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Abstract

We conducted a multi-isotope study of five fifth-century AD cemeteries in modern-day Hun-

gary to determine relationships between nomadic-pastoralist incomers—the historically

documented Huns and other nomadic groups—and the sedentary agricultural population of

the late Roman province of Pannonia. Contemporary historical sources describe this rela-

tionship as adversarial and destructive for the late Roman population, but archaeological

evidence indicates high levels of hybridity between different groups. We undertook carbon,

nitrogen, strontium and oxygen isotope analyses of bone collagen, dentine and tooth

enamel at Keszthely-Fenékpuszta, Hács-Béndekpuszta, Győr-Széchenyi Square, Mözs

and Szolnok-Szanda to examine these relationships through past subsistence practices.

The patterns at all sites indicate medium to high animal protein consumption with little evi-

dence for a significant contribution of aquatic resources. All populations relied to a great

extent on C4 plants, most likely millet. Within each population, diet was heterogeneous, with

significant variations in terms of animal protein and C3 and C4 plant consumption. High lev-

els of intra-population and individual variability suggest that populations made use of a

range of subsistence strategies, with many individuals exhibiting significant changes over

their lifetimes. Rather than being characterised only by violence, the historically-docu-

mented influx of nomadic populations appears to have led to widespread changes in subsis-

tence strategies of populations in the Carpathian basin. Nomadic-pastoralist groups may

have switched to smaller herds and more farming, and, conversely, local populations may

have integrated with a new economic system based on animal herding.

Introduction

The fifth century AD was a period of far-reaching changes along the northern and eastern

frontier of the Roman empire. Historical sources tell of warbands of nomads on horses, which
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they call Huns or Scythians, attacking settlements all along the Danube frontier and occasion-

ally extending as far as northern Italy or France. These incursions have been interpreted as the

initial destabilisation that set in motion the breakdown of the western Roman empire [1]. The

narrative surrounding these events frequently emphasises the fundamental cultural difference

between these nomads and the settled populations of the late Roman provinces.

Archaeologically, however, these dichotomies are less obvious. Few sites provide evidence

of violence and it is difficult to link these destruction layers to historically recorded Hunnic

attacks [2, 3]. Conversely, much of the material culture evidence from burials show high levels

of hybridity—mixing of late Roman and non-Roman practices—sometimes in the same ceme-

tery. Different ethnic groups cannot clearly be distinguished. Certain types of material culture

—bronze cauldrons, bronze mirrors, diadems, remains of composite bows—and practices

such as skull modification have been associated with Huns or other nomadic-pastoralist

groups because of their typological association with the north-Pontic areas (north of the Black

Sea) and central Asia [4, 5]. Yet, while this material occurs in eastern and central Europe, it

rarely forms an assemblage so cannot be linked unequivocally to these mobile groups.

Isotope analysis allows us to access directly the behaviours of individuals, both in terms of

their mobility and of their diet. Here we aim to investigate the evidence for mobility—pointing

to a nomadic lifestyle—using 86Sr/87Sr and δ18O ratios in tooth enamel, combined with evi-

dence for dietary variability provided by δ15N and δ13C ratios in teeth and bone—possibly dis-

tinguishing pastoral and agricultural diets. The analysis of multiple samples of different tissue

types from the same individual has been shown to provide greater resolution to dietary vari-

ability, because it allows us to track lifetime changes in the circumstances of individuals [6, 7].

Such a biographical approach may reveal whether people altered their subsistence practices in

changing social and environmental contexts or whether they consistently followed particular

models of subsistence. Put simply, we can explore whether pastoralists could become famers,

and, by extension, whether ‘Huns’ could become settled dwellers of Pannonia.

In undertaking this study we aim to shed new light on the complex and dynamic relation-

ships of populations across the late Roman frontier zone, from within the Roman province of

Pannonia to sites in the Great Hungarian plain to determine the impact of the Hunnic incur-

sions on this part of the world.

Determining the isotopic signatures of pastoral and agricultural

diets

The diets of agricultural populations of early medieval western and central Europe are charac-

terised by great homogeneity. Populations consumed a terrestrial diet with a medium to high

amount of animal protein and limited input of aquatic or marine resources, and they relied

largely on C3 plants [8–12].

The diet of Eurasian mobile pastoralists of the same period has been less thoroughly investi-

gated, with the majority of studies focusing on the Bronze and Iron Ages [13–17]. Archaeobo-

tanical and isotopic studies show a transition towards increasing millet cultivation from the

second millennium onwards. This was identified as early as 5900 BC in northern China, by

about 1800 BC in Kazakhstan and about 1500 BC in southern Siberia [13, 17, 18]. Millet then

remained an important grain for central Asian populations throughout the Iron Age and into

the first millennium AD. It is drought-tolerant, has a high yield per plant and has a short grow-

ing season (c. six weeks), making it a useful crop for mobile populations either as food or

fodder [18]. Central and Inner Asian populations were frequently more enriched in δ15N com-

pared to European populations. This may have been due to increased consumption of animal

protein, as would be expected of pastoralist communities, but fish has also been shown to play
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a significant role [19]. However, comparisons of humans and local fauna have also shown that

the aridity of the environment may have resulted in cumulative enrichment of the ecosystem

[13, 14, 16, 20, 21].

Methods

Carbon and nitrogen isotope ratios in bone collagen and dentine, reported as δ13C and δ15N,

allow us to study the relative contribution of terrestrial, marine and freshwater resources to

diet. Carbon isotope ratios distinguish dietary contributions from C3 and C4 plants, since

these plants have isotopic ratios that do not overlap [22, 23]. These values are enriched by

approximately 5‰ from diet to body tissue. Most plants utilise the C3 pathway, while the C4

pathway is used by plants in hot and dry climates, mostly grasses and sedges. The key cultivars

in pre-colonial Europe are millet, amaranth and sago.

