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Abstract 

This paper presents a study of the impact of horizontal aperture separation in single-sided ventilation flows 

with two apertures (SS2). The study is based on wind tunnel measurements and dimensional analysis. The 

results show that the SS2 ventilation flow rate, scaled with incoming wind velocity and aperture area, 

depends on the incoming wind angle relative to the aperture façade, , and on the aperture separation scaled 

by building width, s´. For most wind angles, the ventilation flow increases as the square-root of s´. This study 

also identified a novel flow driving mechanism – vortex shedding: when the ventilation openings are on the 

leeward side of the building and the wind is nearly head-on, the flow is driven by a pumping mechanism due 

to vortex shedding. 
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Introduction 

Reducing energy usage in the building stock is a desirable goal from the point of view of both lower running 

costs for owners or occupiers and fewer emissions of pollutants and greenhouse gases from fossil fuel-based 

energy generation. Natural ventilation can be an important potential source of energy savings for space 

conditioning (cooling and ventilation), particularly in the commercial building sector, either alone or 

supplemented with mechanical conditioning in a hybrid approach. 

The primary agents harnessed in natural ventilation are two-fold: the wind, impacting on the openings in the 

exterior of the building; and temperature differences, between the exterior and interior caused by internal 

sensible heat gains. In typical natural ventilation configurations one or more open windows ventilate the 

internal space. The case of two openings is the simplest multi-opening situation, and leads to four possible 

airflow regimes, depending on the relative opening position 

 Single-sided ventilation, SS 

 Corner ventilation, CR 

 Cross-ventilation, CV 

 Displacement ventilation, DV 

in which the two openings are in the same, adjacent, or opposite external façades, or at different heights, 

respectively (Figure 1).  

 

Figure 1: Ventilation regimes with 2 apertures (DV shown in elevation, others in plan view). 
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In the first three flow regimes, wind-generated flow will be dominant unless the wind is light enough and/or 

the temperature differences are sufficiently large. This paper will focus on wind-driven flows and, therefore, 

will not discuss displacement ventilation or interactions between buoyancy and wind. 

Many studies of natural ventilation focus on cross-ventilation because of its potential to achieve large flow 

rates that maximise free-cooling capacity [1, 2, 3]. Unfortunately, the large cooling potential of CV is 

difficult to realise because in most cases the high flow rates are incompatible with office tasks and may result 

in draft-induced discomfort (particularly in the jet region of the flow [4]). Further, CV requires that the room 

must have opposing external walls, a characteristic that most rooms in the perimeter of a building do not 

have. The corner ventilation case is fairly similar in character to cross-ventilation [5, 6] and furthermore is 

relevant to only a relatively small percentage of offices. On the other hand, in many perimeter office spaces, 

SS systems that induce lower, more manageable, ventilation rates can be a good option. Perimeter spaces 

often have limited room depth and therefore, for at least some parts of the year, the smaller cooling capacity 

of SS may be sufficient [7]. 

Single-sided ventilation systems can be divided into two types: single-opening (SS1) and multiple-opening 

(SSn). In terms of the physical picture of single-sided ventilation, there is a fundamental divide between one 

opening and more than one opening, since in the former case the external air entering and the internal air 

being removed must both pass through the same opening, while in the latter case there can be a clearer 

division between inlet and outlet openings. This difference means the single-opening case is somewhat 

limited in its ability to ventilate a room, whereas a room with two or more openings on the same façade can 

give a substantial supply of fresh air under many circumstances. Hence SS1 systems form the typical option 

for small offices, while systems with multiple openings in distinct zones of the façade are the choice for large 

rooms.  

The SS1 case has been much studied [8, 9, 10, 11] and explained in terms of unsteady static pressure 

variations across the opening, a growing shear layer generated by the flow along the building façade, or a 

combination of both. Recently, Ai and Mak [12] measured instantaneous flow rates in a single-room small 

building in a boundary layer wind tunnel and concluded that the fluctuating part of the flow contributed 

between 15 and 64% to the ventilation rate (depending on wind direction). Simple scalings for the SS1 
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ventilation rate were proposed and validated by Warren and Parkins [8]. This pioneer study was also one of 

the first to address the effect of window geometry. Subsequently several authors, including Heiselberg et al. 

[13], Caciolo et al. [14] and Wang et al. [15], have worked on this important effect, which is difficult to 

model accurately in typical small-scale wind tunnel studies. 

The two-aperture single-sided case (SS2), on the other hand, is potentially a common practical situation and 

yet is not well-represented in the literature. Warren and Parkins [8] measured single-sided ventilation driven 

by multiple openings in a single façade in a full-scale building, but the study was inconclusive and did not 

result in a model. Cóstola et al. [16] showed that wind-generated pressure variations along the façade can be 

significant with, therefore, the potential to generate useful flow rates. Teppner et al. [17] tested a 3-storey 

section of a 10-storey building (14m  21m  30m) at 1:25 scale in an aerodynamic wind tunnel. This study 

revealed significant pressure variations ∆𝑝 along the façade at a given height: ∆𝑝/(1/2𝑝𝑝2)~0.5, where U 

is the approach flow velocity scale. Chu et al. [18] studied a small single-storey building with two openings 

in the same façade and proposed a simple model to predict ventilation flow rates. The study used openings a 

fixed distance apart and, therefore, the proposed model does not include aperture separation effects. The 

model distinguishes two ranges for the incoming wind angle θ where different mechanisms drive the flow: 

for wind directions in the range 22.5-45º region the flow is driven by pressure difference between the two 

openings, while for the remaining angles the flow is driven by pressure fluctuations and (for 90º wind) by 

shear. 

