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ABSTRACT
It is important to design engineering systems to be robust with respect to
uncertainties in the designprocess. Often, this is doneby considering statis-
tical moments, but over-reliance on statistical moments when formulating
a robust optimization can produce designs that are stochastically domi-
nated by other feasible designs. This article instead proposes a formulation
for optimization under uncertainty that minimizes the difference between
a design’s cumulative distribution function and a target. A standard target
is proposed that produces stochastically non-dominated designs, but the
formulation also offers enough flexibility to recover existing approaches
for robust optimization. A numerical implementation is developed that
employs kernels to give a differentiable objective function. The method
is applied to algebraic test problems and a robust transonic airfoil design
problem where it is compared to multi-objective, weighted-sum and den-
sity matching approaches to robust optimization; several advantages over
these existing methods are demonstrated.
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1. Introduction

A traditional optimization considers a quantity of interest of a system q as a function of controllable
design variables x, to find a design that minimizes q. However, in practice, a computational simu-
lation of q will be affected by uncontrollable uncertainties, u, from a variety of sources (Beyer and
Sendhoff 2007; Kennedy and O’Hagan 2001). A design optimized deterministically is often sensitive
to variations in u and will see a degraded performance when realized (Huyse, Padula, Lewis, and
Li 2002; Keane and Nair 2005). Therefore the importance of including uncertainties in the design
process is becoming increasingly recognized: a designer instead defines a measure of the behaviour
of the quantity of interest q under uncertainty as the objective function to optimize.

Formulating this problem effectively for engineering design is the field of robust optimization
(RO); a good overview of available RO methods is provided in Beyer and Sendhoff (2007). Many
methods rely on statisticalmoments or a single point on the uncertainty distribution, but this can lead
to designs that a designer would not select if they had access to the distributions of all possible designs
(discussed further in Section 2). Instead, other methods attempt to optimize the entire distribution
of the quantity of interest. The most direct application of this philosophy is the recently developed
density matching approach presented in Seshadri, Constantine, Iccarino, and Parks (2016), where a
distance metric between a design’s probability density function (PDF) and a designer-specified target
PDF is minimized. Additionally, in Petrone, Iaccarino, and Quagliarella (2011), an approach is pre-
sented that minimizes the area between sections of a design’s cumulative distribution function (CDF)
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and an ideal target in a multi-objective formulation. This evolved into a formulation using the gen-
eralized inverse CDF (Quagliarella, Petrone, and Iaccarino 2014), where the values of the inverse at
different CDF values are treated as objectives in a multi-objective formulation.

This article builds on these ideas and proposes a single objective, differentiable approach that
minimizes the difference between a design’s CDF and a target. It is shown to out-perform the den-
sity matching approach and overcome limitations of moment-based approaches while retaining
significant flexibility.

2. Background

Many current applications of RO treat the first two statistical moments (mean μ and variance σ 2)
as separate objectives and utilize techniques from the field of multi-objective (MO) optimization,
since the moments are often competing objectives (Jin and Sendhoff 2003; Keane 2009). A pure MO
approach can be used in order to find the robust Pareto front (which gives the trade-off betweenmean
performance and robustness) (Dodson and Parks 2009; Ghisu, Jarrett, and Parks 2011; Keane 2009;
Lee, Periaux, Onate, Gonzalez, and Qin 2011), but this is computationally expensive, so often they
are combined into a single objective using a weighted sum (WS) (Lee and Kwon 2006; Padulo, Cam-
pobasso, and Guenov 2011; Zhang and Hosder 2013). Alternatively, the robust counterpart approach
(sometimes known as the robust regularization approach) (Ryan, Lewis, and Yu 2015; Yao, Chen, Luo,
Van Tooren, and Guo 2011) is essentially a ‘minimax’ optimization where the worst case of q over the
uncertainty space, U , is minimized; it is therefore thought of as a conservative approach.