A comparison of δ13C values in enamel apatite and dentine can reveal information about

relative contributions of 13C from protein sources or from the diet as a whole, since the carbon

in dentine collagen is preferentially routed from protein in the diet, whereas carbon in the car-

bonate component of apatite reflects blood-dissolved inorganic carbon derived mainly from

carbohydrates and lipids [24]. If the source and amount of dietary protein is roughly the same

within a population, there is a strong correlation between δ13Ccollagen and δ13Capatite [25–27].

However, where the protein source is varied, for example by including marine foods or ani-

mals foddered on C4 plants, this relationship is no longer straightforward [28]. A comparison

of δ13Ccollagen and δ13Capatite can reveal the degree to which δ13C ratios reflect direct routing

from plants or through animal protein. Unlike collagen, which only reflects the protein contri-

bution to diet, δ13Capatite is sensitive to C4 contributions from the whole diet that may be

obscured in collagen.

Nitrogen isotope values allow us to determine the relative amount of animal protein (meat

or milk) consumed by an organism. δ15N is enriched by about 3‰ with each trophic level [29,

30], but the enrichment can be as high as 6‰ in some instances [31]. Both freshwater and

marine organisms are enriched in 15N, though freshwater fish in particular are strongly

affected by their ecological context [32].

Strontium and oxygen isotope ratios are used to determine whether an individual grew up

where he or she was buried [33]. 87Sr/86Sr values in organisms reflect those of the underlying

geology [34]. Bioavailable strontium enters the food chain through water and is incorporated

in bone and enamel apatite [35, 36]. Due to its regular crystal structure, which limits the ion

exchange after tooth formation, enamel apatite is not subject to diagenetic change in the burial

environment [37]. Isotopic signatures in teeth thus provide an indication of childhood resi-

dence and can be contrasted with local bioavailable 87Sr/86Sr values to determine if there was a

change in residence since childhood [33]. However, only individuals who grew up in a location

with different geological strontium isotope ratios can be identified as non-local. Strontium

analysis can therefore only indicate a non-local upbringing, but it cannot definitely indicate a

local upbringing.

Oxygen isotope ratios (δ18O) also vary geographically, primarily due to differences in tem-

perature, becoming more depleted from the equator to the poles and with increasing altitude

[38]. Across Eurasia values are also depleted from west to east, along with the prevailing winds.

Via an offset, organisms reflect the isotopic value of drinking water, which in turn usually

reflects the values of rainwater. Attempts have been made to develop a conversion algorithm

for the offset from drinking water to body tissue for different species, but these have not been

fully satisfactory [39, 40]. In many published studies, intra-population variation of oxygen

isotope ratios is greater than large-scale geographical variations of precipitation (e.g. from
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Scandinavia to the Mediterranean) [41]. This may be due to water sources other than rainwa-

ter and changes in isotopic ratios due to heating water [42]. In this study we therefore restrict

ourselves conservatively to inter-population comparisons to examine variability and identify

outliers. To enable comparison with other published data, we converted our data, which

was measured δ18O relative to VPDB in enamel carbonate, to phosphate values relative to

VSMOW, using conversion equations provided in [43, 44].

The full analytical methods are described in the supporting information (S1 Text).

Lifetime changes

Due to differential remodelling of body tissues, different tissue types can provide ‘windows’

into specific periods in a person’s life. Human teeth erupt following a regular pattern [45],

with roots (dentine) forming slightly later than the crowns. Neither enamel nor primary and

secondary dentine is remodelled, so isotopic values from teeth reflect the period when they

were formed. Incremental samples of tooth roots have been shown to provide near annual res-

olution, as tooth roots form at about 1 mm per year [46, 47]. We chose second molars (M2) or

second pre-molars (P2) to represent childhood and early juvenility and third molars (M3) to

represent juvenility and early adulthood (S1 Table).

Contrasting with teeth, bone collagen is constantly remodelled [48]. Ribs in particular are

subject to considerable muscular stresses and therefore have a shorter turnover period than

other bones. Isotopic values from ribs thus represent a period towards the end of a person’s

life, commonly assumed to be less than ten years, though contributions from earlier years are

possible [49].

Taking multiple samples from the same individuals opens up the unique possibility of

examining changes in diet and residence of individuals over the course of their life [6, 7]. This

is of particular interest when studying nomadic-pastoralists in an agricultural environment,

where a change in residence may coincide with a change in diet, because it can indicate to

what extent individuals adapted to new social and environmental contexts.

Sites

Five sites were chosen to cover a large area across the frontier zone, from the heartland of the

province of Pannonia to the Great Hungarian Plain beyond the river Tisza (Fig 1). Grave

goods date them to the fifth century AD and they all contain some evidence for autochthonous

as well as non-local practices (e.g. grave goods, grave construction or skull modification).

Detailed information about the samples and the sampling strategy is presented in the support-

ing information (S2 Text).

The Roman fort of Keszthely-Fenékpuszta (46.707196 N, 17.246788 E) is situated on the

western shore of Lake Balaton, well away from the Danube frontier. It was founded in the mid

fourth century AD and continued to be in use in some form into the ninth century AD. It is

considered part of a group of internal fortifications of Pannonia [52–54]. To the south of the

walls there are extensive groups of cemeteries, dating from the entire period the site was in use

[55, 56]. About 250 m farther to the south-east there is a distinctive group of thirty-one inhu-

mations dating to the fifth century AD, excavated from 1976 to 1980 [57]. The grave goods

have been associated with the region around the Dnepr and Crimea, as well as exhibiting the

heterogeneity common to mid fifth-century cemeteries in Pannonia [57, 58]. Twenty-eight

individuals had modified skulls [59–61]. This group was therefore sampled for our study.