SS2 flows are primarily the result of differences in static pressure between the openings: inflow occurs at the 

openings with higher pressure and outflow occurs at the openings with the lower pressure. This pressure 

difference is driven by the external flow and comprises a combination of steady and unsteady components 

whose relative contributions depend primarily on wind angle and aperture separation.  

Turbulent external flow leads to unsteadiness in the pressure field, which means the pressure difference 

changes with time in both magnitude and sign. This leads to a contribution to the ventilation rate provided 

the frequency is low enough: if the pressure difference fluctuates too rapidly then it drives fluid in and out 

again before it has been able to mix with the internal air. The unsteady contribution is present in all cases but 

is particularly important when the mean pressure difference is approximately zero. One extreme but 
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interesting manifestation of this unsteady contribution occurs when the openings are on the leeward side of 

the building. In this case, discussed in Section 2.1, the flow is driven primarily by the low-frequency periodic 

effect associated with Strouhal vortex shedding [19]. 

The objective of this paper is to examine in more detail the effect of aperture separation in SS2 flows and to 

use a combination of wind tunnel measurements and dimensional analysis to develop simple formulae to 

predict the ventilation rate in terms of basic parameters describing both the incoming wind and the building. 

These formulae should be simple enough to allow their straightforward integration in simplified simulation 

tools such as EnergyPlus [20].  

The rest of this paper proceeds as follows. Section 1 presents the wind tunnel experimental set-up. Section 2 

gives an overview of the results used in the subsequent modelling work – the characteristics of the pressure 

difference between the two apertures and the associated ventilation rates – and concludes by deriving a 

formula connecting the measured ventilation rate with the magnitude and characteristics of the driving 

pressure difference at the two openings. Section 3 then takes this a stage further by proposing a simple 

expression for the driving pressure difference in terms of the characteristics of the incoming wind and the 

opening separation scaled by the characteristic length of the building façade, which can then be combined 

with the previous result to relate the ventilation rate to the parameters describing the set-up. Thus the paper 

offers two levels of use, depending on the type of data available: when pressure (difference) data are 

available, the results in Section 2 may be used; while if only basic set-up parameters are known, the 

formulation in Section 3 is appropriate. The latter offers a more accessible model, but with increased 

uncertainty in some circumstances due to additional assumptions.
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1. Wind tunnel measurements 

The wind tunnel used in this study is located in Fort Collins, Colorado, USA and operated by CPP Wind 

Engineering, Inc. The closed circuit boundary layer wind tunnel has a 3m  2.7m working cross section.  

The test set-up comprised two rectangular building models each containing a single room occupying an 

entire floor (Figure 2).  

 

Figure 2: Three building/room configurations analysed: S1:S8 openings shaded red, S3:S6 openings 
shaded yellow. 

 

The building models were either isolated or, in the case of the 2-storey building, surrounded by a set of 

similar 2-storey blocks, representing a low-density urban environment. The buildings were modelled at 1:70 
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scale, and equipped with pressure taps, tracer injection ports and two concentration receptor locations 

(Figure 3). To simulate variations in incoming wind direction, the models were placed on a turntable and 

measurements were made for a set of equally-spaced wind directions.  

 

Figure 3: 2-storey model building. Apertures are labelled S1 through S8. Inset shows position of internal 
concentration sampling points (red dots). 

 

Two types of run were carried out: 

 Closed box runs, in which all apertures were sealed and surface pressure was measured around 

building. Seventeen wind angles (0°, 11.25°, 22.5°, …, 180°) were investigated.  

 Ventilation runs, in which two apertures were open and surface pressure and concentration decay 

were measured. Nine wind angles (0°, 22.5°, 45°, …, 180°) were investigated.  

The details are summarised in Table 1. 

For each building configuration and incoming wind direction two opening separations were tested: wide 

(denoted ‘S1:S8’ and marked in red in Figure 2) and narrow (denoted ‘S3:S6’ and marked in yellow in 

Figure 2). The combination of three building configurations, two opening arrangements and a range of wind 

directions resulted in a total of 3 × 2 × 17 = 102 closed box runs and 3 × 2 × 9 = 54 ventilation runs.  
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Table 1: Summary of test parameters 

Feature Options 

Configurations 

(1) 2-storey isolated: 47.5cm (W)  19.3cm (D)  9.9cm (H) 

(2) 4-storey isolated: 47.5cm (W)  19.3cm (D)  18.6cm (H) 

(3) 2-storey sheltered: as (1) but centred in grid of 2-storey 
blocks, horizontal separation 50.8cm in both directions 

Maximum blockage ratio: 0.63%, 1.18% and 3.6%, respectively 

In each case, room dimensions were 45.9cm  17.7cm  5.0cm 

Openings 

Opening dimensions: 2.54cm  2.54cm.  

