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Supraglacial lakes (SGLs) on the Greenland Ice Sheet (GrIS) influence ice dynamics if they drain rapidly by
hydrofracture. MODIS data are often used to investigate SGLs, including calculating SGL area changes through
time, but no existing work presents a method that tracks changes to individual (and total) SGL volume in
MODIS imagery over amelt season. Here, we develop such amethod by first testing three automated approaches
to derive SGL areas fromMODIS images from theMOD09 level-2 surface-reflectance product, by comparing cal-
culated areas for the Paakitsoq and Store Glacier regions in West Greenland with areas derived from Landsat-8
(LS8) images. Second, we apply a physically-based depth-calculation algorithm to the pixels within the SGL
boundaries from the best performing area-derivation method, and compare the resultant depths with those cal-
culated using the same method applied to LS8 imagery. Our results indicate that SGL areas are most accurately
generated using dynamic thresholding of MODIS band 1 (red) MOD09 data with a 0.640 threshold value; calcu-
lated values from MODIS are closely comparable to those derived from LS8. Third, we incorporate the best
performing area- and depth-detection methods into a Fully Automated SGL Tracking (“FAST”) algorithm that
tracks individual SGLs between successive MODIS images. Finally, we apply the FAST algorithm to the two
study regions, where it identifies 43 (Paakitsoq) and 19 (Store Glacier) rapidly draining SGLs during 2014,
representing 21% and 15% of the respective total SGL populations, including some clusters of rapidly draining
SGLs. The FAST algorithm improves upon existing automatic SGL tracking methods through its calculation of
both SGL areas and volumes over large regions of the GrIS on a fully automatic basis. It therefore has the potential
to be used for investigating statistical relationships between SGL areas, volumes and drainage events over the
whole of the GrIS, and over multiple seasons, which might provide further insights into the factors that trigger
rapid SGL drainage.
. This is an
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The Greenland Ice Sheet (GrIS) is losingmass at an accelerating rate,
which is predicted to continue for at least the coming century; develop-
ing a robust understanding of the processes contributing to this mass
loss forms a fundamental research agenda (Rignot et al., 2011;
Vaughan et al., 2013; van den Broeke et al., 2016; Noël et al., 2016).
Supraglacial lakes (SGLs) that form annually in the ablation zone in
the early to mid-melt season contribute to the GrIS's negative mass bal-
ance in two main ways. First, they influence surface melt rates, particu-
larly through their effect on lowering albedo (Lüthje et al., 2006;
Tedesco and Steiner, 2011; Tedesco et al., 2012). Second, they affect
ice-dynamic processes, since their rapid drainage by hydrofracture al-
lows large pulses of surface meltwater to reach the GrIS's bed, which
open access article under
may impact subglacial effective pressures, raising basal water pressures
and hence surface ice velocities (Zwally et al., 2002; Alley et al., 2005;
Shepherd et al., 2009; Bartholomew et al., 2010, 2011a, 2011b, 2012;
Schoof, 2010; Sundal et al., 2011; Hoffman et al., 2011; Colgan et al.,
2011a; Cowton et al., 2013; Joughin et al., 2013; Sole et al., 2013;
Tedstone et al., 2013; Andrews et al., 2014; Bougamont et al., 2014;
Dow et al., 2015; Stevens et al., 2015). This process is of particular con-
cern since over 200 rapid SGL drainages are thought to occur annually
across the GrIS, affecting ~10% of the total SGL population (Selmes et
al., 2011). Hydrofracture also opens upmoulins that can continue deliv-
ering meltwater to the bed throughout the remainder of the melt sea-
son, influencing basal water pressures and sliding over longer
timescales (Palmer et al., 2011; Colgan et al., 2011b; Sole et al., 2013;
Banwell et al., 2013, 2016; Tedstone et al., 2014).

Satellite-based remote sensing is a common approach for investigat-
ing the locations of SGLs, and their filling and drainage patterns, and has
proven useful to help reduce the uncertainties surrounding the current
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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state and future evolution of the GrIS's hydrological system. However,
remote techniques face a compromise between data with high spatial
but low temporal resolution, and vice versa. Optical imagery from the
relatively high-resolution Landsat (30 m) and Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER; 15 m) satellites
has been employed to track SGL filling and draining at high spatial res-
olution (Sneed and Hamilton, 2007; McMillan et al., 2007; Georgiou et
al., 2009; Banwell et al., 2014; Arnold et al., 2014; Legleiter et al.,
2014; Pope et al., 2016; Moussavi et al., 2016; Miles et al., 2016;
Langley et al., 2016). But, since rapid SGL drainage events may occur
in as little as two hours (Das et al., 2008), and typically within 24–
96h (Selmes et al., 2011), theprecise timing andduration of such events
cannot be identified with Landsat or ASTER because repeat imaging
times are often at best ~4 d, and are sometimes considerably longer
due to the sensor's orbital geometry and site-specific cloud cover. To
better pinpoint the timing and duration of rapid drainage, dailyMODer-
ate-resolution Imaging Spectroradiometer (MODIS) data have been
used (Box and Ski, 2007; Sundal et al., 2009; Selmes et al., 2011, 2013;
Liang et al., 2012; Johansson and Brown, 2013; Johansson et al., 2013;
Morriss et al., 2013; Fitzpatrick et al., 2014; Everett et al., 2016), but
with MODIS's lower spatial resolution (~250–500 m), SGLs under two
pixels in area (~0.125 km2) cannot confidently be resolved.

Several methods have been used to calculate SGL areas fromMODIS
data; however, a consensus on the best technique to use has not yet
emerged. To date, only one study (Leeson et al., 2013) examines the rel-
ative performance of some of these algorithms. In addition, although
MODIS images are commonly used to calculate SGL areas, SGL depths
and volumes are rarely calculated and, if they are, they are usually de-
rived from empirical depth-reflectance techniques (Box and Ski, 2007;
Fitzpatrick et al., 2014) or first-order area-volume scaling relationships
(Liang et al., 2012; Morriss et al., 2013), rather than from physically-
basedmethods (Morriss et al., 2013; Ignéczi et al., 2016). This limitation
has made it difficult to use MODIS imagery to calculate the magnitudes
of water delivery through hydrofracture to the bed from rapid SGL
drainage events.

The overall objective of our study is to address the shortfalls men-
tioned above by developing and applying a Fully Automated SGL Track-
ing (“FAST”) algorithm, which is capable of generating time-dependent
SGL areas and, for the first time, volumes from successive MODIS im-
ages. We divide this objective into four aims. First, we extend the
existingwork that assesses and validates algorithms employed to calcu-
late SGL areas automatically fromMODIS imagery. For this, we compare
SGL areas derived using three automatic methods applied to MODIS
with SGL areas derived fromhigher-resolution Landsat-8 (LS8) imagery.
This first step is crucial since we require accurate SGL boundaries to use
as one of the input datasets for the SGL depth and volume calculations.
Second, we link the best SGL area-calculation technique to a physically-
based approach for estimatingMODIS SGL depths and volumes, and val-
idate these data against values calculated from LS8 images. Third, we in-
corporate the most effective SGL area- and depth-calculation methods
into the FAST algorithm, which tracks the area and volume evolution
of all individual SGLs within a series of MODIS images. Finally, once
we have developed and tested the FAST algorithm, we use it to investi-
gate the incidence of rapid SGL drainage events within two sectors of
West Greenland (Fig. 1): (a) the Paakitsoq region, a land-terminating
sector, north of Jakobshavn Isbræ; and (b) the region surrounding
Store Glacier, a large, fast-flowing marine-terminating outlet in the
Uummannaq district, north of the Paakitsoq region.

2. Previous approaches to derive supraglacial lake properties

This section presents a brief overview of existing research methods
to measure SGL area and depth from the images collected by various
satellite sensors. In Sections 2.1.1 to 2.1.3, we outline the three area-der-
ivation methods that are tested within our research reported later;
Section 2.1.4 presents a briefer summary of less frequently used
methods that are not examined in our study; and Sections 2.1.5 outlines
themethods used to appraise SGL area-derivation techniques to provide
context for the appraisal conducted under the first aim of our study. Fi-
nally, Section 2.2 gives details about the physically-based method used
within our work.

2.1. Supraglacial lake area

2.1.1. Static band thresholding
SGL boundaries are sometimes delimitedmanually (e.g. McMillan et

al., 2007; Lampkin, 2011; Lampkin and VanderBerg, 2011; Hoffman et
al., 2011; Langley et al., 2016) but this is time-consuming and subject
to user bias, so automatic methods are frequently preferred. One meth-
od for calculating SGL areas, proposed by Box and Ski (2007) forMODIS,
uses a ratio of the blue (band 3) to red (band 1) surface-reflectance
values, with a threshold value (which may require lake-by-lake adjust-
ment) chosen to define the water-covered pixels in a scene. This ap-
proach functions on the principle that red wavelengths are attenuated
more strongly than blue ones within water columns, reducing red re-
flectance values compared to blue ones. Thus, the ratio of blue to red re-
flectance can help to identify water-covered pixels. This method has
been applied successfully to Landsat scenes (e.g. Banwell et al., 2014;
Arnold et al., 2014; Pope et al., 2016), and has also informed fuzzy-
logic-based image classifications for SGL identification (Sundal et al.,
2009).

2.1.2. The Normalised Difference Water Index
The Normalised Difference Water Index (NDWI) also employs the

red and blue bands to derive SGL areas, and is defined as:

NDWI ¼ blue band reflectance� red band reflectanceð Þ
blue band reflectanceþ red band reflectanceð Þ : ð1Þ

A threshold NDWI value is needed to define water-covered pixels,
with tuning required depending upon the site of interest (Huggel et
al., 2002; Xu, 2006; Morriss et al., 2013; Doyle et al., 2013; Yang and
Smith, 2013; Moussavi et al., 2016; Miles et al., 2017). Many glaciologi-
cal studies use the NDWI (occasionally withmodification to include, for
example, the near-infrared and green bands) for MODIS imagery
(Morriss et al., 2013; Doyle et al., 2013; Fitzpatrick et al., 2014), and
for other sensors, notably Landsat and WorldView-2 (Huggel et al.,
2002; Xu, 2006; Gardelle et al., 2011; Yang and Smith, 2013; Moussavi
et al., 2016;Miles et al., 2017;Miles et al., in review). TheNDWI's perfor-
mance can be improved to minimise SGL misclassification through first
isolating image pixels that satisfy certain surface-reflectance criteria,
such as a requirement for a high (or low) reflectance value in the blue
(or red) band (Fitzpatrick et al., 2014).