Compared with the rather more cosmopolitan nature of Keszthely-Fenékpuszta, the nearby

cemetery of Hács-Béndekpuszta (46.660274 N, 17.713328 E) was chosen because it reflected a

small group, possibly a family. Hács-Béndekpuszta is not far from Keszthely-Fenékpuszta, c.
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15 km south of Lake Balaton [62]. It was discovered in 1934 and excavated in the 1950s. This

revealed twenty-nine graves, though the full extent of the cemetery is unknown, since building

work in the 1940s caused some losses. Grave goods date this cemetery to the last third of the

fifth century AD [63]. Grave furnishings are representative of the region, including some items

Fig 1. Map showing the location of the sites on either side of the late Roman frontier. Roman provinces map data adapted from the Ancient

World Mapping Centre (Creative Commons Attribution-NonCommercial 3.0 Unported); coast line and river data from the GSHHG [50]; elevation data

from the GMTED2010 [51].

doi:10.1371/journal.pone.0173079.g001
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that have typological links with areas as far away as southern Germany. One individual (grave

23) had a modified skull [64]. Hács-Béndekpuszta is also notable because one of the disturbed

graves (grave 5) contained rare fragments of texts from the Gothic bible, written on lead sheets

that were possibly used as an amulet [65]. This is important evidence of Gothic missionary

activity in middle Danube region.

The cemeteries of Győr-Széchenyi Square (47.688145 N, 17.634333 E) and Mözs are located

on the banks of the Danube and thus directly on the frontier. The modern town of Győr is situ-

ated at the confluence of the river Rába and the Moson Danube (Little Danube). A number of

excavation campaigns in Széchenyi Square, in the city centre, revealed the remains of the

Roman vicus of Arrabona [66, 67]. Following its abandonment, a cemetery was established

there [68, 69]. Seventy-nine graves were dug into a thick layer of dark earth or possibly river

silt, suggesting that the vicus had been abandoned some time earlier [69]. Some of the graves

were brick-lined, while four, or possibly five, individuals had modified skulls. The grave fur-

nishings overall were fairly limited and exhibit both late Roman and ‘foreign’ traits [67, 69].

Based on grave good typologies, the cemetery was in use during the second and third quarters

of the fifth century AD and possibly later [63].

The cemetery at Mözs (46.401353N, 18.716669 E) lies on a low rise on the banks of a now

abandoned channel of the Danube. In 1961 twenty-eight graves were excavated [70]. These are

the subject of the present study. In the 1990s a further sixty-eight graves were discovered south

of the original excavation in advance of the construction of the M9 motorway [71]. The ceme-

tery was fully excavated, as well as its associated settlement. Burial practices are very heteroge-

neous: some graves are lined with bricks, a late Roman practice, while others had built-in

niches, a practice that is associated with non-Roman groups. Like Győr, the cemetery was in

use during the second and third quarters of the fifth century [63]. The grave goods exhibit a

wide range of typological influences. In the northern group nine individuals had modified

skulls, and more than forty in the cemetery as a whole.

The cemetery of Szolnok-Szanda (47.140898 N, 20.194801 E), finally, lies far beyond the

Roman frontier on the banks of the river Tizsa in the Great Hungarian Plain. It was discovered

in 1952 and excavated more systematically from 1955 to 1957 [72]. This cemetery is part of a

cluster of cemeteries in the region that are associated with Gepids who were a group known

from written sources to have been allied to the Huns [73]. However, no material culture is

uniquely specific to this region and can therefore clearly be identified as Gepid [74]. Instead,

grave construction and furnishings are part of a regionally widely shared practice. Six individ-

uals of 206 graves had modified skulls. Based on grave good evidence, the cemetery was in use

in the fifth and sixth centuries.

Geological and environmental background

The Pannonian basin is largely made up of deep loess deposits. They began to be formed dur-

ing MIS 27–17 (1 Ma-700 ka), with the last big loess deposition event taking place during the

Last Glacial Maximum and the Younger Dryas [75]. Secondary loess deposits accumulated

through alluvial transportation. This means that much of the interior Pannonian basin is geo-

logically very homogeneous, though there are some exceptions.

The site of Keszthely-Fenékpuszta is located at the western end of Lake Balaton on Holo-

cene paludial sediments. A hilly area about 10 km to the north is formed by the Somló Forma-

tion, made up of sand, siltstone and clay beds, and dating from the Upper Miocene (11–5 Ma).

The Keszthely Mountains, part of the Bakony mountains north of the south-western end of

the lake and closest to Keszthely-Fenékpuszta, are characterised by Upper Triassic (230–200

Ma) marine dolomite and limestone [76]. The area around Hács-Béndekpuszta is dominated
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by Pleistocene loesses [76]. The Győr region is characterised by Holocene paludial sediments

and fluvial sand and gravels [76]. Similarly, Mözs is situated between Pleistocene loesses and

the Holocene Danubian floodplain [76]. About 10 to 15 km to the southwest the floodplain

rises to the Szekszárd Hills. They are of Mórágy granite, dating to 320 to 310 Ma [76], overlain

by deposits of the Somló Formation to the north. Szolnok, finally, is located in the Tisza flood-

plain which is made up of Holocene fluvial deposits.

Within the Roman province of Panonnia, there is extensive evidence of farming and animal

husbandry. A study of pollen evidence in south-west Hungary indicates increasing deforesta-

tion since the Iron Age resulting in the formation of open meadows [77]. During the Roman

period grasslands were used for animal husbandry, but there is also an increase in cereal culti-

vation. In Keszthely-Fenékpuszta the main cereal crops were six-rowed barley, bread wheat

and also rye, while lentils, peas and beans also played an important role [78]. The area around

the lake was used to cultivate cereals (predominantly barley and wheat), legumes and also

grapes [79]. Keszthely-Fenékpuszta has an abundance of fauna from all periods of the site [80].

The majority are local domesticates (predominantly pig and cattle) and wild fauna such as

wild boar, aurochs and red and roe deer, but there is also a contribution of imported species,

notably the phalanx of a Bactrian camel [80].