(1) Wide separation (‘S1:S8’): 35.4cm between centres 

(2) Narrow separation (‘S3:S6’): 15.1cm between centres 

Wind angles 
θ = 0°, 11.25°, 22.5°, …, 180° (closed-box runs) 

θ = 0°, 22.5°, 45°, …, 180° (ventilation runs) 

Data capture 
1kHz sampling rate for 90s (closed-box runs) or 250Hz for 80s 
(ventilation runs) 

 

The tunnel uses spires and a trip at the leading edge of the test section to initiate the development of a 

simulated atmospheric boundary layer. The long development region between the spires and the test building 

is filled with roughness elements in a pattern experimentally set to develop the appropriate approach wind 

profile. This set-up creates the logarithmic incoming wind profile [21] shown on the left-hand side of 

Figure 4. Similarity requirements were met in accordance with the EPA fluid modelling guidelines [22] and 

with Cermak [23, 24, 25]. 

  

Figure 4: Left: wind tunnel velocity and turbulence intensity profiles. Right: pollution concentration decays. 

 

Time-resolved pressure measurements (sampled at 1000Hz) were obtained by means of flush surface 

pressure mounts located on building walls and around building openings. To obtain an estimate of the 
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ventilation rate, time series concentration data (sampled at 250Hz) were collected at receptor locations 

mounted at approximately mid-room height through the test building floor (Figure 3). The building was 

flushed with a fixed concentration of ethane-in-nitrogen gas that was mixed using mass flow controllers. A 

solenoid valve was used to control the flow of tracer gas into the test building through ports in the floor. The 

building was purged for a pre-set time sufficient to allow the concentration to reach a near-steady state. 

Depending upon the test iteration, a range of 2500ppm-5000ppm ethane tracer was achieved. The right-hand 

side of Figure 4 shows the concentration in one of the measurements: the rate of concentration decay is used 

to infer the ventilation rate. During the filling phase, the concentration varies between the two measurement 

points (when the non-buoyant pollutant source is active), but once the source is removed there is increased 

homogeneity, leading to a difference in the decay rate of less than 10 % between the two points for most 

incoming wind directions. Flow visualization was conducted on particular runs of interest in which a mixture 

of pharmaceutical mineral oil and UV dye was used to charge the test building. The smoke wand was then 

removed and the building allowed to be ventilated naturally while being recorded from above. A lower 

velocity tunnel speed was required to allow the video camera to capture the flow structure.  
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2. Analysis of SS2 flows  

This section presents a detailed analysis of SS2 flows, beginning with a discussion of the dominant flow 

pattern/driving mechanisms followed by an analysis of the variation of flow rate with incoming wind angle. 

This section concludes with a quantitative expression of the relation between flow and pressure. 

 

2.1 Overview of SS2 flow patterns 

Analysis of the flows observed in these (and earlier [5]) wind tunnel experiments revealed ranges of the 

incoming wind angle θ dominated by particular flow driving mechanisms: 

 0º- 60º: nearly head-on wind results in an unstable flow with inflow and outflow through each of the 

openings alternating over timescales short compared with the Strouhal frequency (see below) and no 

clear periodic behaviour. 

 67.5º: for this angle the external flow is attached to the building façade and the ventilation is driven 

by shear (similar to single opening flows [10]). 

 90º-170º: flow driven by stable static pressure difference, predominantly through the downstream 

opening 

 175-180º: oscillating “pumping” flow driven by Strouhal [19] vortex shedding with clear quasi-

periodic behaviour. 

Figure 5 highlights three particular cases of importance.  

(a) When θ = 0° the wind is head-on to the façade containing the openings. Inflow alternates rapidly 

between the two windows. This is typical of wind directions up to around 90°. 

(b) When θ = 90°, the incoming wind is parallel to the openings façade. The flow is predominantly in 

through the downstream aperture, with occasional inflow at the upstream opening. This is typical of 

wind directions from around 90° to almost 180°, with the unidirectionality becoming stronger for 

intermediate angles but then diminishing. 
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(c) The case θ = 180°, where the wind is head-on to the façade opposite that containing the openings, 

shows markedly (quasi-)periodic inflow, in which the flow spends relatively long periods (compared 

with (a)) entering through first one opening and then the other. This is likely to occur also when the 

wind direction is close to 180°. 

 

Figure 5: Snapshots of flow for three wind angles: (a) 0°, (b) 90° and (c) 180°. Values of Δt indicate time 
between frames for a given angle. The vector U gives the wind direction, while Q indicates the 
instantaneous inflow opening. 
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The oscillating “pumping” flow mechanism is unique in that it displays a clear quasi-periodic behaviour that 

is characteristic of vortex shedding at the back of bluff bodies. This ventilation flow oscillates with the 

Strouhal frequency, 𝑝, or period 𝑝, which is defined via 

 𝑝𝑝 = 𝑝𝑝/𝑝 = 𝑝/𝑝𝑝 (1) 

where L is a characteristic length scale of the body and U the velocity scale. The value of St depends on the 

Reynolds number and the body geometry, but is typically in the range 0.1-0.15 [25]. 

Figure 6 shows a set of snapshots of a pumping ventilation flow. For the case shown, the time sequence for 

the appearance of smoke at the openings in the visualisation video suggests a mean period of T = 3.3s, giving 

a Strouhal number of around 0.11 (based on length and velocity scales equal to the building width, WB, and 

the incoming velocity at building height, Ua(HB), respectively). This is consistent with other studies [25]. 

Pumping flow is also likely to occur for incoming wind angles close to 180°, i.e. when the wind is not 

perfectly normal to the windward side. 