2.1.3. Dynamic band thresholding
An alternative approach first proposed by Selmes et al. (2011) is dy-

namic thresholding of the red band, which has been used subsequently
by Selmes et al. (2013) and Everett et al. (2016). Similar to the static
blue/red band thresholding approach, thismethod also exploits the pro-
nounced attenuation of red lightwithin awater column, and compares a
central pixel's red reflectance against themean of the red reflectance for
all 441 pixels within amoving 21-by-21 pixel window surrounding this
pixel. SGLs are defined as all locations where the central pixel's reflec-
tance is below a given threshold, such as 0.65 of the mean reflectance
within the window (Selmes et al., 2011). This effectively gives this ap-
proach a dynamic spatial variability since the background reflectance
within themoving window changes spatially across the GrIS. This tech-
nique has not been applied to the other visible MODIS bands because
theywould need sharpening to 250m resolution, causing loss of fidelity
in the original data (Selmes, 2011).



Fig. 1. Study sites inWest Greenland: (a) the Paakitsoq region delineated by the red box; and (b) the Store Glacier regionwithin the blue box. The grey background shading represents ice
thickness (m), and the grey contour lines depict ice-surface elevation (m above sea level). The black linewithin the boxes for the study regions delineates the GrISmargin. The inset shows
the location of sites (a) and (b) within Greenland.
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2.1.4. Other approaches
Various othermethods have also been used to derive SGL areas from

remotely sensed imagery. First, image histograms can be automatically
classifiedwith the use of a spatially dynamicwindow thatmoves across
images; these histograms display different characteristics based upon
whether an image has SGLs present (Liang et al., 2012; Howat et al.,
2013). Second, images can be segmented, with bimodal histograms cre-
ated based upon buffered regions around SGLs, which are then exam-
ined dynamically to accurately identify SGL boundaries (Yang et al.,
2015; Yang and Smith, 2016). Third, fuzzy-logic membership can ex-
plore the likelihood that an image pixel fits within a specific class
(Sundal et al., 2009). Fourth, object-oriented classification can deter-
mine descriptive quantities about groups of pixels (Johansson and
Brown, 2013). Finally, textural analysis employs the spectral signatures
for scenes and identifies SGLs based on a maximum-likelihood algo-
rithm (Lettang et al., 2013).
2.1.5. Appraisal of supraglacial lake area-calculation techniques
Studies calculating SGL areas using MODIS imagery normally assess

the performance of their methods through validation with higher
spatial resolution imagery from another multispectral sensor, typically
Landsat or ASTER. Despite several studies conducting independent val-
idations, only one (Leeson et al., 2013) evaluates the performance of
several SGL area-derivation techniques for MODIS imagery by compar-
ing them against a single validation dataset, and no single consensus
has emerged regarding the best technique to use. Leeson et al. (2013)
evaluated the methods of Sundal et al. (2009), Selmes et al. (2011),
and Johansson and Brown (2013) for the Russell Glacier region, West
Greenland. The different methods' performance was assessed by com-
paring the number and size of SGLs reported using each algorithm
with those delineated manually from MODIS imagery and correspond-
ing ASTER scenes. Each method underestimated the total number of
SGLs (when comparedwith the number delimitedmanually) to a differ-
ing degree, leading to the recommendation that all methods should be
combined to identify themaximumnumber of SGLswithin a specific re-
gion (Leeson et al., 2013). Although Selmes et al.'s (2011) method re-
ported the fewest SGLs overall — 52% of manually delineated SGLs — it
calculated SGL area most accurately, with a 0.48 km2 root mean square
error (RMSE), compared with 0.78 km2 and 0.95 km2 RMSEs for Sundal
et al.'s (2009) and Johansson and Brown's (2013) techniques, respec-
tively. Leeson et al. (2013) indicated that the low number of SGLs
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derived from Selmes et al.'s (2011) approach likely resulted from the a
priori SGL distribution required as an input to that technique. The first
aim of this research involves extending this limited range of appraisal
work to determine which of the three techniques described in
Sections 2.1.1 to 2.1.3 is best to incorporate into a fully automated SGL
area-derivation algorithm.

2.2. Supraglacial lake depth and volume

2.2.1. Empirically-based approaches
Although MODIS imagery has been widely used to calculate SGL

areas, it has been used far less frequently to calculate SGL pixel depths,
and thus SGL volumes. Most of the studies that have conducted this
analysis employ either a first-order relationship between SGL areas
and volumes by approximating SGL basins as cones (Liang et al.,
2012), use areas as proxies for volumes (Morriss et al., 2013), or use em-
pirically-derived depth-reflectance curves from field data to calculate
pixel depths, which are integrated to provide SGL volumes (e.g. Box
and Ski, 2007; Fitzpatrick et al., 2014). While helpful for deriving infor-
mation on changes to SGL volume for specific sectors of the GrIS in indi-
vidual years, these methods lack a physical basis, so they cannot
necessarily be applied with confidence to other regions of the GrIS or
to different years.

2.2.2. A physically-based approach
Sneed andHamilton (2007), after Philpot (1989), developed thefirst

physically-based (i.e. radiative transfer) water-depth retrieval algo-
rithm for SGLs, which they applied to ASTER data. The method is
based on the attenuation of light within a water column according to
the Bouguer-Lambert-Beer law; deeper water results in higher light at-
tenuationwithin the column than shallowerwater. This phenomenon is
observed for all wavelengths of visible light, but the attenuation rate
varies by wavelength. To apply this to satellite imagery, therefore, the
waveband experiencing the greatest change in attenuation over the ex-
pectedwater depth range needs to be selected. The attenuation rate can
be used in the calculation of water depth (z, in m) if certain other prop-
erties of SGLs and the images are known:

z ¼ ln Ad−R∞ð Þ−ln Rpix−R∞
� �� �

g
; ð2Þ

where Ad is the SGL bottom albedo, R∞ is the reflectance for optically
deep (N40 m) water, Rpix is the reflectance of a pixel of interest, and g
describes the losses in upward and downward travel in awater column.
Since the method is physically based, it does not require site-specific
tuning, meaning that it can be widely applied across the GrIS, with the
option to test the sensitivity to its physical parameters (e.g. Pope et al.,
2016). Pope et al. (2016) fully describe the assumptions inherent in
this method, but, briefly, these are that: (i) the SGL surface is not dis-
turbed bywind; (ii) the SGL bottom is homogenous and gently sloping;
and (iii) sediment is not present within the SGL water column. Despite
these potential weaknesses, which remain unquantified in the litera-
ture, there is presently no alternative physically-based method, and it
has been applied successfully in studies for ASTER (Sneed and
Hamilton, 2007) and other multispectral sensors (Georgiou et al.,
2009; Morriss et al., 2013; Banwell et al., 2014; Arnold et al., 2014,
Pope et al., 2016; Moussavi et al., 2016; Langley et al., 2016; Ignéczi et
al., 2016), performing well both in Greenland and Antarctica.

Currently, only Morriss et al. (2013) and Ignéczi et al. (2016) have
applied this method to MODIS imagery. Ignéczi et al. (2016) used it
for 24–40 images over each of four melt seasons to derive maximum
SGL depths for validation of their SGL depths derived from digital eleva-
tion models (DEMs). Although they used individual daily R∞ values and
calculated Ad values for each SGL, they did not present evolutions of SGL
depth and volume across a series ofMODIS images.Morriss et al. (2013)
used the physically-based method to conclude that SGL area represents
a valid proxy for volume across their study region, but individual SGL
volumes or their full seasonal changes were not presented. Morriss et
al.'s (2013) study was also for just one sector of the GrIS and daily R∞
values were not calculated. Instead, a constant R∞ value was used,
meaning the Bouguer-Lambert-Beer law on which the technique relies
was not calibrated for individual scenes. Finally, the g value was cali-
brated from relatively limited field data, whereas Pope et al. (2016)
have since presented updated g values for a range of multispectral sen-
sors, including LS8, based on extensive testing of calculated SGL water
depths (derivedwith Eq. (2)) against in situ SGL spectral and bathymetric
data.We therefore address our second aimby furthering the limitedwork
above and by including Pope et al.'s (2016) developments relating to g
values. Section 3.4 provides information on how we derive the parame-
ters to be used for this physically-based approach as part of our study.

3. Approach, data and methods

3.1. Approach

Our approach comprises five methodological steps required to ad-
dress the four aims of this study (identified at the end of Section 1)
and therefore to achieve the overall objective of developing and apply-
ing a fully automated SGL area and volume tracking algorithm:

1. Download and pre-process MODIS and LS8 Operational Land Imager
(OLI) imagery for summer 2014 (Section 3.2).

2. Evaluate three methods for generating SGL areas from MODIS imag-
ery based on comparison with SGL boundaries derived from a super-
vised classification of contemporaneous LS8 images (Section 3.3).

3. Use the SGL boundaries generated by the most effective SGL area-
derivation algorithm to calculate SGL depths and volumes from
MODIS using a physically-based approach, and validate these mea-
surements against LS8-derived values (Section 3.4).

4. Incorporate the best performing SGL area- and associated depth-cal-
culation techniques into the FAST algorithm,which tracks the forma-
tion, evolution and cessation of SGLs through a sequence of satellite
images during a melt season (Section 3.5).

5. Apply the FAST algorithm to the Paakitsoq and Store Glacier regions
of West Greenland to investigate SGL evolution in summer 2014, in-
cluding analysis of the location, timing and magnitude of rapid SGL
drainage events (Section 3.6).

3.2. Satellite image collection and pre-processing

3.2.1. MODIS
Level-2 processed MOD09GQ (~250 m resolution) and MOD09GA

(~500 m resolution) daily surface-reflectance datasets from 1 May to
30 September 2014 (total = 153 images) were downloaded from the
USGS's LPDAAC data pool (https://lpdaac.usgs.gov/data_access/data_
pool). These MODIS products are derived from data collected by the
Terra satellite, which, unlike data from the Aqua satellite, have
favourable illumination over the GrIS (Box and Ski, 2007). This reduces
the need for discarding images that are not collected close to solar noon,
which would be necessary with Aqua data. Level-2 processing helps to
overcome the problem experienced by Selmes et al. (2011) where
shadows within areas of complex topography in level-1 MOD02 imag-
erywere occasionallymisclassified as SGLs,meaning that an a priori dis-
tribution of SGLswas required to help derive SGL areasmore accurately.
The level-2MOD09 data have the same position and source information
as level-1 datasets, but have had an atmospheric correction algorithm
(for atmospheric gases, cirrus clouds and aerosols) applied to all
cloud-free pixels identified within the MOD35 cloud mask.