The environment in the Great Hungarian Plain is characterised by a mosaic of different

types of steppe habitats that have also been subject to considerable changes over the course of

the Holocene [81]. From the Neolithic onwards land was increasingly used for agriculture,

leading to extensive anthropogenic landscape changes [82–84]. Archaeobotanical evidence

from the third- to fourth-century settlement site of Kiskundorozsma-Nagyszék in Csongrád

County suggests a highly diverse environment consisting of waterlogged meadows, pastures

and open woodland [78]. Indeed, extensive areas of the floodplains of the river Tizsa were per-

manently or periodically inundated [78]. Prior to the eighteenth century, land-use typically

switched between crop cultivation and grazing in multi-year cycles [81]. Millet was cultivated

here in greater amounts than within Pannonia and continued to be an important crop in post-

Roman periods [85].

Results

Sample preservation

The full results of human and faunal samples, together with relevant osteological information,

are listed in S2 Table. Samples generally produced collagen of good quality. The atomic C/N

ratios were mostly between 3.1 and 3.4, well within the range of 2.9 to 3.6 considered to be

indicative of good collagen preservation [86]. Samples that produced C/N ratios outside of 2.9

to 3.6 were excluded. These were mostly fish bones and other fauna. Collagen and dentine

samples yielded carbon between 30 and 50% and nitrogen between 11 and 18%, falling in the

range of modern human collagen (40–50% carbon and 15–18% nitrogen), as defined by

Ambrose [87]. All samples yielded sufficient ppm of strontium.

Fauna

Cattle and ovicaprids were used to establish a dietary baseline for the human samples, since

only they were present at all sites and were likely a dietary mainstay for both mobile and settled

societies (S2 Fig). Summary data are given in S3 Table. A one-way ANOVA (Fδ13C (3, 42) =

1.651, p = 0.192; Fδ15N (3, 42) = 2.631, p = 0.062) shows that values for cattle and ovicaprids at

the four sites with animal bones are not significantly different. Any variability in the human

results is therefore due to human dietary choices rather than regional ecological variation.

Pastoralism in an agricultural environment
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Scatterplots of all fauna and human samples at each site are presented in the supplementary

section (S3 Fig).

Fishbones were sourced from Lake Balaton, as well as the rivers Rába, Danube and Tisza.

Isotopic values of the same species differ widely at different locations. Lacustrine fish species

have been shown to have variable isotopic values due to the variability of the freshwater ecosys-

tems in which they live [32]. Catfish are particularly variable in both δ 15N and δ 13C values.

The isotopic values of the different ecosystems within the Danube are as yet insufficiently char-

acterised, but this variability may be due to different isotopic compositions of the riverine car-

bon source as well as the importance of aquatic CAM plants in the foodweb [88].

Comparison of diet at different sites

Figs 2 and 3 show the δ13C and δ15N values of each of the Hungarian sites, plotted against five

early medieval cemeteries in Germany dating from the fifth and sixth centuries AD and five

sites in Siberia and Mongolia dating from the Iron Age and the Mongol Period. The two

groups of sites were chosen to represent sedentary agricultural populations on the one hand

and pastoral groups on the other, based their associated archaeological and historical context.

These populations are used as sedentary-agricultural and nomadic-pastoral end points to

determine the extent to which populations in the Pannonian basin pursued either subsistence

strategy.

The δ13C values of the German sites are tightly clustered, with some outliers. Their δ15N val-

ues exhibit greater ranges, and here too there are some outliers. These populations can be con-

sidered largely sedentary and agricultural, consuming medium amounts of animal protein and

mostly C3 plants. Dietary variability is limited. In contrast, the Siberian and Mongolian indi-

viduals are enriched in δ13C by 4 to 5‰, exhibiting values that indicate considerable though

not exclusive reliance on C4 plants. The δ15N values are very variable, with Ai-Dai and Tsa-

gaanchuluut falling between about 10 to 13‰, while the populations of Tavan Tolgoi and Hets

Mounain Cave range from c. 13.5‰ to almost 16‰. The reasons for this variability are not

entirely clear, but likely relate to environmental differences. It has been suggested that enrich-

ment of δ15N values could have been caused by the aridity of steppe environments [16, 91] or

by localized higher growth season temperatures [89]. We therefore cannot unequivocally relate

these very elevated δ15N values to greater consumption of animal protein, as might be expected

of pastoral populations, though it likely was the cause of some degree of enrichment.

The Hungarian sites are considerably enriched in δ13C compared to the German sites

though lower than the Inner Asian ones, suggesting a significant, but not exclusive, input of

C4 plants. The δ15N values are also elevated relative to the German sites, indicating a greater

contribution of animal protein to the diet. Levels of aridity and temperature in Hungary and

Germany are similar enough that we can attribute this variation to differential protein con-

sumption. The δ13C ranges at the Hungarian sites are also greater than at the German sites but

comparable to the Inner Asian sites, while the the δ15N ranges are greater than both. The dis-

tributions are loosely clustered with a number of outliers in both directions. The data ranges

are extended with the addition of the dentine data (which was not available for the German

and Inner Asian sites). However, even the collagen data include a number of outliers.

The Hungarian sites are therefore characterised by a diet that lies somewhat between the

sedentary-agricultural diet of early medieval Germany and the nomadic-pastoralist diet of the

Inner Asian sites. Populations consumed a medium to high amount of animal protein and

high amounts of C4 plants. The extensive data ranges suggest that some individuals at all sites

consumed a more a more agricultural diet, others a more clearly pastoral diet, and many a

Pastoralism in an agricultural environment

PLOS ONE | DOI:10.1371/journal.pone.0173079 March 22, 2017 8 / 25



mixture of both. There is also no clear regional pattern—the four sites within Pannonia are not

fundamentally different from Szolnok in the Great Hungarian Plain.