 

Figure 6: Detailed look at pumping flow (driven by Strouhal frequency vortex shedding). False colour has 
been used to enhance visualisation of clean air (blue) entering smoke-filled space (yellow). The four 

snapshots are equally separated in time by half the mean pumping period T. 

 

2.2 Variation of SS2 flow rate 

Traditionally [8], the SS flow rate Q is analysed in terms of a non-dimensional ventilation rate 𝑝′, defined by 
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 𝑝′ =
𝑝

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
 (2) 

where Aref and Uref are characteristic opening area and velocity scales, respectively.  

We take the area scale to be the effective opening area, Aeff, defined by 

 𝑝𝑝𝑝𝑝 =
𝑝1𝑝2

(𝑝1
2+𝑝2

2)
1/2 (3) 

in which A1 and A2 are the areas of the individual openings. Note that when A1 = A2 = A, then Aeff = A/√2. 

This area scale arises naturally from a simple pressure balance calculation of the ventilation rate [26]. We 

take the velocity scale Uref to be the ambient flow Ua(z) at a reference height, zref 

 𝑝𝑝𝑝𝑝 = 𝑝𝑝(𝑝𝑝𝑝𝑝) (4) 

with zref = 10m.  

We wish to relate the flow rate to the pressure difference, ∆𝑝 = 𝑝1 − 𝑝2. The mean and unsteady 

components of ∆𝑝 are characterised using the time-average ∆𝑝̅̅ ̅̅  and standard deviation 𝑝∆𝑝, respectively. 

Further, we express these in the form of pressure coefficients 

 ∆𝑝𝑝 =
∆𝑝̅̅ ̅̅

1

2
𝑝𝑝𝑝𝑝𝑝𝑝

2
 (5) 

 𝑝∆𝑝𝑝
=

𝑝∆𝑝
1

2
𝑝𝑝𝑝𝑝𝑝𝑝

2
 (6) 

where ρa is the ambient air density. We henceforth refer to these coefficients as the mean (or steady) and 

fluctuating (or unsteady) pressure differences, respectively. 

Consider the variation of the non-dimensional flow rate and pressures for one example, namely the two-

storey building in isolated surroundings (Figure 2(a)). Figure 7 shows (a) the non-dimensional ventilation 

rate 𝑝′ as a function of incoming wind angle θ for the two opening separations analysed in this study, (b) the 

corresponding mean pressure difference coefficients, ∆𝑝𝑝, and (c) the unsteady pressure difference 

coefficients 𝑝∆𝑝𝑝
.  

Analysis of the three plots shows: 
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(i) There is a clear correlation between (a) 𝑝′and (b) ∆𝑝𝑝. The maximum flow rate occurs when the 

pressure difference magnitude is greatest, and the minimum flow rate when the mean pressure 

difference is zero. 

 

Figure 7: Non-dimensional flow rate and mean and fluctuating parts of pressure difference coefficients for 2-
storey isolated building. 

 

(ii) There is a non-zero ventilation rate at all angles, even when the mean pressure difference is zero. 

The minimum flow rate is still significant – about 30-40% of the maximum – suggesting that other 

effects besides the static mean pressure difference ∆𝑝𝑝 contribute to the ventilation flow rate. There 
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is a substantial flow rate when the wind is head-on (θ = 0), despite the negligible mean pressure 

difference. Unsteady effects must therefore be the major contributor to flow rate under these 

conditions. Note that the unsteady part is weakest for leeward locations, i.e. in the building wake, 

and the greatest level of unsteadiness is experienced on the side exposed to the wind, with a 

maximum at θ = 0. 

(iii) Clearly, opening separation has an important effect on the flow rate; for the cases in the graphs there 

is an approximately linear increase in flow rate with aperture separation. The general trend with 

wind angle is similar for both separations. 

(iv) The minimum flow rate occurs at 𝑝 = 𝑝0 ⋍ 67.5° This angle is likely to be dependent on the 

building geometry. Note that 𝑝0 ≠ 90°: there is a significant ventilation flow when the approaching 

wind is parallel to the façade with the openings. 

Note that the unsteady pressure is based on the standard deviation of the pressure which, by definition, 

includes all frequencies of fluctuations. As noted earlier, the higher frequencies will not contribute to the 

ventilation, so the effect of a low-pass filter applied to the pressure difference was investigated, in which 

only the frequencies low enough to allow fluid to penetrate significantly into the room are retained. The 

chosen threshold frequency 𝑝𝑝 is low enough that the fluid penetrates at least a distance equal to the room 

depth in one period. In our case this leads to the criterion 𝑝𝑝 ≾ 30√∆𝑝𝑝. It was found that the effect of 

eliminating the higher frequencies on the curves shown in Figure 7(c) was to leave their shape essentially 

unchanged but reduce the values by around 40%. Thus we expect the use of filtered data rather than 

unfiltered data would be simply to change the coefficients in the correlations discussed in Section 2.3 

(compared with using unfiltered data). Hence at this level of approximation it is acceptable and more 

convenient to leave the data unfiltered and use the standard deviation.  

Note also that the pressure coefficients in (b) and (c) were calculated from the closed box pressure 

measurements (Section 1), rather than those made simultaneously in the given ventilation run, for three main 

reasons: (i) pressure data for actual buildings are likely to be obtained for a closed envelope, rather than with 

simultaneous ventilation measurements; (ii) the presence of an opening will have a small effect on the 

pressure; and (iii) the closed box measurements were taken at twice as many wind angles as in the equivalent 
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ventilation run and at higher sampling rate, and hence gave more detailed data for analysis in the subsequent 

model development. 

