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Recently, singlet-triplet measurements in double dots have emerged as a powerful tool in quantum
information processing. In parallel, quantum dot arrays are being envisaged as analog quantum
simulators of many-body models. Thus motivated, we explore the potential of the above singlet-
triplet measurements for probing and exploiting the ground-state of a Heisenberg spin chain in such
a quantum simulator. We formulate an efficient protocol to discriminate the achieved many-body
ground-state with other likely states. Moreover, the transition between quantum phases, arising
from the addition of frustrations in a J1 − J2 model, can be systematically explored using the same
set of measurements. We show that the proposed measurements have an application in producing
long distance heralded entanglement between well separated quantum dots. Relevant noise sources,
such as non-zero temperatures and nuclear spin interactions, are considered.
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I. INTRODUCTION

Quantum simulators [1] are one of the hotly pursued
topics of current quantum technology research. Ana-
log quantum simulators directly mimic another physi-
cal quantum system in order to explore its behaviour in
greater depth. In doing so, they provide a wide range
of applications, for instance, addressing challenges in
smart material design which could potentially revolution-
ize medicine and energy provision in the future. While
already accessible, quantum simulators will scale to much
larger sizes in the near future, in doing so becoming a
significant technological step on the path to full quan-
tum computation. A key question for such simulators is
the certification of the states realized within them. For
example, simple questions such as whether the state is
a genuinely quantum, pure and entangled many-body
state need to be answered with available measurement
schemes. For an experimentalist who has realised a can-
didate state it is crucial to discriminate it from the closest
classical counterpart (e.g. the Neel state for antiferro-
magnets), random, thermal and energetically proximal
quantum states. Here we address the question with re-
spect to the emerging field of solid state quantum simu-
lators [2–7].

So far, neutral ultra-cold atoms [8] and trapped ions [9]
have been predominantly exploited for serving as quan-
tum simulators thanks to their high controllability and
long coherence times. Nevertheless, in order to simulate
solid state systems, the presence of both particle hop-
ping and long-range charge interactions are needed, and
these are not not readily available in trapped ion and
cold atom systems respectively. Additionally, the spin
exchange couplings realised in these systems tend to be
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FIG. 1: (Color online) Quantum dot array spin model
simulator and triplet profile readout: A simplified
schematic of a quantum dot array simulating a Heisenberg
N = 12 closed chain with Singlet-Triplet measurements.
Here, grey bars represent voltage gates, each arrow a single
confined electron, and the gold detectors Singlet Triplet mea-
surements. These are simultaneously performed such that the
total number of triplets present, mt is recorded.

small, such that any dynamics take place over long (∼
ms) time-scales. It is therefore timely, thanks to recent
advances in fabrication of quantum dot arrays [10], to
think about a real solid state quantum simulator. These
advances have largely been fuelled by seminal work of
Loss and DiVincenzo [11], who proposed single electron
spins as qubits. Such quantum dot arrays have also
been proposed for quantum state transfer [4] and adia-
batic many-body state preparation [5]. A two-site quan-
tum Hubbard model has been successfully simulated with
dopant atoms in silicon [6], which are qualitatively equiv-
alent to quantum dot arrays as far as their prospects
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for quantum simulations are concerned [7]. Unlike cold
atoms and ions, quantum dot arrays naturally have more
types of interaction, such as spin-orbit [12], and thus can
simulate a wider range of interactions. Moreover, their
compactness allows for stronger interactions resulting in
faster operations. Nevertheless, there are still challenges
worth mentioning: (i) there are also strong interactions
between the electrons and the environment (such as prox-
imal nuclear spins) which decohere the simulator, and (ii)
the small scale of the fabrication, and the required num-
ber of gates, makes it currently difficult to scale up to
complex arrays.

Recently, Singlet-Triplet (ST) measurement in dou-
ble quantum dots has emerged as the dominant tool for
spin information readout. Originally this was achieved
through charge measurements [13], motivated by deco-
herence free singlet-triplet qubits [14]. Radio Frequency
(RF) reflectometry has since emerged as the primary
method of accomplishing this [15–20]. The same mea-
surement tool now extends beyond double dot systems
to donor-dimers [21]. These measurements discriminate
between only the singlet state, and the remaining Bell-
states. Nevertheless, it is known that these measure-
ments, in combination with particular initial states, are
sufficient for universal quantum computation [22]. The
convenience and popularity of the ST-measurements mo-
tivate us to investigate their usefulness as a tool for prob-
ing and exploiting the many-body state realized in a
quantum dot array.