However,μ and σ 2 are not independent: they are both properties of the underlying distribution of
q. Therefore the authors argue there is only ever so much penalty to μ a designer is willing to accept
in order to decrease σ 2, and the MO approach does not take this into account. In this article, the
qualitative purpose of doing a basic robust optimization is taken to be finding a design thatmaximizes
the likelihood of achieving as good a performance as possible, in which case it makes more sense to deal
with probability distributions in their entirety instead of considering μ and σ 2 as competing.

To illustrate this, consider the PDFs in Figure 1(a), which represent designs on a hypothetical
robust Pareto front. Even though C is significantly more robust than A, since there is no overlap
between the PDFs, designA is guaranteed to give a better quantity of interest thanC, and so a designer
is unlikely to choose C as the final design. The PDF of design B overlaps that of A, but it appears that
there is quite a large penalty to the mean.

Using the PDFs it is hard to quantify which design would be preferred, but now consider
Figure 1(b): the CDFs of designs A and B do not cross at any point, meaning that at any given value

Figure 1. Hypothetical PDFs and CDFs for designs on a robust Pareto front resulting from a traditional MO robust optimization. (a)
PDFs. (b) CDFs.
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for the quantity of interest q, design A is always more likely to achieve this value or better than design
B (from the definition of the CDF). The authors argue that design A is a superior design under the
basic robust optimization philosophy. This is known as stochastic dominance, and its importance
has been recognized in fields such as decision making under uncertainty and stochastic program-
ming (Levy 2015; Shapiro,Dentcheva, andRuszczynski 2009); but the authors argue that it is a concept
that is often overlooked in the optimization under uncertainty literature for engineering design. This
article uses the following definition of stochastic dominance.

Definition 2.1: Design xA stochastically dominates design xB (or design xB is stochastically dominated
by design xA) if

∀q ∈ Q, FxA(q) > FxB(q), (1)

or equivalently

∀h ∈ [0, 1], F−1
xA (h) < F−1

xB (h), (2)

where Fx(q) : Q → [0, 1] and F−1
x (h) : [0, 1] → Q are, respectively, the CDF and the inverse CDF of

q for a design x (the inverse exists because the CDF is non-decreasing by definition), andQ is the set
of feasible values of q.

From these arguments, finding the full robust Pareto front can be unnecessary and waste compu-
tational effort, since often there will be many designs that are inferior according to Definition 1. This
philosophy to robust design is also evident in the development of the CDF-based methods of Petrone
et al. (2011) and Quagliarella et al. (2014), where the value of q for different sections/values of the
CDF are minimized or traded-off: these methods avoid stochastically dominated designs. Addition-
ally, only considering mean and variance does not take into account higher-order moments or the
tails of the distribution, and so loses information which might be important to a designer; this was
one of the motivations behind the density matching approach in Seshadri et al. (2016).

Often it is too computationally expensive to perform a full MO approach to find the robust Pareto
front, and so the weighted-sum approach is ubiquitous in the literature on robust optimization in
practical engineering applications, since it has the appeal of being a single objective formulation and
so is tractable with efficient gradient-based optimization algorithms. However, it has several draw-
backs, even in pure multi-objective optimization (Marler and Arora 2010). Primarily, the weights
must be set a priori by the designer, and it is difficult to knowbeforehandwhere on the Pareto front the
optimum solution will be, since the shape of the front and relative magnitude of the two objectives on
the front are not known before performing the optimization. This drawback is made worse in the case
of robust optimization since, as discussed, the robust Pareto front is likely to contain stochastically
dominated designs, to which a weighted-sum optimization could converge under certain combina-
tions of weights. Alternatively, robustness can be controlled via a constraint on the variance, and just
the mean can be optimized, but this approach can still give rise to stochastically dominated designs
if the constraint on the variance is too strict.

Definition 2.1 suggests the use of the CDF in a robust optimization formulation in order to avoid
stochastically dominated designs, and this is part of the motivation behind the development of the
proposed horsetail matching technique.

3. Horsetail matching

As illustrated in Figure 2, the horsetail matching concept involves minimizing the difference between
a design’s CDF and a target.