To summarise, the analysis suggests that the mean static pressure difference has a strong correlation with the 

flow rate, but cannot explain all the features of the dependence on incoming wind angle, in particular the 

significant flow values at 0 and 180 (for which ∆𝑝𝑝~0). In the next section we investigate quantitatively 

the relation between flow and pressure. 

2.3 Relation between flow and pressure 

As discussed above, the experimental data include a set of ventilation rates and static pressure measurements. 

From basic energy conservation principles (Bernoulli equation), we expect the following relation between 

non-dimensional flow and pressure 

 𝑝′
𝑝𝑝𝑝𝑝 = (𝑝𝑝|∆𝑝𝑝| + 𝑝𝑝𝑝∆𝑝𝑝

)
1/2

 (7) 

where ∆𝑝𝑝 and 𝑝∆𝑝𝑝
 were defined in Equations (5) and (6), 𝑝′

𝑝𝑝𝑝𝑝 is the correlated/predicted non-

dimensional flow rate and ap, aσ are the correlation constants.  

The objective is to use the observed values of ∆𝑝𝑝 and 𝑝∆𝑝𝑝
for each of a set of N cases – combinations of 

building configuration, aperture separation and wind direction – and choose the values of ap, aσ that provide 

the best match with the corresponding N observed flow rates 𝑝′
𝑝𝑝𝑝: the optimum was defined as the 

combination (ap, aσ) giving the largest value of the Pearson correlation coefficient r.  

As noted earlier, the flow rate data to be used in this process are taken from the ventilation runs and the 

pressure data from the closed box runs. The number of cases N = 54 and 102, respectively. In order to be 

able to use the full set of closed box pressure data, and therefore take N = 102, linear interpolation was 

employed to obtain 𝑝′
𝑝𝑝𝑝 for wind directions not tested directly. 

The correlation constants were varied systematically over ranges based on initial exploratory comparisons. 

The optimal choice of correlation was found to be ap = 0.32, aσ = 0.09 (giving a maximal value of r = 0.82), 

i.e. 
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 𝑝′
𝑝𝑝𝑝𝑝 = (0.32|∆𝑝𝑝| + 0.09𝑝∆𝑝𝑝

)
1/2

 (8) 

The coefficients for the pressure difference terms are thus of comparable magnitude (although the static 

component is dominant), and both steady and unsteady pressure variations make important contributions to 

the ventilation. 

Figure 8 shows a scatter plot of observed values versus predictions from the correlation (8). The data points 

have been split into three groups, corresponding to the three building configurations. Overall, the 

representation of the experimental data across the cases is good; this is encouraging in view of the range of 

conditions treated together, and both supports the tenet that pressure is the principal driver for the flow and 

strengthens the argument for the proposed dependence of the flow rate on the pressure difference. However, 

it is clear that the overall correlation (8) works best for the 2-storey isolated building (left) but least well for 

the 2-storey sheltered building (right), which contributes most of the points outside the ±30% error bounds 

across the three cases. Accordingly, the correlation should be applied with caution to this last scenario.  

     

Figure 8: Comparison of pressure-based ventilation rate formula (8) with data. 

The three charts plot subsets of the data corresponding to the 2-storey isolated (left), 4-storey isolated 

(centre) and 2-storey sheltered (right) buildings. In each case, results for the two aperture separations are 

distinguished and the upper and lower dashed lines indicate ±30% errors. 

 

It is interesting to consider sub-groups of the entire pool, such as the 6 sets of cases for a given aperture 

separation and building configuration but all 17 wind directions, and find (ap, aσ) for each sub-group, i.e. the 

values giving the best fit for that sub-group over all 17 wind directions. Figure 9 plots the coefficient pairs for 

each case, together with the aggregated case (0.32, 0.09).  
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Figure 9: Correlation coefficients calculated for building sub-groups. 

 

Note the dominant effect is that of aperture separation for isolated buildings; while the effect of separation is 

reduced for the sheltered building, presumably because the flow is more disordered in this case, and so the 

systematic variation of pressure difference with separation is subordinated. This is also reflected in the graphs 

of Figure 8, where the points for the isolated buildings separate into two groups, corresponding to wide and 

narrow separation, but are mixed together for the sheltered building. This foreshadows the important role of 

aperture separation in the next section. 

The result (8) provides the starting point for the final stage in the model development: to predict the non-

dimensional flow rate in terms of wind and building parameters. This requires the intermediate step of 

developing relations between the pressure coefficients, ∆𝑝𝑝 and 𝑝∆𝑝𝑝
, and these parameters.  This analysis 

is described in the next section. 
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3. A simplified model for SS2 

In most building design situations, the pressure data needed to predict 𝑝′ using (8) are not available. For 

some of the simpler isolated building geometries the static pressure component may be available but the 

unsteady component is not. Therefore, out of practical necessity, ∆𝑝𝑝 and 𝑝∆𝑝𝑝
 need to be re-expressed in 

terms of accessible independent parameters, such as opening separation and incoming wind angle. Further, 

we expect that the resultant simplified model will clearly display and quantify the impact of aperture 

separation in SS2 flows.  

 

Figure 10: SS2 model configuration. 