Independent of the physical set-up, in order to verify
the performance of a quantum simulator ideally one has
to fully characterise the quantum state. The difficulty
here is that by definition, a useful quantum simulator
(i.e. with a large number of qubits) will have no exact,
classically computable reference system. Additionally,
full quantum state tomography requires an exponentially
large number of distinct measurements [23, 24]. Recently,
there have been proposals [25] for efficient tomography
schemes which are applicable for those states satisfying
a matrix product state ansatz, though one has to be able
to perform complex multi-qubit unitary operations and
measurements which are not necessarily available in the
lab.

In this paper, we consider quantum dot arrays simu-
lating the ground-state of a Heisenberg spin chain. To
characterise the state, we rely only on singlet-triplet
measurements performed over nearest neighbour electron
pairs, as has been experimentally demonstrated [13, 15–
19, 26, 27]. This allows us to build up a probability
distribution over outcomes that discriminates between
our target state, i.e. the Heisenberg ground-state, and
contaminated versions. In the presence of next-nearest
neighbour interactions, realizable in recently developed
multiplexed dot ladders [10], our setup can capture the
quantum phase transition to a gapped, dimerized phase.
Moreover, as another application, we show that the same
set of measurements can be exploited to generate her-
alded entanglement between distant qubits. We inves-

tigate the performance of both applications under the
influence of likely noise sources such as thermal fluctua-
tions and hyperfine interactions with nuclear spins in the
bulk.

The structure of this paper is as follows: in Section. II
we introduce the model used to describe the system and
the triplet profile that one can obtain from singlet-triplet
measurements only. In Section. III we explore the possi-
bilities of characterizing states using these measurements
only, including a quantification of how distinguishable
various states are from each other. We demonstrate that
the quantum phase transition at J2/J1 ∼ 0.24 for the
J1 − J2 Heisenberg chain can be clearly observed. In
Section. V we explore using singlet-triplet measurements
only to localize entanglement between two ends of an
open chain. In Section. VI we investigate the effect of
the two dominant noise sources in quantum dots — non-
zero temperature and hyperfine interactions with proxi-
mal nuclei. Finally, in Section. VII we propose a feasible
experimental realization that could establish the validity
of these methods.

II. MODEL

A key model in condensed matter physics is the Heisen-
berg Hamiltonian — used in many contexts including
magnetism [28] and quantum phase transitions [29]. It
describes the interaction between N spin-1/2 particles as

H1 = J1

N∑
i=1

~σi · ~σi+1; (1)

where ~σi = (σxi , σ
y
i , σ

z
i ) is a vector of Pauli operators

acting on site i, and J1 represents the nearest neigh-
bour spin coupling. We have assumed periodic bound-
ary conditions, i.e. ~σN+1 = ~σ1, however, our analysis is
equally applicable to open chain where increased dimer-
ization makes the ground-state even more distinct. We
set J1 = 1 throughout the paper, unless specified, con-
sidering it the energy scale of the system. This anti-
ferromagnetic Heisenberg model has a unique SU(2) sym-
metric ground-state for even lengths, N , known as a
global singlet since it has total spin S = 0. The low-
est lying excitations are three degenerate ‘triplet’ states,
with the energy gap to these closing as 1/N in the limit
of large N .

In order to simulate the ground-state of the Heisenberg
Hamiltonian in a controlled way we propose a quantum
dot array with exactly one electron in each quantum dot
as schematically shown in FIG. 1(a). A similar struc-
ture has recently been realized for multiplexing quantum
dots [10]. The spin sector of the interaction between the
electrons is explained by the Hamiltonian (1) and the
coupling J1 can be tuned by applying appropriate gate
voltages to the gates controlling the potential barrier be-
tween neighbouring electrons. By cooling this quantum
system below its energy gap it can be initialized in its
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ground-state |ψ0〉. The central object of interest in this
paper is |ψ0〉 due to its highly entangled and non-trivial
structure, described by a many-body global singlet, as
well as its application for practical tasks in quantum tech-
nologies such as quantum state transfer [30, 31]. The first
stage of verifying the operation of a quantum simulator
is to characterize and certify its achieved state — hope-
fully the ground-state |ψ0〉. Ideally this could be done
using full quantum tomography [32] or other more ef-
ficient methods [24, 25] but for quantum dot arrays a
current limitation is that only Singlet-Triplet (ST) mea-
surements on adjacent sites are feasible. The question to
be addressed here is to what extent characterisation and
certification of a state is possible under this restriction.