The approach is named horsetail matching because the CDF is a special case, where all the uncer-
tainties are probabilistic, of a more general quantification of uncertainty which consists of the bounds
on the CDF and is sometimes referred to as a ‘horsetail plot’ (or as a ‘p-box’). Planned future work
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Figure 2. The horsetail matching concept (essentially CDF matching under probabilistic uncertainties).

aims to extend the proposed formulation to this more general case of optimization under uncer-
tainty, and so the name ‘horsetail matching’ is introduced here (the term horsetail does not imply any
assumption on the shape of the distributions).

3.1. Formulation

The quantity of interest, q ∈ Q, is assumed to be a continuously differentiable (of class C1), scalar-
valued function of the nx design variables x and nu probabilistic uncertainties u which are assumed
to be independent and each defined by a given probability distribution. The design variables must lie
in the design space X , which is defined by upper bounds xu, lower bounds xl and ng inequality con-
straints gj:X : {x ∈ R

nx |xlk < xk < xuk∀k = 1, . . . , nx and gj(x) ≤ 0∀j = 1, . . . , ng}. At a given design
x, let qx(u) = q(x, u), let Fx(q) : Q → [0, 1] and F−1

x (h) : [0, 1] → Q be, respectively, the CDF and
inverse CDF of qx, and let the target be given by t(h) : [0, 1] → R. The following L2 norm is proposed
as the measure of difference between a design’s CDF and the target:

dhm(x, t) =
( ∫ 1

0

(
F−1
x (h) − t(h)

)2 dh)1/2, (3)

where h ∈ [0, 1] represents the CDF value. The optimization problem becomes finding x∗ such that

x∗ = argmin
x∈X

dhm(x; t), (4)

where the value x∗ corresponds to the optimal design under uncertainty: its behaviour under
uncertainty is as close as possible to that specified in the target.

The integral in Equation (3) implies that the inverse CDF is well defined. In the implementation
of horsetail matching proposed in Section 4, this condition is both always satisfied and unneces-
sary, however in general the metric in Equation (3) can be well defined for CDFs that are not strictly
monotonically increasing by using the generalized inverse CDF: F−1

x (h) = inf {qx ∈ R : Fx(q) > h}.

3.2. Discussion

Utilizing the entire distribution of a quantity of interest avoids losing information by extracting just
the first couple of moments. However, it was noted in the development of density matching (Seshadri
et al. 2016) that requiring a target in an optimization formulation placed a lot of responsibility on the
designer, since if the target is not feasible then density matching performs poorly (discussed further
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in Section 5.2); so it might seem that requiring a target for horsetail matching restricts the approach.
In contrast, the target provides horsetail matching with considerable flexibility.

To capture the basic robust optimization philosophy of ‘maximizing the likelihood of achieving
as good a performance as possible’ a standard target is proposed where the target is set to a constant
value of qideal that is beyond achievable. Here a standard target is defined to be t(h) = qideal where
qideal ≤ inf(Q) (recall thatQ is the set of all feasible values of q). Inmost engineering design problems,
it is trivial to identify a value for qideal (e.g. zero cost, 100% efficiency, zeroweight). Under this standard
target, the horsetail matching metric in Equation (3) has the following important properties.

Property 3.1: When a standard target is used (t(h) = qideal ≤ inf(Q)), then the minimizer of dhm
will not be stochastically dominated by any other design x ∈ X .

Proof summary: This follows directly from Definition 2.1. �

Property 3.2: When a standard target is used (t(h) = qideal ≤ inf(Q)), then the minimizer of dhm
will lie on the Pareto front of μ and σ 2.

Proof summary: For a given design x, let q ∈ Q ⊆ R
+, and define s as the realization of the ran-

dom variable S such that s= q+c. Also define Fs, and F−1
s where Fs(q + c) = Fx(q) and F−1

s (h) =
F−1
x (h) + c for a constant c such that ts(h) = t(h) + c = 0. Use a change of variables to show that

minimizing dhm is equivalent to minimizing the second statistical moment of s, E(S2), noting that
s> 0 and dhm > 0:

d2hm =
∫ F(∞)=1

F(0)=0

(
F−1
x (h) − t(h)

)2 dh =
∫ Fs(∞)=1

Fs(0)=0

(
F−1
s (h) − 0

)2 dh

=
∫ ∞

0

(
F−1
s (Fs(s))

)2 dFs(s)
ds

ds =
∫ ∞

0
s2

dFs(s)
ds

ds = E(S2).