 

The first step in building a simplified model is to choose the independent modelling parameters that will be 

used. Figure 10 shows the reference geometry that will be used, along with the nomenclature. The centres of 

the two SS2 openings are separated horizontally by a distance s, and are located at a height zw above the 

ground. The openings are taken to be of the same area, A, and are at the same vertical level zw. The mid-point 

between the openings, M, is a horizontal distance ym from the building edge. The incoming wind, whose 

magnitude upstream is Uref at reference height zref = 10m, approaches from a direction making an angle θ 

with the normal to the openings façade such that |θ| ≤ 180. Since the openings for SS2 are typically at the 

same height, in practice we will consider only pairs of points with the same vertical coordinate zw. Further, 

we introduce two additional groups of parameters: geometry characteristics for building (B) and site (S).  
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The non-dimensional quantities that will be used throughout the analysis, and which are denoted with a 

prime, e.g. 𝑝′, are defined as follows: 

 Horizontal lengths: 𝑝′ = 𝑝/𝑝𝑝, 𝑝𝑝
′ = 𝑝𝑝/𝑝𝑝 

 Vertical lengths: 𝑝𝑝
′ = 𝑝𝑝/𝑝𝑝 

Note that the wind velocity has already been scaled out of the problem through the use of pressure 

coefficients. Further, the opening areas do not appear in this part of the model since we seek to predict 

pressure differences, which are not affected by building opening area. As a modelling approximation we 

divide the parameters into primary, and secondary: 

 Primary: 𝑝,𝑝′,𝑝𝑝
′  

 Secondary: 𝑝𝑝
′ , B, S 

We investigated the dependence of the predicted pressure differences on the secondary parameters and 

concluded that although there is an effect, the available data are insufficient for a systematic study of their 

impact and, therefore, we choose to include only primary parameters in the models. As a result, ∆𝑝𝑝 and 

𝑝∆𝑝𝑝
 will only depend on the primary non-dimensional parameters, as follows 

 ∆𝑝𝑝 = 𝑝(𝑝,𝑝′,𝑝𝑝
′ ) (9) 

 𝑝∆𝑝𝑝
= 𝑝(𝑝,𝑝′,𝑝𝑝

′ ) (10) 

for some functions F and G.  

In order to define these functions, we used the pressure data for the long ‘South’ façade, shown 

schematically in the top-left portion of Figure 11, for two main reasons. First, this façade is pertinent to the 

ventilation runs; and second, it also offers the richest source of pressure difference data – there are 18 

pressure sensors along the façade at the same vertical height (mid-window height), indicated by dots in the 

figure, and there is one test for each of the 17 wind angles. Thus Δp computed for pairs of sensors will 

correspond to a wide range of values of 𝑝′ and 𝑝𝑝
′ , with good resolution in the wind angle θ. Analysis of 

these data allowed the forms for the functions F and G to be deduced. The procedure, described in 
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Section 3.1, was repeated for the 3 building/room/environment cases, and the results pooled into the final 

modelling expressions. Different approaches were used for the mean and fluctuating parts.  

Once F and G have been established, it is necessary to calculate new correlation constants ap and aσ in (7) by 

matching the predicted ventilation rate, based now on the “synthetic” ventilation coefficients (9) and (10), 

with the data from the wind tunnel tests. 

 

3.1 A simplified model for mean pressure difference 

Analysis of the available surface pressure data showed that the mean pressure distribution along the façade at 

each wind angle is sufficiently smooth to allow an interpolation curve �̅�(𝑝) to be accurately fitted to the 

data using a 4th-order polynomial. This allowed us to go beyond simply using the sensor positions and 

enabled static pressure values at any two points along the façade to be used in computing ∆𝑝𝑝, resulting in a 

continuous map of ∆𝑝𝑝(𝑝′,𝑝𝑝
′ ) for each set of wind and external parameters. This approach is possible 

because ∆𝑝𝑝 depends linearly on the pressure difference. 

Figure 11 presents an example of the interpolation process for the 2-storey isolated building, shown 

schematically above the graph, and an incoming wind angle of θ = 45° (so that the façade is on the windward 

side of the building, and pressures are all positive). Each point on the left-hand graph is the time-averaged 

pressure at that sensor. For this case, the fourth-order polynomial used to fit the data has a Pearson 

correlation coefficient r = 0.991. The lines shown on the right-hand side of the figure were obtained by 

selecting pairs of points such that, for a given separation 𝑝′, which is varied between 0.05 and 0.85, the mid-

point of the pair 𝑝𝑝
′  is varied continuously over the range 𝑝′/2 ≤ 𝑝𝑝

′ ≤ 1 − 𝑝′/2. The resulting curves 

form a map ∆𝑝𝑝(𝑝′,𝑝𝑝
′ ;𝑝), and are plotted in the right-hand graph in Figure 11. The map was generated 

for all 17 wind angles for the 2-storey isolated building, and then the whole process repeated for the other 

two scenarios, 4B-Iso and 2-LowWide. Note that the lines on the right-hand side have variable horizontal 

extent because increased separation narrows the range of geometrically possible mid-point positions. 
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Figure 11: Left: mean pressure profile along façade 2-storey isolated building,  = 45. 
Right: mean pressure difference as function of mid-point position. 