Lifetime changes in diet

Fig 4 shows changes in diet over the lifetime of those individuals where multiple samples were

taken in terms of δ13C and δ15N of dentine and bone collagen. At Keszthely a group of six or

seven individuals underwent a significant shift in diet over the course of their lives, changing

from greater reliance on C4 plants and animal protein to a diet much reduced in C4 and lower

in protein. In Hács individuals also exhibit considerable shifts in diet, though the patterns are

less uniform. Dietary changes between tooth dentine and rib collagen mostly manifest as a

Fig 2. Comparison of δ13C values at different sites shows the Hungarian sites falling between German and Inner Asian ones.

The colours indicate the general location of the sites. Red: Germany; blue: Inner Asia; green: Hungary (data from this study).

Comparative data taken from published literature. Key to sites: WGT—Weingarten (fifth to sixth century AD, Germany) [9]; AED—

Altenerding (fifth to sixth century AD, Germany) [10]; SB—Straubing (fifth to sixth century AD, Germany) [10]; OBM—Obermöllern (fifth

to sixth century AD, Germany) [11]; RAT—Rathewitz (fifth to sixth century AD, Germany) [11]; AID—Ai-Dai (fifth to second century BC,

western Siberia) [14]; AYM—Aymyrlyg (eighth to fifth century BC, western Siberia) [14]; TAV—Tavan Tolgoi (thirteenth to fourteenth

century AD, eastern Mongolia) [89]; TSA—Tsaganchuluut (thirteenth to fourteenth century AD, eastern Mongolia) [89]; HMC—Hets

Mountain Cave (fifteenth to sixteenth century AD, eastern Mongolia) [90]; KFP—Keszthely-Fenékpuszta; HAC—Hács-Béndekpuszta;

GYS—Győr; MOZ—Mözs; SZO—Szolnok-Szanda. Columns are labelled as coll—collagen, M2 –second molar and M3 –third molar.

doi:10.1371/journal.pone.0173079.g002
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depletion in δ 15N of -0.8 to -2.2‰ (HAC 1, 13, 16, 18, 20). In terms of Δ13C offsets between

dentine and rib collagen, individuals fall into roughly two groups: some are becoming more

enriched—HAC16, 17, 18 by 0.7 to 1.7‰ –while others are more depleted—HAC1, 13, 20 by

-1.1to -1.5‰. It is clear that some individuals were subject to quite extreme changes both in

their animal protein consumption where a reduction is evident, and in terms of the vegetal

component of the diet.

In Győr the picture is more confused. Many individuals exhibit Δ15N and Δ13C changes

between dentine and collagen of up to 0.5‰ in either direction. Quite possibly this is a reflec-

tion of normal dietary variation over a person’s lifetime, without being indicative of more

widespread social changes. However, a few individuals have significant offsets between

Fig 3. Comparison of δ 15N values at different sites shows the Hungarian sites falling between German and Inner Asian

ones. The colours indicate the general location of the sites. Red: Germany; blue: Inner Asia; green: Hungary (data from this study).

Key to sites: WGT—Weingarten (fifth to sixth century AD, Germany) [9]; AED—Altenerding (fifth to sixth century AD, Germany) [10];

SB—Straubing (fifth to sixth century AD, Germany) [10]; OBM—Obermöllern (fifth to sixth century AD, Germany) [11]; RAT—

Rathewitz (fifth to sixth century AD, Germany) [11]; AID—Ai-Dai (fifth to second century BC, western Siberia) [14]; AYM—Aymyrlyg

(eighth to fifth century BC, western Siberia) [14]; TAV—Tavan Tolgoi (thirteenth to fourteenth century AD, eastern Mongolia) [89]; TSA

—Tsaganchuluut (thirteenth to fourteenth century AD, eastern Mongolia) [89]; HMC—Hets Mountain Cave (fifteenth to sixteenth

century AD, eastern Mongolia) [90]; KFP—Keszthely-Fenékpuszta; HAC—Hács-Béndekpuszta; GYS—Győr; MOZ—Mözs; SZO—

Szolnok-Szanda. Columns are labelled as coll—collagen, M2 –second molar and M3 –third molar.

doi:10.1371/journal.pone.0173079.g003
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childhood and adulthood, most notably GYS65.22. This represents a shift from a large propor-

tion of C4 in the diet to almost none.

In Mözs it is possible to identify two directions of change in δ13C values: MOZ6, 7, 12 and

27 are becoming more depleted, while MOZ1-5 and 18, on the other hand, are becoming more

Fig 4. Scatter plots of δ13C and δ15N values of dentine and bone collagen at the five sites. Changes of the course of the lifetime of individuals are

indicated with arrows. Data points are labelled with grave numbers and information about age at death.

doi:10.1371/journal.pone.0173079.g004
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enriched. These two small groups had a childhood diet was lower in animal protein. One

group consumed significantly higher amounts of C4 plants, MOZ27 in particular being highly

enriched in M2 and M3. The other group consumed only a limited amount of C4 plants.

In Szolnok, like in Győr, no clear pattern can be identified. There is a considerable amount of

low-level variability of 0.2 to 0.4‰ between different teeth and collagen. In Szolnok the majority

of the population consumed high levels of protein and significant amounts of C4 plants. A num-

ber of individuals were subject to considerable changes in diet over their lifecourse, but these

changes are highly individualized and appear not determined by any group behavior.

At all five sites there is considerable dietary variation over the lifetimes of individuals, with

some exhibiting quite extreme shifts over short periods of time. There are no obvious demo-

graphic patterns, such as gender or age at death, that could explain such shifts. There is also no

relationship between isotopoic variability and specific items of material culture or burial prac-

tice, nor are individuals with modified skulls treated differently. However, at Keszthely, Hács

and Mözs it may be possible to identify sub-groups that were subject to similar lifetime changes.