(5)

Since s is just a translation of q by c:V(S) = σ 2 = d2hm − E(S)2 andE(S) = μ + c. Therefore reducing
σ 2 with μ fixed must also reduce dhm, and similarly reducing μ with σ 2 fixed must also reduce dhm.
Hence there cannot be a design that dominates x that does not also reduce dhm, and so the minimizer
of dhm must lie on the Pareto front of μ and σ 2. �

Properties 3.1 and 3.2 illustrate how using this metric along with a standard target is well suited to
maximizing the likelihood of achieving as good a performance as possible, by obtaining designs on
the robust Pareto front but avoiding stochastically dominated designs.

Further, by modifying the standard target, several different design scenarios can be considered,
offering considerable flexibility to a designer; these are listed in the following and are illustrated in
Figure 3.

• Risk-averse. By modifying the shape of the standard target, a designer can specify a preference for
risk-averse designs so that robustness is preferred over possible high performance: skewing the
shape of t(h) for h close to 1 to lower values of q emphasizes minimizing the worst cases of q over
the CDF.

• Risk-seeking. A designer can alternatively emphasize possible performance over robustness by
modifying the standard target in the opposite sense to the risk-averse targets.

• Feasible distribution. In some applications, a designer might care more about higher moments of
individual CDFs such as skewness. In this case, target distributions over feasible ranges of q with
desirable higher-order moment properties can be provided (this was the main advantage of the
density matching approach of Seshadri et al., 2016).
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Figure 3. Examples of targets that specify different design scenarios using the horsetail matching formulation.

• Specific value. In other applications, for example where a component of a larger system is being
designed, pure minimization may not be what is required and instead a target value of qtarg is
desired: this is implemented in the horsetail matching formulation by setting t(h) = qtarg.

• Worst-case optimization. If the risk-averse target is taken to the extreme, such that t(1) → −∞,
then only the worst-case value is optimized and the horsetail matching formulation reduces back
to the robust regularization approach (Beyer and Sendhoff 2007; Ryan et al. 2015).

Although the point on the Pareto front of μ and σ 2 obtained using the standard target is arbi-
trary, by using different magnitudes of risk-averse or risk-seeking targets the minimizer of dhm will
move along the Pareto front (assuming there is a trade-off for the problem being considered): this is
explored further in Section 5.1. This can be considered as an alternative to changing the weightings
on μ and σ 2 in the weighted-sum formulation of robust optimization. However, by using these tar-
gets, there is no risk of obtaining stochastically dominated designs, and a preference for risk-seeking
behaviour can be specified—something not possible when only considering the first two statistical
moments.

It is possible to use a generalized Lp norm instead of the proposed L2 norm as a difference metric
between a CDF and the target, defined as

dp =
(∫ 1

0
|F−1

x (h) − t0(h)|p dh
)1/p

. (6)

For example, using an L1 norm minimizes the area between the current distribution and the target,
and when the target t(h) is a constant value this is essentially the ‘robustness index’ proposed in
Petrone et al. (2011). Minimizing this area is equivalent to minimizing the mean, since the mean
can be obtained from the CDF for strictly positive q (which can be enforced via a simple shift or
transformation for practical problems) by

μ =
∫ ∞

0
(1 − Fx(q)) dq ≡

∫ 1

0
F−1
x (h) dh, (7)



ENGINEERING OPTIMIZATION 7

and so p= 1 takes no account of the variance or higher-order moments of the distribution. As p is
increased, sections of the CDF further from the target would be penalized more heavily, emphasizing
robustness more than mean performance.

However, exactly the same effect can be achieved by varying the shape of the target, as shown with
Property 3.3.