We used MODIS surface-reflectance data from bands 1 (red; 0.620–
0.670 μm), 3 (blue; 0.459–0.479 μm) and 6 (1.628–1.652 μm). Band 4
(green; 0.545–0.565 μm) data were used to create red-green-blue
(RGB) composites but were not analysed. The MODIS Reprojection

https://lpdaac.usgs.gov/data_access/data_pool
https://lpdaac.usgs.gov/data_access/data_pool
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Tool Swath (version 2.2) was employed to convert raw datasets distrib-
uted as Hierarchical Data Format (HDF) files onMODIS's sinusoidal grid
to common projection systems using bilinear interpolation. As part of
this reprojection process, the native 231.7 m MODIS pixels were
resampled to 250 m and the 463.3 m pixels were resampled to 500 m
resolution, consistent with previous MODIS-based work in Greenland
(e.g. Selmes et al., 2011; Liang et al., 2012; Morriss et al., 2013;
Fitzpatrick et al., 2014). Only red-band data are available at near-
250m resolution, so the ratio of the red to blue band surface reflectance
values from theMOD09GQ andMOD09GA products was used to sharp-
en data from the blue and green bands to the red band's native higher
resolution (Gumley et al., 2007), a technique used previously (Box and
Ski, 2007; Fitzpatrick et al., 2014). When directly comparing MODIS
SGL areas, depths and volumes against those derived from LS8 imagery
for evaluation and validation purposes, we used entirely cloud-free
MODIS images. When analysing MODIS imagery for the whole season,
a cloud filter was applied to remove pixels that had band-6 reflectance
exceeding 0.15 (Box and Ski, 2007; Fitzpatrick et al., 2014). Cloud
shadowswere also removed by assuming that a pixel is cloud shadowed
when the mean band-6 reflectance in a surrounding 21-by-21-pixel
window exceeds 0.15, similar to Selmes' (2011) approach. After Liang
et al. (2012), we included an additional filter to remove pixels from
the analysis that were not classified as water on at least three occasions
during the season, following the observation that cloud shadows have
spectrally similar footprints to SGLs but are more temporally sporadic.
MODIS images were cropped to the chosen study sites (Fig. 1), and
ice-marginal areas were removed with the GIMP ice-sheet mask
(Howat et al., 2014).

3.2.2. Landsat-8
To test and validate the SGL area- and depth-calculation methods

before incorporating them into the FAST algorithm, entirely cloud-free
LS8 images from 2014 were used as the training dataset: five for
Paakitsoq (3 July, 11 July, 19 July, 4 August and 27 August) and six for
Store Glacier (1 July, 3 July, 11 July, 2 August, 11 August and 27 August).
This date range was selected to cover the key period of the melt season
when SGLs are present on theGrIS.We used 30m LS8 data frombands 2
(blue; 0.45–0.51 μm), 3 (green; 0.53–0.59 μm) and 4 (red; 0.64–0.67
μm), and 15 m data from band 8 (panchromatic; 0.50–0.68 μm),
which were downloaded from the USGS Earth Explorer interface
(http://earthexplorer.usgs.gov). We reprojected the images in ArcGIS
to a coordinate system common with the MODIS images and cropped
them to the regions of interest using the ‘Extract by Mask’ tool; the
GIMP ice-sheet mask (Howat et al., 2014) was used to remove areas pe-
ripheral to the GrIS. Following Pope et al. (2016), atmospheric correc-
tion was not applied to the LS8 scenes. We used each image's
metadata to convert digital numbers to top-of-atmosphere (TOA) re-
flectance and to correct for solar elevation (USGS, 2013). These TOA re-
flectance values represent an adequate proxy for surface reflectance
(Pope et al., 2016). Table S1 presents a full list of the LS8 tiles used in
our analysis.

3.3. Evaluating algorithms for deriving MODIS supraglacial lake area

Wecomplemented Leeson et al.'s (2013)work by testing three auto-
mated methods for identifying SGL areas: (i) red/blue band
thresholding (Section 2.1.1); (ii) the NDWI (Section 2.1.2); and (iii) dy-
namic thresholding of the red band (Section 2.1.3). We tested each
method for its sensitivity to numerous threshold values, something pre-
viously unaddressed in the literature. For methods (i) and (ii), we used
spatially fixed thresholds rather than adjusting them on a lake-by-lake
basis or to individual study sites, since our aim was to develop a meth-
odology that can be applied to large areas of the GrIS without any ‘local’
tuning. Formethod (iii), we chose amovingwindow of 25-by-25 pixels,
which is the same size as Liang et al.'s (2012), but bigger than Selmes et
al.'s (2011), to ensure that large SGLs were always reported. When
testing these methods, we excluded all SGLs that did not reach at least
two MODIS pixels (at 250 m resampled resolution) in area (i.e.
0.125 km2) on at least one occasion in the season; we quantified the
total amount of water that this procedure omits from the record by
using the LS8 data for small SGLs (i.e. those b0.125 km2). In addition,
we examined the (mean and maximum) areas of the SGLs ≥0.125 km2

that were excluded from the MODIS record but which were reported
in the LS8 data.

Fig. 2 displays our validation methodology as a flowchart. We vali-
dated the performance of the algorithms on an image-by-image basis,
aswell as against a single combined dataset containing all of the LS8 im-
ages. For the LS8 images, SGL areas were calculated using a supervised
classification in ArcGIS to ensure independence of the algorithm for
the estimates of SGL area. We evaluated the performance of the SGL
area algorithms for theMODIS imagery by comparisonwith the LS8-de-
rived values for total identified SGL numbers, total identified SGL areas,
the Pearson product-moment correlation coefficient of SGL areas, and
the RMSE of SGL areas.

Ourmethod of using the higher-resolution LS8 data as the validation
dataset is consistent with previous studies that validated SGL areas de-
rived from lower-resolution sensors such as MODIS against higher-res-
olution ones, including ASTER and Landsat, which were regarded as
ground-truth data (Sundal et al., 2009; Selmes et al., 2011; Liang et al.,
2012; Leeson et al., 2013; Fitzpatrick et al., 2014; Everett et al., 2016).
To verify the reliability of these validation data, the SGL outlines from
theArcGIS supervised classification of the LS8 imageswere qualitatively
compared against the SGLs present on background LS8 scenes, an ap-
proach also used to verify the validity of the training dataset in Pope
et al. (2016). This indicated that the SGLs had been accurately delineat-
ed and so we could have high confidence in the validation dataset. Any
false positives identified in the LS8 record by theArcGIS supervised clas-
sification were manually removed prior to assessments of the algo-
rithms' performance.
3.4. Deriving and validating MODIS supraglacial lake depth and volume

Once the best performing SGL area-calculation algorithm was
identified (Section 3.3), we calculated SGL depths for the pixels
within the SGL boundaries using Sneed and Hamilton's (2007)
method (Section 2.2.2). We applied this method to MODIS's red
and green bands, using Pope et al.'s (2016) updated g values for
MODIS. Depths were multiplied by pixel sizes and integrated over
SGL areas to provide SGL volumes. R∞ was calculated individually
for each scene from deep water in proglacial fjords. Ad was calculat-
ed image-by-image on a lake-by-lake basis by taking the mean re-
flectance of a ring dilated by one pixel around each SGL (Arnold et
al., 2014; Banwell et al., 2014), an improvement on previous studies
that used region-wide or static values (Sneed and Hamilton, 2007;
Morriss et al., 2013).

LS8 depths and volumes were calculated (Eq. (2)) within the
boundaries of SGLs derived from the LS8 supervised classification.
To calculate them, we followed the methods of Pope (2016) and
Pope et al. (2016) by averaging the SGL depths derived from LS8's
red and panchromatic bands, calculated with their updated g values.
We compared MODIS and LS8 pixel depths at the MODIS resolution,
which required resampling of the LS8 depth arrays using a bilinear
interpolation regime. This corrected for the finer resolution of LS8
imagery, which often showed deeper values towards the centre of
SGLs due to LS8's smaller pixel size. By contrast, MODIS and LS8
SGL volumes were compared on a lake-by-lake basis by integrating
all pixel depth values at the sensor's native resolution without any
resampling. This helped to eliminate any smoothing of the results,
due to resampling LS8 data to match the coarser MODIS resolution,
when the calculated depths were compared on a pixel-by-basis
basis. For both SGL depths and volumes, the Pearson product-

http://earthexplorer.usgs.gov


Fig. 2. Flowchart summarising the technique of validatingMODIS SGL areas, depths and volumes against LS8 values. The statistical performances of the algorithms across all of the images
when combined into a single dataset, as well as for each image individually, are assessed.
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moment correlation coefficient and the RMSE between the two
datasets were used to assess performance.

3.5. The FAST algorithm

Fig. 3 summarises the overall approach of the FAST algorithm,
which was applied using the best SGL area- and depth-calculation
techniques determined from the methods described in Sections 3.3
and 3.4. The only required inputs for the FAST algorithm are (i) a
mask of the study region and (ii) a set of MODIS MOD09 imagery
for a melt season. Both the mask and the MOD09 images must be
georeferenced with the NSIDC Polar Stereographic North projection
(EPSG: 3413). The algorithm can then track intra-annual
changes to SGLs that reach at least two 250 m MODIS pixels



Fig. 3. Flowchart summarising the FAST algorithm, including its key inputs, processes, outputs, and the processes that are evaluatedwithin our research. The numbers in the corners of the
square black-outlined boxes refer to the steps of the FAST algorithm described in Section 3.5.

119A.G. Williamson et al. / Remote Sensing of Environment 196 (2017) 113–133
(i.e. 0.125 km2) in area at least once in the season, and includes the
following steps:

1. Pre-processing: (i) crop MODIS images to the study regions using a
georeferenced mask; (ii) sharpen the resolution of MODIS's native
500 m resolution bands; (iii) mask ice-marginal areas; and (iv) re-
move clouds and pixels likely to be cloud shadows (see Section 3.2.1
for full pre-processing details).

2. Create stacked RGB composites of the study region.
3. Run the SGL area- and depth-calculation algorithms to derive daily

SGL areas, depths and volumes.
4. Derive the maximum extents of SGLs across the season from the

sum of daily SGL area masks.
5. Remove any false positive SGLs.
6. Create masks of SGLs to track across all images.
7. Track the seasonal evolution of SGL area and volume by examining,
for each image in the sequence, all of the pixels within the maxi-
mum SGL extents from step (4).

8. Identify rapidly draining SGLs according to critical drainage-dura-
tion and volume-loss thresholds.

9. Remove any falsely identified rapid SGL drainage events.
10. Derive rapidly draining SGL locations, drainage dates and their

water volumes prior to drainage.