The ST-measurement can be described by the follow-
ing projectors

Ps = |ψ−〉 〈ψ−| ,
Pt = 1−Ps, (2)

where |ψ−〉 = 1√
2

(|↑↓〉 − |↓↑〉) is the singlet with |↑〉 and

|↓〉 representing spin up and down respectively. If the
quantum simulator operates perfectly, i.e. initializes in
the ground-state |ψ0〉, then thanks to the SU(2) symme-
try of the system the reduced density operator of any
pair spin qubits will be a Werner state [33]

ρ = αPs + (1− α)
Pt
3
, (3)

with 0 ≤ α ≤ 1. In this sense ST-measurements are
picked out as a preferred ‘basis’ for all SU(2) symmetric
states.

Let’s assume that the system is described by the
density matrix ρ, ideally |ψ0〉 〈ψ0|. Performing ST-
measurements on all N/2 consecutive pairs of spins, i.e.
qubits (1, 2), (3, 4), . . . , (N − 1, N), results in 2N/2 dif-
ferent outcomes according to the singlet or the triplet
output of each measurement. For example in a chain of
length N = 4 any of the outcomes ss, st, ts or tt may
occur with a certain probability. For any string of out-
comes x = x1x2...xN/2 (with each xi being s or t) the
total projection operator is

Πx =

N/2⊗
i=1

P2i−1,2i
xi

(4)

where P2i−1,2i
xi

are the same projectors as in Eq. (2) act-
ing on qubits 2i − 1 and 2i. Thus, the probability of
getting the string x as the outcome of the measurements
is Tr(Πxρ). For example the probability of getting the
result x = stts for a N = 8 state is Tr(P12

s P34
t P56

t P78
s ρ).

We can further compress the number of outcome results
by grouping together all result strings featuring the same
number of measured triplets, thus creating a triplet pro-
file:

p(mt) =
∑
x∈Xm

Tr(Πxρ) (5)

where Xm denotes the set of all result strings with exactly
m triplet occurrences. This yields a concise characteri-
sation of a state that is both easy to measure experi-
mentally and to compute numerically. Performing the
sum in Eq. (5) loses all information about how ‘grouped’
triplet excitations are, nevertheless, a surprising amount
information can be gleaned from p(mt), including fea-
tures heralding many-body entanglement. For example,
one such feature that arises is that p(mt = 1) = 0 for all
global singlets. This arises from their spin-0 nature —
they can have no overlap with the spin-1 subspace which
includes all configurations of a single triplet. Indeed, un-
der the reasonable restriction of translational invariance,
classical states can only ever produce a binomial distri-
bution for p(mt), and any deviations such as oscillations
herald entanglement.

III. CHARACTERIZATION OF SIMULATOR
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FIG. 2: (Color online) Discrimination of the ground,
classical, and random states: (a) Triplet probabil-
ity profiles for a number of states, namely the anti-
ferromagnetic Heisenberg ring ground-state, ψ0, the classical
anti-ferromagnetic Neel state, φN , and the normalised iden-
tity, 1d, all of size N = 24 (thick lines). (b) Scaling of the
triplet profile with N for ψ0.

In order to characterize the quantum state of the simu-
lator we first calculate the full triplet profile p(mt) of the
ground-state |ψ0〉 and other likely states which may oc-
cur due to imperfections or malfunctioning of the quan-
tum simulator. In particular, we consider the classical
Neel state φN = |↑↓↑↓↑↓ . . .〉 and the maximally mixed
state 1d, which represents an infinite temperature ther-
mal state. In FIG. 2(a) we plot the triplet profile p(mt)
as a function of the number of triplet occurrences mt for
a chain of length N = 24 for all the three states. As can
be easily calculated, φN and 1d are both characterised
by binomial distributions centred on 1

2 and 3
4 respec-

tively, whereas |ψ0〉 produces a highly non-trivial oscilla-
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tory shape. For example, the zero-probability p(mt = 1)
dip is very prominent, and also forms part of an oscil-
latory structure between odd and even occurrences of
triplets.

The scaling of p(mt) for ψ0 with size of systemN is also
shown in FIG. 2(b) — one can see that overall the fea-
tures change slowly, with the average mt increasing with
N under the ‘oscillating’ envelope. As such, although
the first ‘fringe’ contrast decreases with N slightly, the
second increases and so on such that they should not be
washed out in the thermodynamic limit.