Property 3.3: Given a design, x∗, that is an optimum of the Lp norm of the difference between an
inverse CDF and a specified target t0(h), a target t(h) exists such that x∗ is also an optimum of the L2
norm (the horsetail matching metric dhm) under this target.

Proof summary: Let f ∗ = F−1
x∗ (h) be the inverse CDF at a design, x∗, that is an optimum of dp. It

must also be an optimum of dpp since there is a one-to-one correspondence between dp and dpp. The
gradient of dpp is given by

d(dpp)
dx

=
∫ 1

0
p(f ∗ − t0)(p−1) df

∗

dx
dh. (8)

At this point the gradient of d2hm is given by

d(d2hm)

dx
=

∫ 1

0
2(f ∗ − t)

df ∗

dx
dh. (9)

If t = f ∗ − (p/2)(f ∗ − t0)(p−1), then these two gradients are equal. Therefore if x∗ is a local optimum
of dpp, it must also be a local optimum of d2hm, since it must satisfy the same first-order optimality
conditions in both cases if the gradients are equal. Hence it is an optimum of dhm as there is a one-
to-one correspondence between d2hm and dhm. �

Even though the target is unknown (since f ∗ is unknown) a priori, the fact that it exists illus-
trates that varying the power p in the norm to control robustness is equally as arbitrary as varying
the shape of the target. However, as illustrated with Figure 3, varying the shape of the target offers
additional flexibility to the designer and so using dhm for all design scenarios is proposed so that the
numerical implementation remains consistent. This is advantageous because using dhm enables a dif-
ferentiable implementation of the horsetail matching formulation that leverages gradient information
on q (explored further in Section 4).

4. Numerical implementation

To approximate dhm, a numerical evaluation of an integral which can be expressed in the two forms
given in Equation (10) is required:

D =
∫ 1

0

(
F−1
x (h) − t(h)

)2 dh =
∫ ∞

−∞

(
q − t(Fx(q))

)2F′
x(q) dq. (10)

The goal is to find a numerical approximation, D̂, to this integral in order to give an approximation,
d̂hm = D̂1/2, to dhm. Note that in the following∇x refers to the gradient vector of a quantity, and ∂/∂xk
refers to the gradient with respect to a single design variable—the kth component of ∇x.

4.1. Approximating the CDF curves

In order to find D̂, first an expression for the CDF at a design x, Fx(q), is required. In many practical
applications, a (nonlinear) simulation is used to evaluate q and an exact form of the CDF of an output
under probabilistic uncertainties is not available, so a method of estimating the CDF is necessary.
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Kernel density estimation (Scott 1992) was successfully applied to PDF matching in Seshadri
et al. (2016); this work is built upon here. For horsetail matching, the integral of kernel functions
is used and so it is not using kernel density estimation directly, rather kernels are used as a method of
finding a smoothed, differentiable version of the empirical CDF (which can be recovered by using step
function kernels). By evaluating qx(u) atM samples of the uncertainty to obtain values of qj = qx(uj),
j = 1, . . . ,M, the estimation of the CDF at a point q is given by Equation (11):

Fx(q) � 1
M

M∑
j=1

�(q − qj), (11)

where �(r) = ∫ r
−∞ K(r′) dr′, for kernel function K. In this article, a Gaussian kernel is used, and so

�(r) is the error function; both K and � use a bandwidth parameter b:

K(r) = 1√
2πb2

exp
(

− r2

2b2

)
, �(r) = 1

2

(
1 + erf

(
r√
2b2

))
. (12)

Similarly, each component of the gradient, ∇x(Fx(q)), of this CDF approximation with respect to
the design variables is given by Equation (13):

∂Fx(q)
∂xk

� 1
M

M∑
j=1

K(q − qj)(−1)
∂qj
∂xk

, (13)

which requires the sensitivities of the quantity of interest to the design variables at given values of the
uncertainties uj, ∂qj/∂xk.