In step (5), false positives are removed by filtering SGLs that do not
appear at least three times over the season, and which are not observed
on more than one occasion during five consecutive cloud-free observa-
tions of their basins upon their first detection (following Liang et al.
(2012)). To identify rapid drainage in step (8), we assume a SGL drains
by hydrofracture if it loses ≥80% of itsmaximum seasonal volume over a
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period of ≤4 days. Although hydrofracture is generally acknowl-
edged to occur in ≤2 days (e.g. Das et al., 2008; Tedesco et al.,
2013), which is the time adopted by Selmes et al. (2011, 2013) in
their studies, other workers accounted for uncertainty within sat-
ellite observations by relaxing this threshold to four days
(Fitzpatrick et al., 2014; Doyle et al., 2014) or six days (Morriss et
al., 2013).

Under step (9), we require there to be at least seven cloud-free ob-
servations of an empty SGL basin, with no refilling permitted, following
rapid drainage; if this requirement is not met, the rapid event is re-
moved from our analysis. To ensure that the FAST algorithm reliably
identifies rapid SGL drainages within this study, all events were manu-
ally verified using the RGB composites.

For step (10), the date of SGL drainage is identified as the day on
which the critical volume loss begins since this is likely to be close
to the time when hydrofracture is initiated, and the ultimate focus
of our research is to investigate this occurrence. Specifically, we
plan to use these data in future work to investigate the relation
between the initiation of hydrofracture and other local and
synoptic factors that might be linked to initiating this process,
possibly ultimately helping to explain the incidence of rapid
SGL drainage events on the GrIS. In this study, we investigate
simply the relationship between the rapidly draining SGL water
volumes and the ice thicknesses beneath them, which are derived
beneath SGL centroids from the GrIS terrain data of Morlighem et
al. (2014).
3.6. Study sites

The two study sites (Fig. 1) were used to evaluate the three SGL
area-derivation algorithms (Section 3.3), to validate the SGL
depth-derivation technique (Section 3.4), and to generate the
first output dataset from the FAST algorithm (Section 3.5). We
chose these two regions as they allow the suitability of the
methods to be investigated in both terrestrial and marine-termi-
nating sectors of the GrIS; moreover, both areas are the foci of pre-
vious and ongoing research on supraglacial and subglacial
hydrology, and ice-sheet dynamics (e.g. Catania et al., 2008;
Colgan et al., 2011b; Banwell et al., 2012, 2013, 2014, 2016;
Arnold et al., 2014; Todd and Christoffersen, 2014; Ryan et al.,
2015; Fried et al., 2015).
Table 1
Performance indicators for the best performing SGL area-calculation algorithms tested at the stu
performing algorithm and threshold at each site is highlighted in bold italicised text. Full resul

Region SGL area
algorithm

Threshold
value

Total LS8 SGL
area (km2)

LS8 SGL
number

Total MODIS
area (km2)

Paakitsoq

Dynamic
0.640

173.7 406

110.1
0.645 114.3
0.650 117.6

NDWI
0.120 94.7
0.125 82.2
0.130 73.8

Blue/red
band ratio

0.770 74.1
0.775 79.2
0.780 84.4

Store Glacier

Dynamic
0.635

121.3 298

77.2
0.640 79.1
0.645 81.2

NDWI
0.180 21.2
0.190 17.2
0.195 15.3

Blue/red
band ratio

0.710 27.3
0.750 54.8
0.760 63.9
4. Results

4.1. Supraglacial lake area

4.1.1. Performance of supraglacial lake area-calculation algorithms
Initially, the two study regions are considered independently to de-

termine which area-delineation method and threshold is best for each;
the data are then combined into a single dataset for both regions to elicit
the best performing threshold across both of them. Table 1 presents the
results for SGL areas for theMODIS images that overlap (temporally and
spatially) with the LS8 images, calculated with the three best
performing thresholds for each area-derivation technique. Fig. 4
shows a comparison of SGL areas calculated for the best threshold
value with each algorithm at each site. Some false positives were iden-
tified by the area-derivation algorithms — for example, see the black
box on Fig. 5(a). Dynamic thresholding of the red band generally out-
performs the other approaches for both regions in terms of RMSEs and
the percentage of SGLs reported by MODIS relative to the total number
of SGLs reported in the LS8 dataset (Table 1). While the other methods
with specific thresholds occasionally result in higher r values, they are
less accurate than the dynamic red band thresholding method in
terms of RMSEs and reported percentages of SGLs (Table 1). Although
less accurate than the dynamic red band thresholding method, the
NDWI and blue/red band ratio thresholding methods perform better
at Paakitsoq than Store Glacier: RMSEs for the NDWI and blue/red
band ratio thresholding approaches are b0.40 km2 at Paakitsoq but
N0.40 km2 at Store Glacier. Our results show that dynamic thresholding
is the only approach that can be applied with similar threshold values
across different regions of the GrIS. The best performing values for dy-
namic thresholding are nearly identical between Paakitsoq and Store
Glacier, with the threshold value of 0.640 at Store Glacier only margin-
ally outperforming the 0.645 value for Paakitsoq in terms of number of
SGLs reported (Table 1). This compares with the best performing
threshold values for the NDWI (or blue/red band thresholding) ap-
proach, which were 0.125 (or 0.775) in the Paakitsoq region and 0.190
(or 0.710) at Store Glacier. The red/blue band thresholding performs
significantly less accurately at Store Glacier, with higher RMSEs, lower
r values and lower SGL numbers reported. Even though a threshold
value of 0.710 performs best, with a RMSE of 0.418 km2 — similar to
the RMSEs for the other algorithms— use of this threshold value results
in an exceptionally low reporting of SGL numbers (only 10.1%) com-
pared with the LS8-derived SGLs.
dy sites. All r values are significant at the 95% confidence interval (p-value b 0.05). The best
ts for all thresholds tested are presented in Table S1.

SGL Difference (%)
in SGL area

Number of LS8 SGLs
predicted

Detection (%)
of LS8 SGLs

RMSE
(km2)

r

36.6 161 39.7 0.338 0.706
34.2 169 41.6 0.338 0.702
32.3 171 42.1 0.341 0.696
45.5 106 26.1 0.368 0.752
52.7 95 23.4 0.369 0.762
57.5 86 21.2 0.374 0.760
57.3 87 21.4 0.374 0.760
54.4 90 22.2 0.371 0.760
51.4 96 23.6 0.372 0.755

36.4 133 44.6 0.301 0.679
34.7 135 45.3 0.301 0.678
33.0 135 45.3 0.303 0.674
82.5 34 11.4 0.425 0.487
85.8 30 10.1 0.418 0.541
87.4 29 9.7 0.419 0.563
77.5 40 13.4 0.458 0.417
54.8 55 18.5 0.871 0.199
47.3 63 21.1 0.942 0.196



Fig. 4. SGL areas derived from the algorithms applied toMODIS imagery comparedwith SGL areas derived from the LS8 supervised classification for the (a) Paakitsoq and (b) Store Glacier
regions. Data shown are for the best performing threshold value for each SGL area-delineation technique. The blue lines on both subplots show y=x. Note that only SGLs predicted by both
the MODIS area-derivation technique and the LS8 supervised classification are plotted.
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It is more helpful to have a single uniform threshold value across
both regions to allow it to be incorporated into a fully automated ap-
proach. Therefore, SGL areas derived fromMODISwith threshold values
in the range 0.640 to 0.645 (i.e. the best performing thresholds for the
two regions) at 0.001 increments are compared with LS8 SGL areas.
This determines that the 0.640 threshold is best, for which we obtain a
final RMSE value for SGL area calculations of 0.323 km2, an r of 0.694,
and a total of 42% of the LS8 SGLs reported (Fig. 6). Thresholds between
0.641 and 0.645 performmarginallyworse (r=0.690–0.693,with all p-
values b 0.01; RMSE=0.324 km2; reported LS8 SGL number remains at
42%). We find no obvious spatial pattern in terms of SGLs that are re-
ported in the LS8 dataset but which are absent from the MODIS record:
SGLs at all elevation bands and within regions of both dark and bright
surrounding ice are reported equally well, but, similarly to Leeson et
al. (2013), we see that the areas of SGLs with partial ice cover are
under-estimated (e.g. see outlines on Fig. 5).

4.1.2. Supraglacial lakes omitted from the MODIS record
To quantify the impact of using the coarser-resolution MODIS prod-

uct on the reporting of total SGL areas, we assess the areas classified as
water-covered from the LS8 supervised classifications that are less than
two MODIS pixels in size. It is important to note that the values
Fig. 5. SGL perimeters, shown in red, as derived using a dynamic thresholding approach applied t
Glacier regions, overlain onto background LS8 images (see Table S1 for image details). The total
false positive SGL is highlighted in (a)within the black box labelled ‘FP’. The blue circles in (a) an
areas within the green box on (a) and orange box on (b) indicate the areas contained within th
refills and then re-drains (Section 5.3.1), although the SGL is absent from this image.
presented here represent all water-covered areas identified from the
LS8 supervised classification, so while these numbers will involve
some smaller SGLs, water contained within supraglacial streams and
slush zones, for example, will also be included. Across the LS8 imagery,
areas of contiguouswater covering b0.125 km2 in area represent an av-
erage total per image of 3.84 km2 (range 0.29–9.61 km2) for Paakitsoq
and 1.99 km2 (range 0.11–4.86 km2) for Store Glacier. These compare
with the much higher average regional cover by SGLs ≥ 0.125 km2 re-
corded in the MODIS images of 22.02 km2 (Paakitsoq) and 13.18 km2

(Store Glacier). Relative to the sizes of the ice-covered regions, these
values for area covered by SGLs b 0.125 km2 in size represent coverages
of only 0.077% (Paakitsoq) and 0.037% (Store Glacier). Compared with
the areas covered by SGLs in theMODIS imagery, these otherwater-cov-
ered areas represent only 17.4% (Paakitsoq) and 15.1% (Store Glacier) of
the total water-covered areas identified by MODIS. These small SGLs
have a mean size of 0.006 km2 at both Paakitsoq and Store Glacier.

In addition to the small (b0.125 km2) SGLs that could never be iden-
tified in MODIS imagery due to its coarse resolution, we examine the
size distribution of SGLs ≥ 0.125 km2 (and so which could theoretically
be identified by MODIS) that are present in the LS8 record but which
are not identified in the MODIS SGL classification scheme (using a dy-
namic band threshold value of 0.640). At Paakitsoq, the SGLs omitted
oMODIS's red bandwith a threshold value of 0.640 for both the (a) Paakitsoq and (b) Store
areal extentswithin panels (a) and (b) are equivalent to those shown in Fig. 1(a) and (b). A
d purple circles in (b) indicate SGLs that drain rapidly as part of a cluster (Section 5.3.1). The
e subplots of Fig. 14. The yellow circle in (a) indicates the area within which a SGL drains,



Fig. 6. SGL areas across both study sites derived fromMODIS imagery using a dynamic thresholding approach applied to the red bandwith a threshold value of 0.640 compared with SGL
areas ascertained from the LS8 supervised classification. n represents the number of data points on the graph. The blue line shows y=x. The r value is significant with a p-value of b0.01.