221814106
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FIG. 3: (Color online) Comparison of the single shot
distinguishability under an optimal measurement vs.
triplet profile measurements: Scaling with system size of
the single shot distinguishability between Heisenberg ground-
state ψ0, first excited singlet state ψs∗, and the Neel state
φN . Full lines denote distinguishability under triplet profile
measurements, whereas dashed lines denote the full quantum
distinguishability Dq

1. Note that Dq
1(ψ0, ψs∗) is not shown

since it is always 1 — the states being orthogonal. Inset:
number of repeat measurements, r, required to distinguish
two states with probability (0.9, 0.99) for varying D1.

Full quantum tomography is usually very demanding
either in terms of sheer number of measurements or the
complex many-body basis of such operations. Instead, we
wish quantify the extent to which our ST-measurements
can distinguish between likely quantum states (i.e. se-
lected based on some prior intuition). A fundamen-
tal quantity here is what we shall call the single-shot-
distinguishability, D1, which quantifies the advantage a
single measurement gives when guessing between two
equally probably states such that the overall chance of
success is 1

2 (1 +D1). If D1 = 0 then the measurement
yields no information at all about which state is present,
whereas if D1 = 1 it perfectly discriminates them. If a
measurement gives rise to two possible probability dis-
tributions, p1(a) and p2(a), over outcomes a then D1 is

given by [34]:

D1 =
1

2

∑
a

|p1(a)− p2(a)| (6)

which essentially formalizes the strategy of guessing
whichever state is more likely to give result ai each time.
It has been shown [35] that for two quantum states that
ρ and σ the maximum distinguishability is given by:

Dq
1 =

1

2
‖ρ− σ‖tr , (7)

where ‖A‖tr = Tr(
√
AA†) is the trace norm. It is

worth mentioning that the optimal measurement needed
to yield Dq

1 is likely to be a globally entangled projective
measurement that is again not feasible.

An important aspect to investigate is whether the
triplet profile’s ability to distinguish scales well with sys-
tem size. In FIG. 3 we present the single shot distin-
guishability between two states under both a triplet pro-
file measurement, D1, and an optimal quantum measure-
ment, Dq

1, as it scales with system size N . First con-
sider the case of ψ0 and φN — Dq

1 rises to 1 with N
while D1 for the triplet measurement hovers at just un-
der half this, with possibly a slight decrease with N . In
this sense, a value of D1 ∼ 0.45 is decent. As an illus-
tration of two states that are almost worst-case scenario,
we also present the distinguishability of the ground-state
ψ0 and the first excited global singlet, ψs∗, which rep-
resents the smallest energy, symmetry preserving exci-
tation that could occur. Clearly these two states are
orthogonal and thus Dq

1(ψ0, ψs∗) = 1, but in character
they are very similar. Nonetheless the triplet profile pro-
duces a non-zero distinguishability, as can be seen from
FIG. 3, which also only decreases slowly with N — not
surprising since these two states are becoming closer rel-
atively within the Hilbert space. To give a sense of what
these values of D1 mean in practice, the inset of FIG. 3
shows the number of required measurements, r, in order
to achieve a total probability of successfully distinguish-
ing two states, given the naive strategy of guessing in-
dependently which state was present each repeat . This
sub-optimal scheme casts the overall distinguishability as
that of between two binomial distributions. For exam-
ple, if we take Dq

1(ψ0, φN ) ∼ 0.43, then 27 measurements
would be required to guess which state was present with
99% success, as shown in the inset of Fig. 3.

IV. QUANTUM PHASE TRANSITION IN THE
J1 − J2 MODEL

In some condensed matter systems long range inter-
actions are not negligible and play a crucial role in the
character of the system. The simplest example is the
J1 − J2 model with the Hamiltonian

H2 = J1

N∑
i=1

~σi · ~σi+1 + J2

N−1∑
i=1

~σi · ~σi+2, (8)
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FIG. 4: (Color online) Observing the J1 − J2 quantum
phase transition with the triplet profile: Triplet profile
for the N = 22 Heisenberg ring ground-state, ψJ2 , across the
J1 − J2 phase transition. Inset: normalised probability of
measuring three triplets varying with J2 for various N . The
vertical line denotes the exact critical point.