The use of Gaussian kernels does not reflect an assumption on the type of distribution the CDF
will be; it is simply so that a smooth, differentiable estimate of the CDF is obtained to facilitate fast
convergence of gradient-based optimizers. If Gaussian kernels are considered to assume too much
about the CDF, the integral of any kernel function could be used for� since its derivative is the orig-
inal kernel function, K, so is defined everywhere. Gaussian kernels are used because they have been
shown to give good optimization performance both in preliminary experiments and in the density
matching approach of Seshadri et al. (2016).

Prior to an optimization, the kernel bandwidth for use in Equation (11) is selected and fixed
throughout the optimization (otherwise the gradient of dhm would have an additional term due
to the changing bandwidth parameter). One way of selecting this bandwidth is to apply Scott’s
rule (Scott 1992) to samples at the initial design, but it is worth noting that a poor choice of bandwidth
can lead to a highly non-smooth gradient (if b is too small) or can give smooth but erroneous values
of dhm and its gradient (if b is too large).

4.2. Evaluating the integral

To find D̂, numerical quadrature of the integral in Equation (10) is performed, which can be expressed
as a summation of N quadrature points and corresponding weights wi:

D̂ =
N∑
i=1

wi
(
F−1(hi) − t(hi)

)2 =
N∑
i=1

wi
(
qi − t(Fx(qi))

)2. (14)

The trapezium rule is used for the numerical integration:N fixed points qi are chosen, the kernel-
based approximation to Fx(q) in Equation (11) is used to obtain hi � F(qi) giving N pairs of (qi, hi),
then the target is used to evaluate ti = t(hi) = t(F(qi)) to obtain N pairs of (ti, hi) which are used
along with the pairs of (qi, hi) in a trapezium rule integration of the second form of the integral
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Figure 4. Illustration of the numerical integration procedure used to estimate the horsetail matching metric.

in Equation (10). The procedure is illustrated in Figure 4, and this numerical integration can be
expressed as the vector–matrix–vector multiplication in Equation (15):

D̂ = (q − t)TW(q − t), (15)

where qi = qi (fixed integration points), ti = t(hi), and the weighting matrixW is a diagonal matrix
with entries given by

Wi,i = 0.5(hmin(i+1,N) − hmax(1,i−1)). (16)

4.3. Evaluating the gradient

Expressing the numerical integration of the metric in the matrix form of Equation (15) facilitates the
computation of the gradient of D̂ efficiently:

∂D̂
∂xk

= 2(q − t)TW
(

− ∂t
∂xk

)
+ (q − t)T

∂W
∂xk

(q − t), (17)

where
(

∂W
∂xk

)
i,i

= ∂Wi,i

∂xk

(
e.g.

∂W1,1

∂xk
= 0.5

(
∂h2
∂xk

− ∂h1
∂xk

))
, (18)

(
∂t
∂xk

)
i
= ∂ti

∂xk
= dt(h)

dh
∂hi
∂xk

. (19)

In many practical applications, the simulation of q(x, u) will have existing capability to evaluate
the sensitivities ∂qi/∂xk required by Equation (13) to find ∂hi/∂xk, allowing horsetail matching to
be implemented as a wrapper without any modification. In many cases this is especially important
since sensitivities of q to the design variables are readily available at low computational cost—e.g.
adjoints in CFD (Jameson, Martinelli, and Pierce 1998) can produce these sensitivities with one extra
computational solve—and it is important to be able to use this information within an optimization
to keep the computational cost feasible.
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4.4. Response surfaces for computational efficiency

To get an accurate CDF to use in the formulation, a large number of samples of qj should be obtained.
However, when the simulation is computationally expensive, this is infeasible. Therefore a response
surface to the quantity of interest over uncertainty space, U , can be created using a small number
of samples, and this response surface can then be sampled a large number of times in order to get a
sufficiently resolved kernel density estimation. Similarly, a response surface can be fitted to each com-
ponent of the sensitivity of q, ∂q/∂xk, in order to propagate the gradient. In this article, polynomial
response surfaces are used, but any response surface can equally be used.

