preceding session was presented one at a time (Fig 1b) and

participants were instructed to report the reward they expected to receive for choosing that

tile, by dragging a slider which changed the size of a coin. Once they were satisfied that they

had adjusted the coin size to match the expected reward they clicked a button marked

“accept”.

After the testing session, participants were presented with feedback of the correct reward

values associated with each tile, and told how much bonus they had earned. Participants could

take as long as they wanted over each part of the experiment, but the whole task typically took

about 15 minutes to complete.
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Experiment 2

Exp 2 was identical to Exp 1, except that only six tiles were used. The mean reward values for

the six tiles were chosen by excluding either the lowest (Exp 2a; 200 participants) or highest

(Exp 2b; 200 participants) value tile from the seven tiles used in Exp 1.

Analysis

We defined a learning trial as correct if the tile chosen was the one with the higher mean value.

To assess whether the distribution of value estimates obtained in the testing session matched

performance on the learning task, we calculated for each subject the performance we would

expect if their choices were based on their reported value estimates, i.e. if the response for each

possible pair of tile values was determined by which tile had the higher value estimate in the

testing session. These predicted frequencies were compared to the actual frequencies of correct

trials at the end of the learning session (final 25 trials).

The distribution of value estimates x̂ obtained across participants in the testing session for

each mean tile value x was fit with a mixture of a beta distribution centered on the true mean

value with bias ε and standard deviation σB, and a normal distribution (intended to capture

guessing) centered in the middle of the range of values (0.5) with standard deviation σN. The

mixture parameter α corresponded to the proportion of the beta distribution in the mixture.

Formally,

pðx̂Þ ¼ abðx̂; x þ ε; sBÞ þ ð1 � aÞ�ðx̂; 0:5; sNÞ; ð1Þ

where β(x; μ, σ) is the probability density function of the beta distribution with mean μ and

standard deviation σ, and ϕ(x; μ, σ) is the probability density function of the normal distribu-

tion with mean μ and standard deviation σ. Note that the beta distribution is commonly

parameterized by two shape parameters, a and b: these can be obtained from the mean and

standard deviation as a = (μ2 − μ3)/σ2 − μ and b = a(1/μ − 1).

Three variants of the model described by Eq 1 were tested. In one, the standard deviation of

the beta component σB was allowed to vary with the mean tile value, while a single value of the

mixture parameter α was used for all tile values. In the second, a single value of σB was used

but α was allowed to vary. In the third, both σB and α varied with mean tile value. In all cases,

the bias parameter � was allowed to vary with mean tile value.

Maximum likelihood model parameters were obtained by the Nelder-Mead simplex

method (fminsearch in MATLAB). Models were compared using the Akaike Information Cri-

terion with a correction for finite sample sizes (AICc; [48]) and the Bayesian Information Cri-

terion (BIC). Standard errors and confidence intervals on model parameters and differences

between model parameters were calculated by bootstrapping: 1000 resampled datasets were

generated by random sampling with replacement from the original dataset, and models fit to

the resampled data to obtain a sampling distribution of parameters. Statistically significant dif-

ferences between model parameters were reported when the bootstrap 95% confidence interval

did not encompass zero.
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