where J2 is the next nearest neighbour coupling strength.
This model exhibits a quantum phase transition from a
gap-less Heisenberg phase to a gapped dimerized phase
through increasing J2. This infinite order quantum phase
transition, in the Berezinskii–Kosterlitz–Thouless univer-
sality class, happens at J2/J1 ' 0.24. No standard quan-
tities behave non-analytically across the transition, and
instead properties such as the ground-state ‘fidelity sus-
ceptibility’ [36] or excited state fidelity [37] must be used
to locate the critical point. Another interesting point
in the dimerized phase is the Majumdar-Ghosh point at
J2/J1 = 0.5. Here the ground-state is fully dimerized and

can be explained as an equal superposition of
⊗N/2

i=1 |ψ−〉
and its equivalent, but one site translated, form. The
model in Eq. 8 could well be realised in future quantum
dot arrays via a ‘zig-zag’ ladder geometry.

In FIG. 4 we show the triplet profile for the ground-
state of H2 for a number of J2 values across the phase
transition. As J2 approaches the Majumdar-Ghosh point
(i.e. J2/J1 = 0.5) the structure of an equal superposition
of dimerizations becomes apparent — half of the state is
exactly singlet pairs aligned with the measurements, and
the other half appears as the identity since it is singlet
pairs between the measurements. We note also that the
rate and quality of change is different on either side of
the critical point. This is shown more clearly in the inset
of FIG. 4, where only the probability of getting three
triplets (i.e. mt = 3) is plotted versus J2. In order to
have a better perception of the effect of length N we
have normalized the probabilities to the J2 = 0 case,
p′(mt = 3), for various lengths. Finally, this effect is not
limited to p(mt = 3) — other values and combinations
of mt also give the same behaviour. However, due to the

continuous nature of the transition, no such quantities
are expected to show very sharp features, especially for
short chain lengths.

V. HERALDED ENTANGLEMENT OF
DISTANT SPINS

We now show a potential quantum information appli-
cation of using solely singlet triplet measurements in the
form of long-distance entanglement. Generating perfect
entanglement over arbitrary distances will likely be re-
quired for many quantum information tasks. In a many-
body system, it has been shown [38, 39], that performing
measurements on part of a system can localize entangle-
ment between the remaining, unmeasured parts. This is
known as localizable entanglement, and we demonstrate
here that singlet-triplet measurements on the ground-
state of the Heisenberg chain can probabilistically local-
ize entanglement between any two qubits. For applica-
bility, to a quantum bus for example, we consider now
an open chain, where the first and last quantum dots
are desired to be entangled. The nature of global singlet
states guarantee that if all but one pair of spins is mea-
sured and found in the singlet state, the final pair must
also be in the singlet state. As previously described, this
follows from the fact that all mt = 1 states have spin-1,
and no overlap with the SU(2) subspace. The generation
of a perfectly entangled singlet is therefore reliant on the
probability of finding this all-singlet outcome, q(mt = 0),
but is certain to be there (i.e. heralded) if the mea-
surement succeeds. Note that we use the symbol q(mt)
for the probability of finding mt triplet outcomes in our
ST-measurements for the heralded entanglement scheme,
which leaves one pair unmeasured, to discriminate it from
p(mt) in the previous section in which all qubits are mea-
sured. Compared to a dynamic, gate based-scheme, the
simultaneous nature of the measurement minimizes the
time required and thus exposure to decoherence.

Since any ground-state with SU(2) symmetry displays
this feature, we can also think about engineering the ex-
change coupling strengths along the chain to promote
this configuration. One option is to weaken the coupling
of just the end spins as

He = Je(~σ1 · ~σ2 + ~σN−1 · ~σN ) + J1

N−2∑
i=2

~σi · ~σi+1 (9)

where Je is the ending coupling and is smaller than J1.
For Je � J1 it is known that a very high entanglement is
established between the outermost spins in the ground-
state of the system [40]. However, this entanglement is
thermally unstable due to a vanishing energy gap. We
combine this scheme, using larger values of Je, and a
heralding ST-measurement to achieve perfect entangle-
ment with a higher rate. As another way to improve the
probability q(mt = 0) we may also consider a Hamilto-
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nian with alternating couplings as