Table 2
Summary of the performance ofMODIS SGL depths derived from the red and green bands
compared with LS8 depths derived from the average of the red and panchromatic bands
across both study sites for each image date. All values of r except the one marked with
an asterisk are significant at the 95% confidence interval (p-value b 0.05). Summary data
for the best performing band (i.e. band 1, red) across all days are shown in bold italicised
text.

Region MODIS band tested Date (2014) n r RMSE (m)

Paakitsoq Band 1 (red)

03 Jul 213 0.675 1.11
11 Jul 157 0.134* 1.45
19 Jul 215 0.610 1.08
04 Aug 225 0.668 1.29
27 Aug 152 0.649 0.95
All 962 0.447 1.19

Store Glacier Band 1 (red)

01 Jul 121 0.427 1.88
03 Jul 137 0.388 1.49
11 Jul 161 0.221 0.94
02 Aug 101 0.419 1.35
11 Aug 111 0.575 1.30
27 Aug 72 0.497 1.21
All 703 0.259 1.39

Paakitsoq Band 4 (green)

03 Jul 212 0.659 6.30
11 Jul 158 0.160 10.22
19 Jul 214 0.570 6.89
04 Aug 107 0.329 3.33
27 Aug 151 0.668 6.48
All 842 0.298 7.11

Store Glacier Band 4 (green)

01 Jul 121 0.381 4.96
03 Jul 137 0.385 5.86
11 Jul 161 0.176 7.52
02 Aug 102 0.380 10.54
11 Aug 111 0.542 11.64
27 Aug 71 0.425 11.10
All 703 0.233 8.59
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from the MODIS record have a mean area of 0.26 km2 (maximum
1.20 km2) and at Store Glacier, these SGLs have a mean area of
0.27 km2 (maximum 1.08 km2). These are relative to mean SGL areas
within the MODIS-reported SGL populations of 0.69 km2 (Paakitsoq)
and 0.59 km2 (Store Glacier). An unpaired Student's t-test reveals a sta-
tistically significant difference between the SGL areas for the popula-
tions of SGLs reported by LS8 that are absent from the MODIS record
and the SGLs that are reported by both MODIS and LS8: for Paakitsoq,
t = 8.4, with a p-value of b0.01; for Store Glacier, t = 6.4, with a p-
value of b0.01. Overall, this analysis indicates that smaller SGLs tend
to be omitted from MODIS data while being reported in LS8 data.

4.2. Supraglacial lake depths and volumes

4.2.1. Performance of the supraglacial lake depth-calculation algorithm
Tables 2 and 3 present results from theMODIS-based calculations of

SGL depth and volume with the green and red bands, compared with
the corresponding LS8-based depths and volumes,whichwere calculat-
ed using LS8's red and panchromatic bands as inputs to the physically-
based approach. Depths and volumes calculated with MODIS's red
band significantly outperform those from the green band for both
sites. For the red band, RMSEs for SGL pixel depths are 1.19 m
(Paakitsoq) and 1.39 m (Store Glacier), relative to a mean MODIS
pixel depth for water-covered pixels of 1.40 m across SGLs from all of
the images. RMSEs for SGL volumes are 6.1 × 107 m3 (Paakitsoq) and
5.7 × 107 m3 (Store Glacier), relative to a mean MODIS SGL volume of
4.0 × 107 m3 for SGLs from all of the images. Green band RMSEs are al-
waysmore than double these values. In general, theMODIS-derived SGL
depths and volumes are lower than the LS8 ones, particularly for depths
b ~4 m, although there is spread in the data (Figs. 7 and 8). There are
two dates for which this pattern does not obviously apply. The first is



Table 3
Summary of the performance of MODIS SGL volumes derived from the red and green
bands compared with LS8 values derived from the average of the red and panchromatic
bands across both study sites for each image date. All values of r are significant at the
95% confidence interval (p-value b 0.05). Summary data for the best performing band
(i.e. band 1, red) across all days are shown in bold italicised text.

Region MODIS band tested Date (2014) n r RMSE (km3)

Paakitsoq Band 1 (red)

03 Jul 48 0.881 0.050
11 Jul 50 0.456 0.045
19 Jul 23 0.897 0.088
04 Aug 25 0.974 0.066
27 Aug 13 0.963 0.085
All 159 0.777 0.061

Store Glacier Band 1 (red)

01 Jul 27 0.803 0.082
03 Jul 27 0.741 0.065
11 Jul 30 0.446 0.040
02 Aug 16 0.897 0.049
11 Aug 18 0.958 0.023
27 Aug 11 0.918 0.045
All 129 0.673 0.057

Paakitsoq Band 4 (green)

03 Jul 47 0.813 0.123
11 Jul 50 0.693 0.353
19 Jul 22 0.558 0.220
04 Aug 25 0.967 0.570
27 Aug 12 0.966 0.390
All 156 0.795 0.339

Store Glacier Band 4 (green)

01 Jul 27 0.810 0.072
03 Jul 27 0.743 0.127
11 Jul 30 0.559 0.263
02 Aug 16 0.826 0.455
11 Aug 18 0.940 0.413
27 Aug 11 0.928 0.297
All 129 0.674 0.279
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11 July at Paakitsoq, shown on Figs. 7(a) and 8(a), where SGL pixel
depths and volumes tend to be higher in the MODIS than the LS8 im-
ages. Further investigation shows that the 11 July LS8 image includes re-
gions, which are mainly on the ice sheet, that are covered by a light
white banding, interpreted to be very fine high-level clouds, aerosol or
dust, which could explain the seemingly low LS8 pixel depths calculated
for this image. The second major anomaly is the sharp positive tail for
the SGL depths and volumes at Paakitsoq on 4 August (Fig. 7(a)). This
may result from the difficulty in accurately resolving water depths N
~4 m when using LS8's red and panchromatic bands for the physical-
ly-basedmethod (Moussavi et al., 2016). This, therefore, likely indicates
a limitationwith the validation dataset rather thanwith the approach as
applied to the MODIS data. In Fig. 8(a), SGL volumes are, however, not
similarly overestimated for MODIS SGLs compared with LS8 ones,
Fig. 7. SGL pixel depths calculated from MODIS's red band for the (a) Paakitsoq and (b) Sto
panchromatic bands. The blue lines on both subplots show y=x. Note the two anomalous set
systematically higher than the LS8 values.
which suggests that resampling the LS8 depth arrays to match the
MODIS resolution offsets this bias to a degree. For all of the images,
there is no tendency for higher SGL depth errors to be present for specif-
ic elevation bands or for given SGL sizes (Figs. 7, 8 and 9).

When the differences between MODIS and LS8 depths are averaged
across all of the images, the mean differences are small, with the vast
majority of SGLs displaying errors in the range –0.5 to 0.5 m (Fig. 9). Er-
rors of ~−3m (i.e. red values on Fig. 9), whereMODIS depths are higher
than LS8 ones, are possibly due the effect described above, where
MODIS records deeper water than LS8 due to the limited sensitivity of
the LS8 method at higher depths. Errors of ~ +3 m (i.e. blue values on
Fig. 9), where LS8 values are consistently higher than MODIS ones,
may be the competing effect, which results from the coarse resolution
of MODIS, meaning that, on some days, the deepest water pixels within
SGLs were not recorded accurately within the MODIS surface-reflec-
tance data, and were instead sampled as lighter (and so shallower)
water pixels. This possible bias towards the sampling of brighter pixels
in MODISmay also result in the derivation of higher Ad values in MODIS
than in LS8, which would lead to the reporting of lower SGL depths by
MODIS than LS8. Combining the red band MODIS-derived SGL pixel
depths and volumes to form single samples across both study regions,
the final RMSE values are 1.27 m for SGL depth and 5.9 × 107 m3 for
SGL volume (Fig. 10). Although both values are statistically significant
(p-value b 0.01), r is greater for SGL volumes (r=0.741) than depths
(r=0.365), likely due to the fewer data points and lower spread within
the SGL volume dataset. These calculated errors are applied to the SGL
depths and volumes calculated by our FAST algorithm for MODIS imag-
ery. These combined data display a similar pattern to the region-specific
data, with a tendency forMODIS values to be underestimated compared
with LS8 ones, but with some scatter. This pattern also broadly matches
that observed for the LS8 versus MODIS SGL area comparisons (Fig. 6).

We investigate whether there is bias in the errors for the data for
lower (or higher) SGL depths and volumes. MODIS depth measure-
ment errors show little variation (mean = 1.16 m; σ = 0.12 m;
range = 1.00–1.24 m) for water ≤ 4 m deep, but they are almost
three times higher (RMSE = 2.99 m) for water N 4 m deep
(Table 4). A similar pattern exists for SGL volumes (Table 5),
where SGLs with volumes b1.0 × 108 m3 have lower errors for and
variation within their measurements (mean = 5.6 × 107 m3; σ =
1.2 × 107 m3; range = 3.9–8.0 × 107 m3) than SGLs exceeding this
volume (RMSE = 1.1 × 108 m3). This pattern of errors may be par-
tially explained by this study's use of the longer-wavelength red
and panchromatic bands from LS8 data to derive the SGL depths
and volumes within the validation dataset. These longer wave-
lengths attenuate more quickly within the water column than
shorter wavelengths, such as LS8's green band, and this may result
re Glacier regions, compared with those calculated from the average of LS8's red and
s of SGL pixel depths for Paakitsoq on 11 July and 4 August, where the MODIS values are



Fig. 8. SGL volumes (calculated by integrating the SGL pixel depths) derived from MODIS's red band for the (a) Paakitsoq and (b) Store Glacier regions, compared with those calculated
from the average of LS8's red and panchromatic bands. The blue lines onboth subplots show y=x. Note the anomalous set of SGL volumes for Paakitsoqon11 July,where theMODIS values
are systematically higher than the LS8 values.

124 A.G. Williamson et al. / Remote Sensing of Environment 196 (2017) 113–133
in the LS8 data's bias against the deepest (N4 m) water (Moussavi et
al., 2016).

4.2.2. Supraglacial lake volume scaling
Using the single sample of SGL volumes for both regions, a regres-

sion of MODIS-derived SGL volumes against LS8-derived SGL volumes
yields a slope coefficient of 0.721 (Fig. 10(b)). Scaling the MODIS SGL
volumes accordingly (i.e. by dividing them by the slope coefficient of
0.721), and comparing them with the LS8 values, reduces the RMSE
slightly from 5.9 × 107 m3 to 5.4 × 107 m3. Depth-based scaling is not
attempted because, when the depths were compared, this was done
on a pixel-by-pixel basis; whereas for the volumes, comparisons were
conducted on a lake-by-lake basis, for which no resampling was
required.