 

Analysis of Figure 11 reveals that the lines of constant separation 𝑝′ are relatively horizontal, i.e. ∆𝑝𝑝 

depends primarily on the separation of the openings 𝑝′ and only weakly on the position, 𝑝𝑝
′ , of the openings 

along the façade for a given separation. As the wind angle is varied this pattern is repeated. The main 

exception to this is near θ = 90°, for which there are strong gradients in mean pressure near the edges, 

introducing a more marked dependence on the location of the openings when either is near an edge.  

These results suggest simplifying the data by averaging each curve 𝑝′ = constant over 𝑝𝑝
′  to give 

∆𝑝𝑝
̅̅ ̅̅ ̅̅ (𝑝′,𝑝), where here the overbar denotes the average with respect to 𝑝𝑝

′ . This simplification process 

removes the variable 𝑝𝑝
′  from the model, at the expense of increased modelling error. The result of this 

process is plotted in Figure 12(a) for the 2-storey isolated building, plotted as a series of curves 𝑝′ = constant 

(the values of 𝑝′ are 0.05, 0.15, …, 0.85). The red dots denote the points that would be obtained from 

averaging the corresponding curves shown on the right-hand side of Figure 11. 
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Figure 12: Pressure difference for 2-storey isolated building: (a) mean and (b) unsteady parts. 

 

Figure 12 shows that, for a given angle there is an approximately linear increase in ∆𝑝𝑝
̅̅ ̅̅ ̅̅  with separation 

(since the curves are at equal increments of 𝑝′), which further suggests modelling these curves according to 

the formula (dropping the overbar) 

 ∆𝑝𝑝(𝑝′,𝑝) = 𝑝′ ∙ Π(𝑝) (11) 

for some universal shape function Π(θ). The graphs suggest an approximation function with a piecewise-

sinusoidal form 

 Π(𝑝) = {
𝑝1 sin [

𝑝

𝑝0
∙ 180] 𝑝 ≤ 𝑝0

−𝑝2 sin [
(𝑝−𝑝0)

(180−𝑝0)
∙ 180] 𝑝0 ≤ 𝑝 ≤ 180°

 (12) 

for adjustable constants C1 and C2 and θ0 = 67.5. By optimizing the least-squares fit of this formula to the 

points in Figure 12(a) (plus those in the corresponding curves for the other two scenarios), values of 0.44 and 

0.69 were found for C1 and C2, respectively. Substituting these into (11) and (12), and generalizing the result 

to negative wind angles, we obtain a formula for the mean pressure difference between the two openings: 

 ∆𝑝𝑝 = {
0.44 sgn(𝑝) sin(2.67|𝑝|) ∙ 𝑝′ |𝑝| ≤ 𝑝0

−0.69 sgn(𝑝) sin(288 − 1.6|𝑝|) ∙ 𝑝′ 𝑝0 ≤ |𝑝| ≤ 180°
 (13) 
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 𝑝0 = 67.5° (14) 

3.2 A simplified model for unsteady pressure difference 

An analogous procedure was followed to model the unsteady part of the pressure difference, 𝑝∆𝑝𝑝
, i.e. 

determine the standard deviation of the pressure difference at any two locations along the façade, average 

over the mid-point location and repeat for each wind direction and building scenario. The main difference 

compared with the approach used in the previous section is that it is no longer possible to use an 

interpolation curve to fit the data (as in Figure 11, left) since 𝑝∆𝑝 ≠ 𝑝𝑝1 − 𝑝𝑝2. Thus, instead, all possible 

pairs of points were considered to generate a finite set of values {𝑝∆𝑝𝑝
(𝑝𝑝,𝑝𝑝,𝑝;𝑝)} for each wind 

direction and building scenario. Because of the regular arrangement of sensors along the façade, these values 

could be grouped into sets with closely-matched separations but different mid-point coordinates, thereby 

obtaining a discrete map of 𝑝∆𝑝𝑝
 variation (rather than the continuous map obtained for ∆𝑝𝑝). The ym-

averaged curves of 𝑝∆𝑝𝑝
 for the 2-storey isolated building are shown in Figure 12(b) (the values of 𝑝′ are 

0.03, 0.11, 0.21, 0.32, 0.43, 0.53, 0.64, 0.75, 0.85). Just as in the case of the mean pressure difference, there 

is a monotonic increase in 𝑝∆𝑝𝑝
with separation, broadly linear, and here superimposed on a minimum value, 

suggesting the following representation of these curves 

 𝑝Δ𝑝𝑝
(𝑝′,𝑝) = Σ0 + 𝑝′ ∙ Σ(𝑝) (15) 

for another “universal” shape function Σ(θ) and minimum value Σ0 (again dropping the overbar). Each curve 

𝑝′ = constant in Figure 12(b) is approximated by a straight line, whose slope varies between zero and a 

maximum value for the widest separation 𝑝𝑝𝑝𝑝
′ = 0.85 (see Figure 13) 

 Σ(𝑝) =
1

𝑝𝑝𝑝𝑝
′ [

(𝑝2−𝑝1)

180
𝑝 + 𝑝1] (16) 

where δ1 and δ2 are adjustable constants that best fit the experimental data when δ1 = 0.36, δ2 = 0.11 and 

Σ0 = 0.24. 
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Figure 13: Linear approximation to unsteady pressure difference curves. 