Prior to an optimization, M samples are drawn from the underlying probability distribution of
u, and these same samples are used throughout the optimization to evaluate the samples qj. Since a
response surface is being sampled, a large value ofM can be selected to capture the CDF sufficiently
such that the outcome of the optimization does not depend on the particular realization of these
samples.

Figure 5. Flowchart outlining the implementation of horsetail matching optimization proposed in this article.
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Many approaches for performingUQwithin an optimization also rely on fitting a response surface
to q over U , such as non-intrusive polynomial chaos (Le Matre, Knio, Najm, and Ghanem 2001) and
Kriging (Martin and Simpson 2005). Therefore, using a response surface in the numerical implemen-
tation proposed in this article is a limitation to the same extent as other methods that use response
surfaces. However, it is still worth noting the computational cost of this proposed implementation
may become infeasible when the dimensionality of U becomes too great for response surfaces to be
effective; this is a limitation of the current implementation.

4.5. Overview

A flowchart of the numerical implementation is given in Figure 5.

5. Experiments and applications

5.1. Influence of the target

First, a simple algebraic problem is considered to illustrate how, when not being used as a feasible
CDF, the target can be used to control preference for mean performance or robustness. The test
problem uses one design variable, x (bounded by the interval [0, 10]), and has one uncertain param-
eter, u (uniformly distributed over the interval [−1, 1]), enabling the design space to be exhaustively
searched:

q(x, u) = 1 + 8 arctan(x + 0.3) + 1
arctan(x + 0.3)

(e1.5u − 1). (20)

For 30 values of x over the design space, a CDF is propagated as outlined in Section 4 usingM= 500
and N = 500; from the response surface, the mean μ and standard deviation σ are also evaluated. In
Figures 6(a) and 6(c), μ and σ for these designs are plotted in grey, giving the robust Pareto front,
and in Figures 6(b) and 6(d) the corresponding CDFs are plotted in grey. The design that minimizes
dhm under the four targets given in Table 1 for two values for qideal are highlighted in Figure 6: for
qideal = −5 in Figures 6(a) and 6(b), and for qideal = −10 in Figures 6(c) and 6(d).

It is clear from Figure 6 how the shape of the target can be used to control where on the Pareto
front the horsetail matching optimum is located. It can also be seen that themajority of designs on the
robust Pareto front giveCDFswhich are stochastically dominated according toDefinition 2.1 by other
designs: all the points to the right of the worst-case optimum on the Pareto front in Figure 6(a) are
stochastically dominated by the worst-case optimum. This illustrates part of the motivation outlined
in Section 2.

Additionally, moving the value of qideal further from the range of attainable values of q reduces
the influence of the shape of the target on the optimum design (except the worst-case target). In this
case the optimum designs move toward the minimummean design, since moving the targets further
from Q increases the contribution to dhm of the sections of the CDF for h close to zero. Therefore,
when Q is known, it is proposed that a designer chooses qideal to be as close as possible to feasible
values of q but still beyond attainable in order to maximize the influence of the shape of the target,
i.e. qideal = inf(Q). This choice corresponds to the examples of zero cost, zero weight, and 100%
efficiency suggested for typical engineering design problems.

In the case where a designer does not have a good idea for an appropriate value to use as qideal in the
standard target (a scenario that the authors argue is rare), an iterative approach could be adopted—a
value of qideal is selected, and if it turns out that this guesswas too conservative, amore ambitions value
of qideal is selected and another optimization is performed. This can be repeated until the designer
is content with the distribution of the optimum design. If, however, an appropriate target is selected
initially, only a single optimization is required.
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Figure 6. Robust Pareto front (left) with corresponding CDFs (right) for the test problem in Equation (20) in grey, along with the
horsetail matching optimum designs under a standard target (square/solid), a risk-averse target (upward triangle/dashed), a risk-
seeking target (downward triangle/dotted), and a worst-case optimization target (diamond/dotted and dashed). (a) Designs on the
robust Pareto front for qideal = −5. (b) CDFs and targets for qideal = −5. (c) Designs on the robust Pareto front for qideal = −10. (d)
CDFs and targets for qideal = −10.