4.3. Supraglacial lake evolution at Paakitsoq and Store Glacier

When applied to the study sites in summer 2014, the FAST algorithm
tracks individual area and volume changes for 202 SGLs at Paakitsoq and
122 SGLs at Store Glacier, the first time that an automatic derivation of
seasonal changes to SGL volume has been possible on the GrIS. For
each day of the analysis, individual SGL areas and volumes are integrat-
ed to obtain the total SGL areas and volumes across the regions. Broadly
similar patterns are observed for both sites, with gradual increases in
SGL area and volume in the early melt season, peaks in total stored
SGL water in mid-July and early August, and then decreasing SGL area
andwater volume frommid-August onwards (Fig. 11). For both regions,
there is a statistically significant correlation (with high r values) be-
tween the total number of SGLs on an image and the total volume of
water contained within SGLs for that image (Fig. 12). However, there
is no statistically significant relationship between the total number of
SGLs on an image and the mean SGL volume for the SGLs on that
image, although the relationship is stronger at Store Glacier (r =
0.469) than Paakitsoq (r = −0.008) (Fig. 12).

Table 6 summarises results from the identification of rapid SGL
drainage events using the FAST algorithm, with full drainage-event de-
tails in Tables S4 and S5. Themean surface elevation at which rapid SGL
drainage events occur is ~1050m in both regions, and both regions also
exhibit similar median dates of rapid drainage initiation: 12 July
(Paakitsoq) and 7 July (Store Glacier). However, the modal dates of
rapid drainage vary more between the two regions: 13 July (Paakitsoq)
and 3 July (Store Glacier). There is an obvious upglacier, seasonal pro-
gression of rapid SGL drainage in both regions, and 37% of rapid events
occur from9 to 18 July (Fig. 13). The fewer late-season (i.e. post-18 July)
rapid drainage events may result from increasing regional cloud cover
during this later period (cf. Fig. 11), meaning that rapid SGL drainage
could not be identified with certainty.
5. Discussion

5.1. Performance of the supraglacial lake area-calculation algorithms

The first aim of this study was to evaluate a variety of methods that
are commonly used to automatically classify SGL areas fromMODIS im-
agery since a consensus on the best method to use has not yet emerged.
In doing this, our study complements Leeson et al.'s (2013) testing of
numerous SGL area-derivation methods, but builds on that work by
also testing a range of threshold values for the different methods. We
found that a dynamic thresholding technique applied to MODIS's red
band with a threshold value of 0.640 performs best among the algo-
rithms tested. The RMSE of 0.32 km2 for this method is higher than
values reported in some other studies (e.g. 0.14 km2 in Fitzpatrick et
al. (2014); 0.20 km2 in Liang et al. (2012); 0.11 km2 in Selmes et al.
(2011); 0.22 km2 in Sundal et al. (2009); 0.08 km2 in Everett et al.
(2016)), but is lower than Leeson et al.'s (2013) value of 0.48 km2 for
dynamic thresholding of the red band. However, these studies used a
range of validation data derived from different techniques for different
regions and areal extents of the GrIS, which likely explains the differ-
ences in performance compared with this study. For example, the
MODIS SGL areas in our work were compared against LS8 SGL areas
from a supervised classification, while previous research validated
them against manually derived SGLs (e.g. Leeson et al., 2013; Everett
et al., 2016) or other validation data. In addition, our higher RMSE
may be because the earlier studies only compared specific-sized SGLs
or subsets of a complete population: for example, Liang et al. (2012) in-
cluded only 63 SGLs in their sample rather than the complete dataset
used here. Our use of the entire SGL population allows for more robust
comparisons than if a subset of SGLshad been used.We identified a sim-
ilar percentage of the total number of SGLs presentwithin the validation
dataset as other studies (e.g. Leeson et al., 2013). Using dynamic
thresholding of the red bandwithout an a priori distribution of SGLs ap-
pears to have had only a minor impact on the overall percentage of SGL
numbers reported compared with Leeson et al.'s (2013) value. Howev-
er, it is feasible that omitting this pre-defined distribution leads to the
lower accuracy (in terms of the RMSE) of SGL areas compared with
SGL areas in other studies (Selmes et al., 2011; Everett et al., 2016).

Dynamic thresholding of the red band is sensitive to the chosen
threshold value, with values of 0.635–0.650 performing the best de-
pending upon the region investigated (Table 1). Using this method,
themarginally higher performance (based upon the RMSE and r values)
for a threshold of 0.645 for the Paakitsoq region can likely be attributed
to the large areas of dark ice, and so low albedo, present within this
region compared with Store Glacier (see the differing ice darkness on
Figs. 5(a) and (b)). We investigate whether this difference in back-
ground albedo is meaningful by comparing surface-reflectance values
for all visible spectral bands across all of the ice-covered areas of our



Fig. 9. The mean difference (derived by averaging the difference between pixel water
depths across all images) between SGL depths for the (a) Paakitsoq and (b) Store
Glacier regions, highlighting the lack of spatial or elevation bias in the errors of SGL
water depth. A positive difference indicates that the MODIS SGL depth has been
underestimated compared with the LS8 depth, and vice versa. To allow these
comparisons, the LS8 depths were resampled using a bilinear technique to 250 m
resolution and the MODIS depths were retained at their native 250 m resolution. The
GrIS margin is shown by the thick black line on both subplots, and the areas within the
plots are equivalent to those shown within Fig. 1. The SGL boundaries shown are
derived from the sum of the SGL extents across all of the LS8 images. The green insets
on both subplots are higher-scale examples of the observation of consistently higher LS8
depths towards SGL centres compared with MODIS values. The red insets on both
subplots are higher-scale examples of where MODIS predicts deeper water than LS8
over SGL centres, possibly due to the limited sensitivity of the LS8 method at very high
depths.
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two regions. To ensure similar illumination, this is conducted for the LS8
tiles that were obtained from the same pass of the LS8 satellite across
both study regions (i.e. for the passes on 3 July, 11 July and 27 August;
Table S1). Since albedo measures diffuse reflection and here we are
comparing surface-reflectance values (i.e. directional-hemispherical re-
flection), we note that these values represent only a first-order approx-
imation. We find a mean directional-hemispherical reflection for all
bands of 0.64 (σ = 0.078) for Paakitsoq and 0.67 (σ = 0.097) for
Store Glacier, with a similar pattern for the red band: directional-hemi-
spherical reflection of 0.61 (σ = 0.072) for Paakitsoq and 0.66 (σ =
0.092) for Store Glacier. With the darker background ice at Paakitsoq,
the mean overall reflectance in the moving window used for dynamic
thresholding is lower than at Store Glacier, and so a slightly higher
threshold is needed to define a SGL at Store Glacier than at Paakitsoq.
Even with this effect represented at these sites, the performance of the
dynamic thresholding techniquewas notmarkedly affected by differing
thresholds and at Paakitsoq a value of 0.640 performed nearly aswell as
the threshold value of 0.645. Overall, this indicates that there is a broad
peak in performance for threshold values in the 0.635–0.650 range
across the GrIS, also justifying Selmes et al.'s (2011) use of a 0.650
threshold.

Although the NDWI and blue/red band thresholding approaches
perform relatively poorly compared to the dynamic thresholdingmeth-
od, once the thresholds for these methods were tuned for the specific
study regions, their RMSEs for SGL area (Table 1) were lower than
those for some other SGL area algorithms examined by Leeson et al.
(2013): they found RMSEs of 0.78 km2 (using Sundal et al.'s (2009)
method) and 0.95 km2 (using Johansson and Brown's (2013) method)
when comparing automatic versus manually derived MODIS SGLs.
Thus, applying the blue/red band thresholding and NDWI approaches
to specific regions of theGrIS can bedefended, but onlywith adjustment
of thresholds either on a site-by-site basis (Fitzpatrick et al., 2014) or
even on a lake-by-lake basis (Box and Ski, 2007). However, this would
be problematic for applying thresholds across larger areas of the GrIS
and for their incorporation into automatedmethodologies of SGL detec-
tion and tracking, such as that developed in our study. Lower perfor-
mance for the NDWI and blue/red band thresholding methods
compared to dynamic thresholding of the red band may also result
from the sharpening of MODIS's 500 m native resolution blue band to
match that of the 250 m red band, meaning blue-band values are
smoothed and the ratio between the highly-attenuating red and the
lower-attenuating blue bands becomes diminished (Selmes, 2011).

5.1.1. Supraglacial lakes omitted from MODIS imagery
As part of our study's first aim, it was necessary to quantify the im-

pact of using MODIS imagery on the reporting of total SGLs on the
GrIS, particularly to determine whether the use of coarser-resolution
imagery represents a sufficient trade-off in terms of its spatial resolution
to exploit its higher temporal resolution. Our work indicates that using
coarse-resolution MODIS imagery results in the omission of numerous
SGLs in two main ways. The first category of SGLs omitted from the
MODIS record are those b0.125 km2 (asmeasured by LS8) and therefore
which could never be resolved within the MODIS record because they
are below MODIS's threshold reporting area. Our results show that
these small SGLs represent only a small percentage relative to the re-
gional coverage by SGLs ≥ 0.125 km2 and which are identified by
MODIS. Although these values are low, use of MODIS imagery alone po-
tentially misses SGLs within this category that may be capable of
hydrofracture: Krawczynski et al. (2009) indicate SGLs ≥ 0.25 km in di-
ameter (i.e. with areas ≥ 0.0491 km2 when approximated as perfect cir-
cles) can fracture through subfreezing ice 1 km thick in low-tension
regions of the GrIS. We investigate the data to determine the number
of SGLs in the study regions that meet this criterion (i.e. with sizes of
0.0491–0.125 km2) by creating a maximum SGL extent mask from the
LS8 images. We find 189 SGLs that grow to within this size range but
do not growbeyond it at least once in the season in the Paakitsoq region,
and 89 in the Store Glacier region. The second category of SGLs omitted
from the MODIS record are those that are theoretically large enough to
be identified byMODIS (i.e. ≥0.125km2), but which are not identified as
part of the SGL area-classification scheme. The SGL area-derivation algo-
rithmused in this study resulted in the reporting of only 42% of all of the
LS8 SGLs ≥ 0.125 km2 in area. By investigating the area of the SGLs ≥
0.125 km2 reported by LS8 but not byMODIS, we showed that these un-
reported SGLs tended to be smaller than themean size of theMODIS-re-
ported SGLs within both regions (Section 4.1.2). This indicates that
MODIS can more reliably identify larger SGLs than those that lie closer



Fig. 10. SGL (a) pixel depths and (b) volumes across both study sites derived usingMODIS's red band comparedwith depths and volumes derived from LS8's red and panchromatic bands.
The blue lines on both subplots show y=x. The black line on (b) is an ordinary least-squares linear regression, y=0.721(x), which forms the basis of the SGL volume scaling relationship
described in Section 4.2.2.
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to its threshold reporting area of 0.125 km2. This under-reporting by
MODIS replicates Leeson et al.'s (2013) findings.