Comparison of protein and whole diet carbon sources

Fig 5 shows δ13C dentine and enamel carbonate results, as well as tooth pairs. All sites exhibit a

correlation between δ13Cdentine and δ13Capatite, though the relationship is not very strong. This

is partly an artefact of small sample numbers. Where data points fall significantly above the

trendline, indicating greater levels of δ13Capatite enrichment relative to their δ13Cdentine values,

we can assume that protein needs were met with animal protein and that δ13Capatite enrich-

ment was due to direct consumption of C4 plants.

This is most obviously the case in Hács, where the M3 of HAC20 and HAC13 were signifi-

cantly enriched in δ13Capatite. These individuals, adult women, also exhibit a big difference

between their M2 and M3. Their M2 were enriched in δ13Cdentine, but not particularly elevated

in δ13Capatite. This indicates that their dietary protein, possibly animals foddered on millet or

C4 grasses, was a source of 13C enrichment. In Keszthely, in comparison, 13C contributions

from protein and whole diet are fairly balanced. KFP5 and 26 are somewhat enriched in

δ13Capatite, while KFP17 and 20 are more depleted, relative to δ13Cdentine, but not very notably.

Győr, similarly, has a tight correlation. Here, too, dietary contributions appear to be balanced.

GYS65.22, a possibly female adult, stands out as being highly enriched in both δ13Cdentine and

δ13Capatite. At Mözs the small group identified in Fig 4 (MOZ6, 7, 12, 27) also stands out. The

M2 of the adult female MOZ6 is somewhat enriched in δ13Capatite. The M3 of the adult female

MOZ12 is depleted in δ13Cdentine, compared to her M2 but is slightly enriched in δ13Capatite,

possibly reflecting residual C4 consumption. Szolnok, finally, also has a reasonably good corre-

lation, though a few samples are outliers from the main distribution. SZO22, an adult male, was

not obviously different in Fig 4, but stands out here because its M2 is enriched in δ13Cdentine

and depleted in δ13Capatite. This may due to δ13C enriched animal protein consumption.

A comparison of δ13C contributions from protein and whole diet at the five sites also reveals

significant lifetime shifts in some individuals. We can detect more subtle changes in different

contributions to diet, but here too there are no obvious underlying demographic or archaeo-

logical patterns. The picture that emerges is one of societies with extremely heterogeneous die-

tary practices.

Mobility

Fig 6 shows the 87Sr/86Sr values of humans, plotted against the respective local environmental

values. The shaded areas provide an estimate of the 87Sr/86Sr ratios in the vicinity of the sites.

Water samples (Balaton, Danube and Tizsa) are taken to be local geological averages of

Pastoralism in an agricultural environment

PLOS ONE | DOI:10.1371/journal.pone.0173079 March 22, 2017 12 / 25



87Sr/86Sr, and from there the shading extends into the environmental variation at the sites.

This variation is due to the choice of sampling location (intended to take account of geological

variation) as well as to the way soils and plants interact with the local bedrock. S1 Fig shows

the sampled locations and local geology in detail.

Fig 5. Scatter plots of δ13Cdentine and δ13Capatite values at the five sites. Tooth pairs indicating lifetime changes in diet are marked with arrows. The

trendlines visualise the correlation between δ13Cdentine and δ13Capatite, and the correlation coefficient R2 and p value for each are indicated. Data points are

labelled with grave numbers.

doi:10.1371/journal.pone.0173079.g005
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At Keszthely and Hács our own environmental samples are supplemented by the compre-

hensive soil, water and vegetation samples taken by Alt et al. [93] for the sixth-century ceme-

tery of Szolad, south of Lake Balaton. The region around Lake Balaton is geologically highly

variable. Fig 6 shows the 87Sr/86Sr values at the two sites, as well as at some distinct geological

Fig 6. 87Sr/86Sr ratios of human tooth enamel from Keszthely, Hács, Mözs and Szolnok represented in relation to modern vegetation, water, and

soil samples and archaeological fauna. Tooth pairs are visualised with lines joining them. The shaded areas indicate local 87Sr/86Sr values. Shading

extends from water samples (Balaton, Danube, Tisza), considered to be geological averages, to cover the local environmental variation. The

environmental reference data for Keszthely and Hács are plotted between the human data of the two sites to show that they are relevant for both. For

Mözs and Szolnok the reference data are shown to the left of the human data. Comparative data taken from published literature: 1 87Sr/86Sr ratios from an

earlier study of some of the same individuals at Keszthely. The type of tooth used here could not be determined [92]; 2 comparative environmental data for

the Balaton Region from [93]; 3 prehistoric fauna from the Körös valley, a tributary of the Tizsa [94].

doi:10.1371/journal.pone.0173079.g006
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areas in the region (S1 Fig). Lake Balaton water can be assumed to have 87Sr/86Sr values that

are a local average. The Bakony Mountains to the north of the lake are highly radiogenic, while

the values around Keszthely and Hács (south of Lake Balaton) are lower. Human samples at

Keszthely also include seven teeth previously analysed by Heinrich-Tamáska and Schweissing

[92]. These teeth have not been identified.

At Mözs, the local 87Sr/86Sr ratios were defined by water from the Danube as well as by soil

and vegetation samples. The more radiogenic data points represent the Szekszárd Hills. In

Szolnok the local values are also determined by soil and vegetation from the site, and water

from the Tisza, as well as by prehistoric fauna values from the Körös River, a tributary of

the Tisza, published in Giblin [94]. Győr was excluded at this point to maximise available

resources.

There is evidence of high levels of mobility at all four sites, both in terms of numbers of

individuals with values falling outside the range defined as local to the site and in terms of the

wide range of 87Sr/86Sr values. The data are not normally distributed and the sample size is

small which necessitates visual analysis over statistical analysis. Some of the variability evident

at Keszthely and Hács likely relates to the differences in 87Sr/86Sr ratios of the regional geology.

The individuals with values outside of the range specific to the site may nevertheless have

grown up in the Balaton region. There appears to have been considerable mobility within the

region, if not from more distant areas. Only the values of the tooth from grave 12 in Keszthely

and of the M2 from grave 20 in Hács fall completely outside of regional values, indicating that

they did not grow up in the region. Several individuals are notable for extreme differences in

the values of two teeth, suggesting that they lived at multiple locations during their childhood

and youth.