Ha = J1

N−1∑
i=1

[1− (−1)iδ] ~σi · ~σi+1 (10)

where δ is the dimensionless anisotropy parameter.
In FIG. 5, we show the probability of an all singlet

result, q(mt = 0), for these three cases, as the length
of chain, N , varies for the case of Je = 0.5J1 and
δ = 0.1. Weakening the end-bonds yields a consistent im-
provement in long-distance entanglement over the normal
Heisenberg chain, but both still decrease exponentially
with length. The heralded nature of the entanglement
means that for small enough chains repetition could still
make the procedure viable. Moving to the ground-state
of the Ha, we find that q(mt = 0) becomes almost con-
stant with N at a value of ∼ 0.3. A subtlety here is that
engineering a Hamiltonian in this way can reduce the
size of the energy gap, making the ground-state harder
to prepare. This is in fact the case for both He and Ha

above. Although this means that reaching the ground-
state via direct cooling becomes more difficult, adiabatic
state preparation has been shown to much alleviate the
issue [5].
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FIG. 5: (Color online) Localizing entanglement to the
ends of a chain using singlet-triplet measurements on
the middle N − 2 qubits: Probability of finding all singlets
after measuring the middle N − 2 spins of the ground-state
of an open Heisenberg chain with various coupling configura-
tions. From this outcome, a perfect singlet in the remaining
two spins at either end is heralded. The three Hamiltonian
configurations are: H0 — constant coupling, He — end cou-
plings weaker by 50%, Ha — alternate couplings weaker by
20%.

Finally, we point out that if full Bell-state measure-
ments are possible on nearest neighbour spins, then per-
fect entanglement is always achieved between the ends.
The state is not always the singlet Bell-state, but can be
identified or corrected simply by counting the number of
each Bell-states found and requiring the whole state to

still be spin-0. This is essentially the same mechanism as
addressed in [41].

VI. IMPERFECTIONS

The goal of our simulator is to create the ground-state
of the Heisenberg Hamiltonian. In reality, thermal fluc-
tuations spoil the quantum state of the system resulting
in a thermal state

ρth(β) =
e−βH

Tr(e−βH)
(11)

where β = 1/kBT and kB denotes the Boltzmann con-
stant. Performing the characterization ST-measurements
on a thermal state result in a triplet profile p(mt) which
is shown in FIG. 6(a). From the figure, we find that up
to kBT/J1 = 0.2 (approximately the gap of the Hamil-
tonian) the observed triplet profile is largely unchanged.
Between kBT/J1 = 0.5 and kBT/J1 = 1 the oscillations
suggesting many-body entanglement die out, and above
the state appears largely classical. Since we know that
for temperatures smaller than the energy gap the thermal
state has very close to unit fidelity with the ground-state,
what the result in Fig. 6(a) shows is that our singlet-
triplet profile is sensitive to any rise in temperature that
would significantly affect the state. Although we can pos-
itively identify a departure from the ground-state in this
way, attributing the noise specifically to thermal fluc-
tuations or identifying the temperature poses a greater
challenge, though one worth investigating in the future.

Another dominant form of noise[42] arises from each
electron’s hyperfine interaction with proximal nuclei.
This manifests as an isotropic, normally distributed ran-
dom static magnetic field for each site, which we can
model with the Hamiltonian

Hnuc(Bn) = J1

N−1∑
i=1

~σi · ~σi+1 +

N∑
i

Bi · σi (12)

where Bi’s are effective magnetic fields with random di-
rections. The amplitude of these fields are determined
by a Gaussian probability distribution as

P (B) =
1

(2πBn)3/2
exp

(
−B ·B

2B2
n

)
(13)

where Bn is the variance of the distribution and quanti-
fies the strength of the nuclear field noise. The noise is
quasi-static (changes slowly relative to the electron dy-
namics) and thus we can think of each experimental run
as having a fixed set of random fields and simply average
over many runs until convergence is reached.

In FIG. 6(b), we find that the nuclear noise quickly
changes the triplet profile such that Bn < 0.1 would
likely be required for a decent characterisation. Above
Bn ∼ 0.3 the oscillations disappear. Actual values for
the bare value of Bn/J1 estimate it below 0.1 [13], which
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FIG. 6: (Color online) Characterising the Heisenberg
chain under the influence of temperature and hyper-
fine interactions: (a) Triplet profile of the Heisenberg ring
(H0) ground-state for varying temperature T , here for chain
length N = 14. (b) The same but for varying random nuclear
field strength Bn, here for chain length N = 20. It is worth
mentioning that a realistic (but pessimistic) estimation of the
hyperfine interaction is Bn/J1 ∼ 0.1 [13]. This will have little
effect on state discrimination.

hardly affects our triplet profile characterisation. More-
over, many successful avenues exist for reducing the effect
of the nuclear noise, such as dynamical decoupling [43],
and moving to Si/SiGe quantum dots [44], though these
both introduce their own challenges for scaling to dot
array simulators.