Overall, these results suggest that using the MODIS record in isola-
tion from spatially finer records is unlikely to introduce significant loss
of information on the hydrology of the GrIS since a high percentage of
SGLs is included in theMODIS record. To be able to capture the drainage
of these small SGLs, which may be capable of hydrofracture
(Krawczynski et al., 2009), a dataset with the spatial resolution of (at
least) the LS8 sensor but with MODIS's near-daily temporal resolution
is required. A combined record of LS8 and Sentinel-1 SGL observations
holds promise in this regard (Miles et al., in review).

5.2. Performance of the supraglacial lake depth-calculation algorithm

The study's second aimwas to apply a physically-based depth-calcu-
lation algorithm to the areas within the SGL boundaries derived from
the best performing SGL area-calculation technique. The application of
Sneed and Hamilton's (2007) physically-based SGL depth-calculation
algorithm to MODIS's red band predicts SGL depths and volumes in
West Greenland with errors comparable to those in other studies
(Pope et al., 2016). Using MODIS's red band instead of its green band
produces significantly better results. There are two possible reasons
for this. First, red light attenuates more strongly in the water column
than green light, and can reproduce a range of water depths more reli-
ably (Pope et al., 2016), particularly at shallower depths. Second, resolu-
tion sharpening applied to MODIS's green band (which is not required
for the red band) likely results in loss of accuracy in surface-reflectance
values, which then carry through into the SGL depth calculations.
Although SGL depths and volumes calculated with MODIS's red band
are dispersed around a linear regression line, producing low r values
(Fig. 10; Tables 2 and 3), the derived RMSE values are low compared
Table 4
Variation in the errors (as measured by the RMSE) for water depths derived from MODIS
imagery comparedwith the LS8-derived depths across all images fromboth study regions.
n is the number of data points within each given range.

Depth range (m) n RMSE (m)

0.0–0.5 169 1.08
0.5–1.0 599 1.24
1.0–1.5 371 1.14
1.5–2.0 220 1.07
2.0–2.5 106 1.00
2.5–3.0 75 1.18
3.0–3.5 40 1.17
3.5–4.0 29 1.40
N4.0 55 2.99
to depths and volumes generated from the green band (Tables 2 and
3). TheRMSE of 1.27m for SGL depth is higher than those for SGL depths
derived for LS8's higher-resolution red (RMSE= 0.28 m) and panchro-
matic (RMSE = 0.63 m) bands (Pope et al., 2016), but is lower than
values from other studies using empirically derived depth-reflectance
techniques for MODIS imagery (e.g. RMSE = 1.47 m in Fitzpatrick et
al. (2014)).

5.2.1. Underestimation of MODIS supraglacial lake depths and volumes
Despite the better performance of the physically-based SGL depth

calculation algorithm using the red over the green band, using the red
band still tends to produce lower MODIS SGL depths and volumes
than those calculated from the LS8 data. This is likely due to the different
spatial resolutions of the two datasets. LS8's higher resolution means
that deep water towards SGL centres is reliably sampled as dark pixels.
They will not be reliably sampled with MODIS's coarser resolution data
if the shallower water depths away from the SGL centres bias MODIS
pixels towards those shallower depths, whichwould then appear as rel-
atively bright pixels. We attempt to correct for this when we compare
LS8 and MODIS-derived SGL pixel depths by resampling the LS8 depth
arrays (Section 3.4), but it is probable that this effect cannot be eliminat-
ed entirely. Furthermore, the lower MODIS SGL depths and volumes
may also be explained by the error in the SGL outlines to which the
SGL depth-retrieval algorithm is applied. If the SGL area-derivation algo-
rithm results in inaccurately resolved SGL perimeters, it is probable that
(i) shallow water at the edges of SGLs will be omitted from the MODIS
SGL volume calculations; and (ii) the value for Ad, which is taken as
the mean of the reflectance of the ring of pixels surrounding the SGL
outline, will be lower than it should be, since this ring may include
Variation in the errors (as measured by the RMSE) for SGL volumes derived from MODIS
imagery compared with the LS8-derived volumes across all images from both study re-
gions. n is the number of data points within each given range.

Volume range (×107 m3) n RMSE (× 107 m3)

0.0–0.5 8 4.0
0.5–1.0 57 4.4
1.0–2.0 66 3.9
2.0–2.5 19 5.7
2.5–3.0 17 5.5
3.0–3.5 17 5.5
3.5–4.0 11 5.2
4.0–5.0 21 6.6
5.0–6.0 15 5.5
6.0–7.0 12 8.0
7.0–10.0 21 6.9
N10.0 24 10.8



Fig. 11. Total SGL area, volume and percentage cloud cover for the (a) Paakitsoq and (b) Store Glacier regions during the 2014melt season. The largemid-season decreases in total SGL area
and volume to values that are at or close to zero correspond with high regional cover by clouds, explaining the seasonal pattern of anomalies in total SGL area and volume evolution.
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some shallow water when it is intended to contain only bare ice. This
error may be especially influential since the SGL depth-calculation algo-
rithm is particularly sensitive to Ad values (Georgiou et al., 2009; Pope et
al., 2016). Finally, the depth and volume validation data derived from
LS8 have errors associated with them since they are also derived from
the same physically-based SGL depth-retrieval algorithm. For example,
LS8's red and panchromatic bandsmay not be able to accurately resolve
the deepest (N4 m) water (Moussavi et al., 2016), which may explain
our pattern of higher RMSEs at higher water depths (Table 4). Compar-
ing the MODIS-derived depths with field data or very high-resolution
DEM data (similar to Pope et al. (2016) or Moussavi et al. (2016))
would provide additional tests of the algorithm's performance beyond
those reported here, and would be a valuable future study, particularly
given the now freely available high-resolution Arctic DEM from the
Polar Geospatial Center (http://pgc.umn.edu/arcticdem).

Scaling the MODIS SGL volumes using the slope coefficient from the
linear regression line for the MODIS and LS8 SGL volume data produces
only a marginal improvement to the SGL volume estimates, and given
this is derived from a limited number of data points (n = 288), this
MODIS-LS8 scaling relationship is not included in the FAST algorithm.

5.3. Supraglacial lake evolution at Paakitsoq and Store Glacier

This study's third aim was to incorporate the best performing SGL
area- and depth-calculation techniques into a fully automated SGL
tracking algorithm, allowing automatic SGL depth and volume calcula-
tions across regions of the GrIS. Our FAST algorithm permits additional
insights into the GrIS's surface hydrology to be made compared with
many previous studies in which only SGL areas were tracked between
images. As might be expected, we find that total SGL volume scales
with the number of SGLs on an image (Fig. 12(a) and (c)). However,
we also find that the mean SGL size across an individual image does
not change alongside the total number of SGLs present on the image
(Fig. 12(b) and (d)). This suggests that as the melt season progresses,
withmore SGLs developing on the ice sheet, the total SGLwater volume
on an image increases by the presence of increasingly numerous SGLs

http://pgc.umn.edu/arcticdem


Fig. 12. The relationship between the total number of SGLs on each individual image in the season and the total andmean SGLwater volume for each individual image. Note that images for
which no SGLs were identified are not plotted. Subplots (a) and (b) show relationships for the Paakitsoq region, with (c) and (d) being for the Store Glacier region. The blue lines on all
subplots display an ordinary least-squares linear regression. r values, derived from the Pearson product-moment correlation, are significant (p-value b 0.01) at the 99% confidence interval
for subplots (a) and (c), but are not significant at the 95% confidence interval for subplots (b) and (d).
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instead of through increases to the dimensions of individual SGLs. This
might suggest an overall region-wide control on SGL volume, such as
limits to the size of ice-surface topographic depressions, preventing
the formation of larger SGLs. However, the slightly stronger relationship
between mean SGL volume and the total number of SGLs on an image
(Fig. 12(d)) at Store Glacier could indicate that this control is less dom-
inant here than at Paakitsoq.

5.3.1. Rapidly draining supraglacial lakes
The final aim of our study was to use the FAST algorithm to examine

the incidence of rapid SGL drainage across the two study regions in
West Greenland. The numbers of rapidly draining SGLs, as a proportion
of the total SGL population, identified by the FAST algorithmwithin the
study regions (21% and 15% of the total SGL population at Paakitsoq and
Table 6
Summary of the results from the FAST algorithm applied to the two study sites. See Tables
S4 and S5 for the full details of all of the rapid SGL drainage events within both regions.

Property Paakitsoq
region

Store Glacier
region

Number of rapid drainage events 43 19
% SGLs draining rapidly 21 15
Median date of rapid drainage 12 July 7 July
Modal date of rapid drainage 13 July 3 July
Total water lost due to rapid drainage (m3) 1.9 × 107 6.6 × 106

Mean water lost per rapid event (m3) 4.3 × 105 3.5 × 105
Store Glacier, respectively) are similar to results from other ice-margin-
al (i.e. b80 km inland) areas of West Greenland (e.g. the 28% at Russell
Glacier reported by Fitzpatrick et al. (2014)). As the melt season pro-
gresses, there are increasing numbers of rapid drainage events at higher
elevations (Fig. 13). This can be expected due to an upglacier increase in
total meltwater production over the season, causing the filling of pro-
gressively higher SGLs to reach the water volume required to drain.
Similarly, the lack of early-season rapid drainage events at high eleva-
tions is because there are few SGLs there. For example, during the 19
June to 28 June period, the single SGLwithin the 1200–1399melevation
band drains rapidly; by the 8 August to 18 August period, only 10% of
the SGLs within the same elevation band drain rapidly (Fig. 13). Fewer
rapid events occur at lower surface elevations (b600m) later in the sea-
son because most SGLs that could drain would have done so earlier in
the season.