At Mözs the local values represent the Danube floodplain and are therefore more closely

constrained. Here, five of ten (graves 6, 8, 12, 19 and 27) sampled individuals fall outside of

this range, but they could have resided locally in the more radiogenic area of the Szekszárd

Hills before moving to Mözs at the end of their lives. The individual from grave 18 falls

completely outside the regional 87Sr/86Sr values, indicating migration from some considerable

distance. The underlying geology of Szolnok and surrounding areas, finally, is very homoge-

neous, being in the great loess basin of the Great Hungarian Plain. Here also two or perhaps

three of the six analysed individuals exhibit non-local values (graves 22, 76 and possibly 7).

Fig 7 shows the δ18O values from the five sites after conversion from their original carbon-

ate values to phosphate values. They are compared against results from three Iron Age sites in

Bohemia (Kutná Hora, Radovesice I and II), a post-medieval cemetery in Prague (St Benedict’s

Cemetery) and an Avar-period cemetery in northern Hungary (Sajópetri [95–97]. The Bohe-

mian populations and that of the cemetery in northern Hungary range from 14.9 to 17.8‰.

A number of the individuals from the St Benedict Cemetery in Prague are more enriched,

extending to 18.6‰, likely due to the greater mobility of this urban population, and because

they may have had greater access to cooked and stewed foods [42]. The five sites of our study

are more depleted in δ18O, possibly reflecting local water sources. While the distributions

appear uneven, the data are normally distributed, and only Szolnok includes two clear outliers

(79 and 142). These can be considered non-local to Szolnok with some degree of certainty. The

data ranges are greater than those at the three Iron Age sites, and more comparable to the St

Benedict Cemetery. This supports the evidence for high levels of mobility already indicated by

the 87Sr/86Sr values.

The 87Sr/86Sr and δ18O values indicate high levels of mobility at all sites. While the distances

travelled since childhood cannot be determined, it is clear that the cemetery populations had

heterogeneous biographies. Some individuals experienced more than one change in residence.

There are no clear patterns here, so it is unlikely that they resided in the same locations and
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travelled as groups. Just as with the dietary patterns discussed above, levels of mobility are

independent from sex, the presence of skull modification or specific elements of the burial

practice. As expected, younger individuals more commonly, though not always, have local

signatures.

Discussion

At all five sites humans consumed a medium to high amount of animal protein, higher than at

the comparison sites in Germany, but lower than at most of the Inner Asian sites. The protein

appears to have derived from terrestrial, rather than aquatic, fauna. The fish sampled here are

mostly enriched in 15N compared to terrestrial fauna, though carps and cyprinids have similar

δ15N values (S3 Fig). With the exception of the catfish from Győr and Esztergom, fish are

depleted in 13C compared to other fauna. Since fish are higher in protein than millet, we

should expect them to affect the human values more strongly. Any significant contribution

Fig 7. Comparison of δ18O values at different sites. The colours indicate the region where the sites are located. Pink: Bohemia;

orange: northern Hungary; green: data from this study. Comparative data taken from published literature: Kutná Hora and Radovesice

I and II (fourth to third century BC) [96]; St. Benedict Cemetery, Prague (fifteenth to eighteenth century AD) [98]; Sajópetri (Avar-

period, seventh to ninth century AD) [95]; KFP—Keszthely-Fenékpuszta; HAC—Hács-Béndekpuszta; GYS—Győr; MOZ—Mözs;

SZO—Szolnok-Szanda. Outliers are labelled with grave numbers. Columns are labelled as M2 –second molar and M3 –third molar.

doi:10.1371/journal.pone.0173079.g007
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would therefore lead to lower δ13C values, though some of this would be cancelled out by millet

consumption.

The five Hungarian sites fall between the German and Inner Asian sites in their δ13C values.

This indicates significant, though not exclusive, consumption of C4 plants, most likely millet.

Millet has been recorded archaeobotanically in late Roman Pannonia, where it was relied upon

as a minor crop among a wider range of cereals [78, 99]. Significantly, archaeobotanical analy-

sis at Keszthely of samples from multiple contexts within the fortification revealed multi-

rowed barley to be the main crop, followed by oats, broomcorn millet, rye and wheat [79].

This contrasts with numerous third- to fifth-century sites beyond the frontier where significant

amounts of millet were found, often combined with barley [85, 99]. It is possible that millet

increased in the fourth and fifth centuries due to population movements from and contacts

with Central Asia where this grain was more widespread.

At the four sites where strontium isotope analysis was carried out, between thirty and fifty

percent of sampled individuals were not local to the area where they were buried. The popula-

tions were extremely heterogeneous. Places of origin are variable and, in many cases, individu-

als underwent more than one change in residence. Additionally, it is not possible to identify

groups that may have moved together. Remarkably, all five sites broadly exhibit the same pat-

terns, regardless of their location within or beyond the late Roman frontier. Szolnok is in the

Great Hungarian Plain, the most likely region to support a pastoral lifestyle, yet it exhibits sim-

ilar patterns to the other four sites.

A detailed examination of lifetime changes shows that this variability has a high resolution.

It is difficult to ascertain what degree of change within the same individual can be attributed to

‘normal’ dietary variation. Incremental dentine studies have revealed changes of Δ15N 3 to 5‰

in a single human tooth [46, 47]. Even bulk dentine samples record diet over a shorter time-

period than bone collagen, making dentine samples more sensitive to short-term dietary

changes. While elevated δ 15N can represent both nutritional stress, a metabolic relationship

with δ13C is limited. We can thus assume that variations in δ13C values are a reflection of dif-

ferential contributions of C3 and C4 plants. Many individuals therefore experienced dietary

changes and changes in residence over only a few years, though lifetime variability in diet is

not directly linked to high levels of mobility in all cases.