The effect of noise on long distance entanglement could
be two-fold, it could change the probability of getting an
all-singlet measurement, q(mt = 0), and it could also
make the resultant state shared between the end qubits
less entangled. In practice we find that q(mt = 0) is
roughly constant across the region of interest for both
temperature variation and hyperfine interaction. So, it
suffices to consider only the remaining entanglement, E,
which we characterise with the concurrence [45] on the
reduced density matrix of the ends post-measurement.

In FIG. 7(a) we show how this remaining entanglement
varies as a function of temperature. As the figure shows,
there is a plateau of low temperature for which perfect
entanglement still remains, though this drops with N
and can be again be linked with the Hamiltonian’s gap.
Similarly to the case of state characterization, we find
that nuclear noise has a much more immediate effect on
the long-distance entanglement rather than on q(mt). In
FIG. 7(b) we plot entanglement versus Bn. As the figure
shows for Bn < 0.1J1, which as mentioned is a conserva-
tive estimation based on experiment [13], the entangle-
ment remains high even for chains as long as N = 20.

Another potential source of error in quantum dot array
simulators are fluctuations in the charge potential land-
scape. The overall effect can be modelled to first order

0.2 0.4 0.6 0.8 1.0
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FIG. 7: (Color online) Entanglement localization to the
ends of an open chain under the influence of temper-
ature and hyperfine interactions: (a) Entanglement (as
measured by concurrence) between the two furthest spins af-
ter an all-singlet measurement result on the remaining middle
section of the chain, varying with temperature 1/β and length
N . (b) The same, but now varying with the strength of the
random nuclear field Bn. It is worth mentioning that a realis-
tic (but pessimistic) estimation of the hyperfine interaction is
Bn/J1 ∼ 0.1 [13]. For all considered lengths, this yields high
entanglement.

as a random fluctuation of J1 about its mean value [46].
Since this type of noise maintains the SU(2) symmetry
of the system, the essential arguments regarding oscilla-
tions in the triplet profile and localizing heralded entan-
glement remain intact. Indeed, there is evidence that the
overall groundstate of a system with moderately random
couplings is very similar in terms of character and util-
ity [5, 47, 48]. In Fig. 8 we show the effect of this noise
on state characterization as well as the average fidelity
between the ideal ground-state and many realizations of
the erroneous ground-state, f̄(ψ0, ψ

σJ
0 ). One can see that

the average fidelity remains above 85% for σJ < 0.1J1,
which is a high level of randomness. The corresponding
change in the triplet profile also becomes noticeable with
increasing σJ , and as expected, p(mt = 1) remains zero
throughout. Since even with this noise, the conditions
for entanglement localization using singlet-triplet mea-
surements are met, that scheme in its basic form is not
affected. One observation is that the slight randomiza-
tion of J1 actually on average raises the chance of perfect
entanglement, q(mt = 0), when compared to a Heisen-
berg chain (data not shown).

A final source of potential error worth discussing
is the singlet-triplet readout fidelity, which for a RF-
reflectometry based method reduces to the error in distin-
guishing two levels of capacitance. We have assumed this
readout to be perfect throughout, for two main reasons.
Firstly, this measurement is already very sensitive [49] in
comparison to the other sources of error. Secondly, our
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FIG. 8: (Color online) Effect of random couplings
caused by charge fluctuations. (a) Average fidelity of
the ideal groundstate, ψ0, with many realizations of the erro-
neous ground-state generated due to random coupling noise,
ψσJ0 , as a function of the strength of those fluctuations, σJ ,
for chain length, N = 20. (b) Averaged triplet profile for the
ground-state of a Heisenberg chain with fluctuating couplings,
varying with the strength of that fluctuation, σJ .

measurement is single-shot, which means that its sensi-
tivity can be increased simply by extending the integra-
tion time.