Among the rapidly draining SGLs identified by the FAST algorithm,
we detect clusters of drainage events (which are defined as events
that occur within four days and 10 km of each other), as was also ob-
served by Fitzpatrick et al. (2014) at Russell Glacier. In the Paakitsoq re-
gion, three SGLs drain in mid-July at a similar elevation band and with
comparable ice thicknesses beneath them; a similar pattern is observed
for a SGL cluster in early July at Store Glacier (Figs. 5 and 14). In addition,
one SGL at Paakitsoq drains twice within the season: once on 12 June
and then again on 10 July (Fig. 5, yellow circle). This observation of
the filling, drainage, re-filling and re-drainage of a SGL is a phenomenon
that has been reported only once previously in a remote-sensing study
(Fitzpatrick et al., 2014) and once in a field-based study (Brizgys and



Fig. 13. The number of rapid SGL drainage events across both study sites, binned by initiation dates and stacked by surface elevation of SGLs' locations. Cumulative SGL volume loss fromall
rapid events in 2014 is shown by the solid red line. The percentage figures give the percentage of SGLs that drainwithin each elevation band relative to themaximumnumber of observed
SGLs within that elevation band over the corresponding dates.
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Box, 2005). It is encouraging that the FAST algorithm can automatically
detect similar phenomena.

Given that the twice-draining SGL is found to reach a similar
water volume before draining rapidly on two occasions (2.2 × 105 ±
5.6 × 107 m3 versus 2.1 × 105 ± 5.6 × 107 m3), we investigate the
idea of a critical water volume threshold related to local ice thickness
to explain rapid drainage. However, we find no relationship between
SGL water volume immediately prior to rapid drainage and the local
ice thickness (Fig. 15), suggesting that a universal critical water volume
threshold required to initiate hydrofracture, which is dependent solely
on local ice thickness, does not exist across the GrIS. This is in line
with the suggestion of previous workers that factors other than simply
local ice thickness will determine the SGL water volume required to
initiate hydrofracture and thus the rapid SGL drainage process
(Banwell et al., 2013, 2016; Arnold et al., 2014; Fitzpatrick et al., 2014;
Stevens et al., 2015). We also compare the water volumes immediately
prior to rapid SGL drainage within our study regions against the water
volume that is required to initiate rapid hydrofracture beneath SGLs
identified by Krawczynski et al. (2009). They indicate that SGLs with
diameters ≥ 0.25 km (equivalent to areas ≥ 0.0491 km2 if approximated
as perfect circles) overlying sub-freezing ice of 1000 m thickness can
initiate hydrofracture. We scale this critical SGL area value to SGL
volume using the area-volume scaling relationships identified for the
two regions (Section 5.3.2). At Paakitsoq, all SGLs meet or exceed this
threshold, but at Store Glacier, many SGLs drain with water volumes
that are considerably below this threshold (Fig. 15). This again indicates
that the application of a universal critical water-volume threshold
across the two regions is unlikely to be a robust explanatory variable
for the prediction of hydrofracture, suggesting that one or several
other factors are also important.

5.3.2. Supraglacial lake area to volume scaling
Various studies have assumed that SGL volume is strongly correlated

with SGL area inMODIS images and have established empirically-based
SGL area to volume scaling relationships, either by using area as a proxy
for volume (Box and Ski, 2007; Morriss et al., 2013), or by approximat-
ing SGL basins as cones with SGL area as the independent variable with-
in a non-linear relationship (Liang et al., 2012). However, these studies
lacked a high number of data points: for example, Box and Ski's (2007)
area-volume scaling relationship (R2 = 0.620; p-value b 0.01) was
based on only 31 data points. Our study permits SGL area-to-volume
scaling factors to be derived across the full melt season for the two re-
gions of the GrIS, allowing us to test the validity of the relationships
established in previouswork. For Paakitsoq,we establish a SGL area-vol-
ume scaling relationship (n=1114) using a quadratic least-squares re-
gression (Fig. S1):

volume ¼ 575341 area2
� �þ 271187 areað Þ þ 89617: ð3Þ

This SGL area-volume scaling basis is significantly stronger than an
ordinary least-squares linear regression relationship (R2 = 0.827; p-
value b 0.01; RMSE=0.420×106m3). At StoreGlacier,we obtain a sim-
ilarly strong relationship (n=558) using an ordinary least-squares lin-
ear regression (Fig. S2):

volume ¼ 1191332 areað Þ−161311: ð4Þ

Again, we observe a strong relationship (R2= 0.869; p b 0.01;
RMSE= 0.184 × 106m3). Using a quadratic least-squares regression
does not significantly improve the R2 at Store Glacier, so we opt for
the linear model.

This difference in the required regression model for the two regions
likely results from the presence of shallower SGLs at Store Glacier, per-
haps due to a regional surface-topography control that limits SGL depth.
This could mean that for SGLs with larger areas (i.e. N2.5 km2) at Store
Glacier, the shallower depths can be better described with a linear rela-
tionship, whereas, at Paakitsoq, there is more scatter in the volume data
for these higher SGL area values since the SGLs can become deeper. The
low RMSE values for both regions are particularly encouraging given
that SGL area can only be resolved to within 0.0625 km2 (i.e. one
MODIS pixel) across the two regions, yet the SGL volumes show rela-
tively little spread for similar SGL area values. Overall, these relation-
ships indicate that SGL area derived from MODIS imagery represents a
valid proxy for volume, matching the findings of Morriss et al. (2013)
who obtained a similarly high R2.

6. Conclusions

SGLs on the GrIS are commonly investigated with satellite imagery,
with the fine temporal resolution MODIS record providing a valuable



Fig. 14. Clusters of rapidly draining SGLs at Paakitsoq (top three panels) and Store Glacier (bottom three panels) identified by the FAST algorithm fromMODIS imagery. The black outlines
show the maximum extent of SGLs and represent the areas within which the FAST algorithm tracks changes to SGL area and volume over the full 2014 season. The area for Paakitsoq is
equivalent to the area shown within the green box on Fig. 5(a) and the area for Store Glacier is equivalent to the area shown within the orange box on Fig. 5(b). For Paakitsoq, the SGL
contained within the red box drains entirely between 11 July (coincident with its maximum water volume) and 13 July; the SGLs within the green and orange boxes drain entirely
between 11 July (when they contain their maximum water volumes) and 14 July. For Store Glacier, the SGLs within the red and green boxes drain entirely between 3 July and 4 July,
and the SGL within the orange box drains rapidly between 3 July and 5 July; these three SGLs contain their maximumwater volumes on 3 July.
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dataset since it has the potential to resolve dynamic changes to SGL
areas and volumes over daily to weekly timescales. Many MODIS-
based studies have derived SGL areas using semi- or fully automated ap-
proaches and then tracked the evolution of SGL areas across images;
however, there has been little evaluation of the automatic methods
used. Moreover, of the few studies that calculate both SGL depths and
volumes from MODIS data, none have tracked volumes between im-
ages, and so no previous studies have systematically identified the loca-
tions, timings and quantified the volumes of water entering the GrIS's
internal hydrological system via rapidly draining SGLs.

In this study, we have addressed these points through the develop-
ment of a fully automated algorithm capable of tracking SGL areas and
volumes between MODIS images, which we think is the most compre-
hensive SGL tracking algorithm to date. The FAST algorithm incorpo-
rates fully automatic (i) SGL area-derivation methods and (ii)
physically-based SGL depth calculations. Both of these approaches do
not rely upon field data for calibration, allowing for the widespread ap-
plication of the FAST algorithm across the GrIS. To select the best ap-
proach for (i), and to address the first aim of the study, we evaluated
three existing methods of deriving SGL areas, finding that dynamic
thresholding applied to the MODIS red-band MOD09 surface-reflec-
tance data, with a threshold value of 0.640, significantly outperformed
other area-calculation methods, and could reproduce SGL areas with
high accuracy when compared with LS8-derived areas and without
threshold adjustment on a site- or lake-specific basis. Although SGLs b
0.125 km2 cannot be resolved with MODIS imagery, they accounted
for b18% of the total water-covered areas (as measured by MODIS)
within both our study regions, justifying the exploitation of MODIS's
high temporal resolution to investigate GrIS hydrology. For (ii), and to
address the second aim of this study, we followed Sneed and
Hamilton (2007) and found that the application of their method to
MODIS's red band produced accurate SGL depths and volumes when
compared with LS8-derived values (RMSE for depth: 1.27 m; RMSE for
volume: 5.9 × 107 m3). These errors are comparable to those produced
using empirically-based depth-retrieval methods applied to MODIS im-
agery (Fitzpatrick et al., 2014). The SGL depth calculations were only
slightly less accurate than those derived using the same physically-
based algorithm applied to higher-resolution sensors, such as LS8:
when comparing our RMSE for SGL depth against Pope et al.'s (2016)
RMSEs, the difference is b1 m. To achieve the third and fourth aims of
this study, we incorporated the best methods identified from the first
two aims into the FAST algorithm, and then applied it to two study re-
gions. Here, it successfully reproduced the expected patterns of SGL evo-
lution, including the identification of 62 rapid drainage events, some
drainage event clustering across both regions, and the drainage, refilling
and re-drainage of one SGL in the Paakitsoq region. We found no



Fig. 15. Scatterplot of SGL water volumes immediately prior to drainage, and the ice thickness beneath SGL centroids, for the two study sites. For Paakitsoq: R2 = 0.03; for Store
Glacier: R2 = 0.00. Both R2 values are not significant at the 95% confidence interval. The critical SGL water volume thresholds required to initiate hydrofracture from
Krawczynski et al. (2009) are also shown for the two regions.
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statistically significant relationship between the rapidly draining SGL
water volumes identified by the FAST algorithm and the local ice thick-
ness beneath the SGLs. This indicates that factors other than the local ice
thickness are likely to be important in controlling the SGLwater volume
required to initiate hydrofracture, in line with previous research
(Arnold et al., 2014; Fitzpatrick et al., 2014; Stevens et al., 2015).

The FAST algorithm's main improvement on previous SGL tracking
methods (e.g. Selmes et al., 2011; Liang et al., 2012) is its ability to cal-
culate automatically SGL volumes and then to track them across wide
swathes of the GrIS. Given this, the high temporal resolution of the
MODIS record can now be fully exploited to significantly extend previ-
ous remotely based calculations of SGL depth and volume. Future
work will generate outputs from the FAST algorithm to investigate the
locations, timings and water volumes of rapid SGL drainage events at
the whole GrIS scale. Such analysis should help to identify factors
other than the local ice thickness that may control the volume of SGL
water required to initiate hydrofracture. The SGL water volume data
and the statistical relationships generated by these applications of the
FAST algorithm may also inform the boundary conditions and valida-
tions of supraglacial hydrology models. Furthermore, the application
of the FAST algorithm will allow water volumes reaching the subglacial
drainage system across different regions, and in different years, to be
calculated more effectively, which could help better explain the ob-
served patterns of intra- and inter-annual ice-velocity variations, and
also form a valuable additional input to ice-dynamic models. These ap-
plications and developments of the FAST algorithm are likely to permit
greater insight into the GrIS's present and future hydrology, and thus its
ongoing contribution to sea-level rise.
Data availability

The FAST algorithmpresented in this study can bemade available for
use by others through contact with the corresponding author.
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