 

The resulting formula for 𝑝∆𝑝𝑝
 is then 

 𝑝Δ𝑝𝑝
= 0.24 + (0.423 − 1.63 × 10−3|𝑝|) ∙ 𝑝′ (17) 

Figure 14 shows an example of ∆𝑝𝑝 and 𝑝∆𝑝𝑝
 generated by (13)/(14) and (17), respectively, compared with 

the data for the 2-storey isolated building and wide opening separation. 

    

Figure 14: Example comparison of model and data for mean (left) and unsteady (right) pressure difference 
coefficients. 
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Having approximated the two pressure coefficient terms in (7) in terms of the dimensionless opening 

separation and the relative wind angle, it is necessary to re-calculate the optimum values of the coefficients 

ap and aσ. The best fit occurs with ap = 0.343 and aσ = 0.084, and combining with the previous results the 

final correlation formula for the non-dimensional flow rate 𝑝′ is therefore 

 
𝑝

𝑝𝑝𝑝𝑝∙𝑝𝑝(𝑝𝑝𝑝𝑝)
= 𝑝′ = √0.02 + [0.343|Π(𝑝)| + 0.084 Σ(𝑝)] ∙ 𝑝′ (18) 

This is the parameter-based counterpart to the data-based formula (8).  

Analysis of this expression reveals that: 

 When the separation is small (~0.05), an increment in separation can have a significant effect on 

flow rate: for example, increasing the separation by 0.1 results in an increase in the flow rate of up to 

one-third. 

 In contrast, when the separation is large (~0.5) a similar increment (0.1) leads to a much smaller 

increase in flow (typically 7%). 

 For incoming winds such that ||<67.5º both pressure components contribute to the flow, but to a 

varying degree depending on the wind angle: for nearly head-on winds (|| small) the flow is driven 

mostly by the fluctuating part while for || ~ 30º, it is mostly the mean pressure difference that drives 

the flow (c.f. Chu et al., [18], discussed in the Introduction). 

 For incoming winds such that 70º<||<170º mean pressure difference dominates the flow. This aligns 

with the observations of these flows (Section 1), in which there is a clear preferred inflow opening 

for wind angles in much of this range. 

 When || approaches 180º the flow is driven by the fluctuating pumping mechanism described in 

Section 2.1. 

 shows the correlation between the measured and predicted flow rates. Again, the data points have been split 

into three groups, corresponding to the three building configurations. Comparison with Figure 8 confirms 

that overall the proposed model has comparable precision to a modelling approach based explicitly on 

pressures, with the same general trend in accuracy from left to right: thus, the same advisory applies to use of 
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the results as that given in the discussion of the pressure-based formula. Note that the 2-storey sheltered case 

shows greater scatter compared with the pressure-based result: this is likely a reflection of the fact that data 

for a (2-storey) isolated building was used to derive the shape functions Π(𝑝) and Σ(𝑝) in Equations (11) 

and (15), respectively.  

     

Figure 15: Comparison of parameter-based ventilation rate formula (18) with data. 

The three charts plot subsets of the data corresponding to the 2-storey isolated (left), 4-storey isolated 

(centre) and 2-storey sheltered (right) buildings. In each case, results for the two aperture separations are 

distinguished and the upper and lower dashed lines indicate ±30% errors. 

 

3.3 Capabilities and limitations of the proposed model 

The range of application of the model is easier to establish by considering three different scales: 

 At the urban scale the model is applicable to an isolated building or a building that is surrounded by 

smaller buildings or a low rise building surrounded by similar buildings, with highest confidence for 

isolated buildings. The model should not be applicable to high rise buildings surrounded by similar 

high rises. 

 At the building scale the model is applicable to rectangular buildings with openings in the widest 

face (the most common opening position). The model is not applicable to predict ventilation due to 

openings in the shorter edge of rectangular buildings. 

 At the room scale the model is applicable to two openings at equal height with similar areas. The 

model was not tested for cases when A1 is different from A2: it is likely that when, say, 𝑝2 ≿ 2𝑝1 

the modelling precision will be reduced. 
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Conclusions 

This paper presents a study of SS2 flows based on wind tunnel measurements and dimensional analysis. A 

two-level approach to modelling the flow rate is developed: either pressure-based, in the event that surface 

pressure data are available for the configuration, or parameter-based, when such pressure data are 

unavailable. The parameter-based results show that the SS2 ventilation flow rate depends on the incoming 

wind velocity and angle and on the aperture separation scaled by building width, 𝑝′. For most wind angles 

there is a square-root increase in ventilation flow with aperture separation. This dependence implies that 

when the separation is low (𝑝′~0.1) there is significant benefit from increasing the separation. Once the 

separation is large (𝑝′ > 1/2) the benefits from increased separation are very limited. The largest SS2 flows 

occur for large aperture separation (𝑝′ > 1/2). Since typical rooms ventilated by SS2 systems have 3-9m 

width, large values of 𝑝′ can only be achieved for narrow buildings whose width does not exceed ~20m. SS2 

rooms in large office towers always have small relative aperture separation. For these cases the wind driven 

single sided flow is similar to SS1 and therefore up to five times weaker than the strongest SS2 flows that 

occur in smaller buildings. 

Finally, this study also identified a novel flow driving mechanism: vortex shedding. When the ventilation 

openings are on the leeward side of the building and the wind is nearly head-on (|𝑝| ≳ 175°) the flow is 

driven by a pumping mechanism due to vortex shedding. In these cases the flow direction alternates at a 

mean rate close to the Strouhal frequency. 
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