Taken together, the evidence suggests that our sampled populations followed subsistence

practices that were neither exclusively agricultural nor fully pastoral. Most of their protein

derived from domesticates such as cattle, ovicaprids and possibly also horses and pigs. They

engaged in agriculture to some degree, either directly or through trade and exchange with agri-

cultural populations, and much of grain production focused on millet. Levels of mobility are

consistent with some degree of nomadism, and many individuals appear to have switched sub-

sistence strategies over the course of their lives.

Conclusion

The isotopic evidence reveals a picture of great dietary variability, both within populations and

over individuals’ lifetimes. The patterns at all sites suggest subsistence strategies that include

medium to high animal protein consumption with little evidence for a significant contribution

of aquatic resources. All populations relied to great extent on C4 plants, most likely millet.

Within each population, diet was heterogeneous, with significant variations in terms of animal

protein and C3 and C4 plant consumption. High levels of intra-population and individual var-

iability suggest that populations made use of a range of subsistence strategies, with many indi-

viduals exhibiting significant changes over their lifetimes.
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It is therefore likely that groups and individuals switched between subsistence strategies,

often quite rapidly. This may have been a response to a period of warfare and instability in the

frontier zones, as recorded in historical sources. Certainly agricultural diversification is a safer

strategy than reliance on monoculture in uncertain economic times. Conversely, switching of

subsistence strategies may have been a proactive choice. Most pastoralists rely on some form

of agriculture, either by engaging in it themselves or through close interaction with agricultural

populations, and nomadic groups can be mobile for part of a year or move between long-estab-

lished locations. Such a fluid approach to apparently very different subsistence strategies has

been documented ethnographically (e.g. [100, 101, 102]), but also archaeologically [14].

The burial evidence—grave construction and grave goods—from the four cemeteries within

Pannonia is largely in keeping with wider developments in middle and lower Danubian burial

practice in the fifth century [63, 103]. There is no evidence for great social disruption or eco-

nomic deprivation. Graves were commonly well-constructed and fairly well-furnished. The

cemetery at Keszthely was associated with the late Roman fortification, but self-contained and

at some distance from it [57]. In Győr the graves were located within the former Roman vicus

following its abandonment [67]. Hács-Béndekpuszta and Mözs, on the other hand, were newly

established, though a number of graves at Mözs were brick-lined, in the late Roman tradition.

Similarly, the burial evidence at Szolnok-Szanda is in keeping with local practices [73]. While

some grave goods display long-distance connections to the Pontic regions (e.g. shoe buckles

in Mözs, grave 11), but also to west-central Europe (e.g. the brooches in Keszthely, grave 10,

and Hács, graves 19 and 20 with a parallel in south-west Germany), the funerary context does

not suggest that particular individuals were considered foreigners or outsiders. Nor are indi-

viduals with outlying isotopic data marked out as different in their burials. The funerary evi-

dence thus suggests that the individuals or groups that newly arrived in the areas where they

were buried were largely part of the hybridised environment of late antique Pannonia and the

plains beyond the frontier rather than outsiders that arrived from regions as far as central Asia,

as has been suggested [104]. Instead, it is likely that the steppe environments of the Carpathian

basin and the Pontic littoral generated the phenomenon of the Huns locally. The archaeolog-

ical and isotopic evidence presented here therefore does not identify ‘Huns’ as a distinct ethnic

group. Instead it reveals the impact of nomadic-pastoralist groups on the populations of the

Carpathian basin.

The environment of the Carpathian basin was a mosaic of steppe, open forests and agricul-

tural land. This makes it likely that the inhabitants would have relied on both agriculture and

pastoralism to suit their needs. Interestingly this was the case at the sites within late Roman

Pannonia, as well as in Szolnok, in the Great Hungarian Plain, the ecological region most

likely to support large-scale animal herding. At Keszthely, Hács and Győr, we may have evi-

dence of fairly transient populations. The cemetery at Mözs is much larger than the sub-sam-

ple included in this study and has a large associated settlement. Nevertheless, it is possible that

a number of those buried there had not settled there long-term. At Szolnok, we have no associ-

ated settlement. Chronologically it spans the fifth and sixth centuries, a longer period than the

other sites. Its size and period of use suggests a fairly large, relatively stable population. Here

it may be possible that some individuals engaged in pastoralism within a mostly sedentary

population.

While written accounts of the last century of the Roman empire may document particular

convulsions of violence, they are largely silent on the cooperation and coexistence of people

living in the frontier zone. Our new isotopic evidence shows that populations along the late

Roman frontier in Hungary adopted a highly flexible approach to subsistence, in keeping with

high levels of hybridity evident in burial practice. Farming and animal herding were not fun-

damentally opposed to each other, but mutually beneficial strategies that were not limited to
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particular ethnic groups. Nomadic-pastoralist groups may have switched to smaller herds and

more farming, and, conversely, local populations may have integrated with a new economic

system based on animal herding, and these changes could happen over the course of a person’s

life. The influx of nomadic populations into east-central Europe in the fifth century AD may

have caused enormous political upheaval and documented episodes of violence, but isotopic

evidence shows people finding strategies to mitigate and perhaps even to benefit from these

changes by modifying their subsistence economies.
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62. Kiss A. Das germanische Gräberfeld von Hács-Béndekpuzsta (Westungarn) aus dem 5.-6. Jahrhun-

dert. Acta Antiquae Academiae Scientiarum Hungaricae. 1995;(36):275–342.
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University; 2015. p. 617–78.
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104. de la Vaissière É. The steppe world and the rise of the Huns. In: Maas M, editor. The Cambridge Com-

panion to the Age of Attila. Cambridge: Cambridge University Press; 2014. p. 175–92.

Pastoralism in an agricultural environment

PLOS ONE | DOI:10.1371/journal.pone.0173079 March 22, 2017 25 / 25