VII. EXPERIMENTAL REALIZATION

In this section, we discuss a potential experimental re-
alisation. A SEM image of a gate-defined dot array, re-
cently developed in [10], is shown in Fig. 9(a) in which
fourteen quantum dots interact in a 2× 7 array. Similar
structures are being developed in other groups [50, 51].
The ladder structure, shown in Fig. 9(a), is capable of
realizing a N = 14 open chain, but in principle a ring
geometry is possible and both yield qualitatively simi-
lar results. Although the exchange coupling J1 can be
tuned to very large values, due to the limitations im-
posed by electronics speeds, a ∼ 1GHz value is prefer-
able. In fact, in Ref. [13] J1 up to 3µeV (0.75GHz)
has been reported. In order to initialize the system in
its ground-state solely through cooling, the energy gap,
∆E, has to be larger than the temperature of the fridge,
typically around T ∼ 50mK (i.e. kBT = 4.3µeV for di-
lution fridges. This currently limits direct initialization
to short chains (N ∼ 6). However, for longer chains, a
series of double dot singlets can be adiabatically welded
to form the ground-state even in higher temperatures in
a time-scale much less than the thermalization time [5].

We now describe how the triplet profile is measured
once the target state is realised in the quantum dot array.
We rapidly (with respect to 1/J1) raise voltage barriers
to isolate pairs of quantum double dots, each of which

(a)

RF

bias tee

Cp

Lt Lt

Lt Lt

bias tee

bias tee bias tee

(b)

FIG. 9: (Color online) A realistic quantum dot array
with triplet profile measurement: (a) SEM image of an
example quantum dot array, as realised in [10]. (b) Circuit
schematic of an eight dot device with dispersive gate sensors
which forms a N = 8 open spin chain. The gate sensors
are formed by coupling an RF-signal to gate electrodes via
bias tees. Lt are chosen so that a resonant tank circuit is
formed in combination with the dot system and the parasitic
capacitance, Cp. The reflected RF-signal is used to read out
the total capacitance of all double dots in parallel and hence
mt. The dashed blue lines denote pairings of the quantum
dots for this ST-measurement.

can act (when connected to an appropriate circuit) as
a capacitor, with capacitance dependent on whether the
spin state is a singlet or a triplet. It is important that
isolating the pairs is rapid in order to avoid any adiabatic
evolution towards the new effective Hamiltonian, which
would change the state. When all these capacitors are
connected in parallel in a LC-circuit a single reading of
the total capacitance measures their sum, from which mt

can be deduced. Such a circuit is shown in Fig. 9(b),
which measures the total capacitance of 4 quantum dou-
ble dots (N = 8) in a single shot. The set-up uses dis-
persive gate sensors coupled to DC gate electrodes via
bias tees [20]. The inductors, together with the parasitic
capacitance Cp, form the resonant circuit with the dot
array and thus one can sense the capacitance through
the phase and amplitude of the reflected RF signal.

VIII. CONCLUSIONS

Motivated by established technology, we have explored
the possibility of using solely singlet-triplet measure-
ments to characterise the achieved ground-states of quan-
tum dot arrays and found that a measurement of a triplet
profile is largely sufficient for distinguishing the ground-
state from other potential candidates. Features of this
quantity can also indicate that the achieved state is
highly non-classical. Our investigation fits with experi-
mental accessibility as we only demand nearest neighbour
measurements, do not demand a full Bell-basis measure-
ment (although this can be achieved in principle with
further single qubit rotations), and motivated by scala-
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bility do not even demand positional information of the
outcomes: only mt, as shown in Fig. 1. To demonstrate
its utility, we investigated the J1−J2 phase transition in
the Heisenberg ladder.

Since our method is suitable for any models with
isotropic antiferromagnetic couplings, one could consider
in the future investigating 2D arrays and other more com-
plex geometries. For non-Heisenberg Hamiltonians, such
as the Ising model with transverse field, we expect that
singlet-triplet measurements are still useful since differ-
ent phases tend to have different local correlations. An-
other clear direction would be to consider the extra in-
formation currently missed by only recording the total
number of triplets. For example, if information regard-
ing the clustering of the triplet occurrences was retained,
this could serve as a second axis on the probability pro-
file. Such an increase in the probability distribution space
would clearly aid in distinguishing quantum states, and

would also likely reflect physical traits of the system such
as correlation length.

As well as characterization, we showed that singlet-
triplet measurements have a quantum information pro-
cessing application in localizing entanglement between
the opposite ends of an open SU(2)-symmetric chain.
Engineering the couplings slightly allows this effect to
be amplified, though the effect on the Hamiltonian’s re-
sultant spectrum must be considered. Finally, we consid-
ered the relevant noise sources for practical application
of these techniques in GaAs quantum dot arrays for ex-
ample.
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