Table 1. Equations for the different targets used for this test prob-
lem.

Target Equation

Standard t(h) = qideal
Risk averse t(h) = qideal − 15h6

Risk seeking t(h) = qideal − 15(1 − h)6

Worst-case optimization t(h) = qideal − 500h30

5.2. Comparisonwith densitymatching

As mentioned in Section 1, density matching (Seshadri et al. 2016) is a recent method that the pro-
posed approach builds upon, and so a detailed comparison to this method is warranted. Density
matching sets a target PDF and minimizes a distance metric between a current design’s PDF and the
target using the (squared) L2 norm:

ddm(t, x) =
∫ +∞

−∞
(tpdf (q) − fpdf (q))2 dq, (21)
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where fpdf is the PDF of the quantity of interest q at the current design and tpdf is the target PDF. This
can also be implemented using kernel density estimation of the PDF, trapezium rule quadrature and
matrix-based gradient—see Seshadri et al. (2016) for details.

Analytic illustration
One of the drawbacks of the density matching (DM) approach is the overlap problem, where if fpdf
and tpdf do not overlap significantly, then there is very little information in the objective function
about their similarity: ddm is dominated by the shape of fpdf . This can be illustrated by considering
how the metrics ddm and dhm vary depending on the difference between the mean and variance of
a design’s distribution and that of the target. In Figure 7, contours of dhm and ddm are plotted over a
design space consisting of a range ofmeans and standard deviation values for a Gaussian distribution:
N (μ, σ 2) with the target also a Gaussian:N (μtarget = 0, σ 2

target = 22).
The densitymatching landscape has large flat regions corresponding towhere the distribution does

not overlap the target significantly, and evenwhen there is someoverlap often the gradient points away
from the minimum solution in design space (e.g. for μ � 15 and σ � 5). In contrast, the horsetail
matching (HM) landscape’s gradient always points towards solutions closer in design space to the
minimum (even when σ < σtarget). This makes the horsetail matching landscape easier to navigate
for both gradient-based algorithms (e.g. SLSQP) and global algorithms (e.g. evolutionary algorithms),
so it is expected that optimizers perform better (in terms of reaching the optimum solution using less
computational effort) under a horsetail matching formulation.

In Seshadri et al. (2016), a two-step approach to optimizations is proposed to alleviate this overlap
issue for density matching. For the first few steps of an optimization a large bandwidth is used for
the kernel density estimate of the PDF, to give significant overlap, before switching to a more optimal
bandwidth for the remainder of the optimization.

Numerical optimizations
To compare how the two approaches solve an optimization problem, a gradient-based optimizer
with both HM and DM formulations is used on a nonlinear algebraic test function (to enable many
optimizations to be run from random starting points). The test function has three design variables
(x1,2,3) contained in X = [−5, 5]3, and one uncertainty (u) uniformly distributed uncertainty over
the interval [−1, 1]; q is to be minimized.

q(x1, x2, x3, u) = 5 + x21 + 2x2u + x3u2 (22)

Figure 7. Density matching and horsetail matching metric contours (log scale) forN (μ, σ 2) over a range of mean and variance
values and a target distributionN (0, 22). (a) Density matching metric, ddm . (b) Horsetail matching metric, dhm .
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An SLSQP optimization algorithm is run for 30 iterations, where one iteration corresponds to one
evaluation of either the DM or HM metric and its gradient (implemented using the SciPy.minimize
Pythontm package1 with the SLSQP option) from 50 randomly selected starting points.

A target that is slightlymore ambitious than feasible distributions is used: a Gaussian with parame-
tersμ = 3,σ = 1. Figure 8 gives the convergence histories, of log10(dhm) in both cases for comparison
(the DM optimization is actually optimizing the ddm metric), of each optimization run in grey and
overlays the average of all 50 in black. It also gives the PDFs and CDFs of the initial design (plot-
ted with the large initial bandwidth in the DM case), the target, and the solutions found by density
matching (labelled ‘DM soln’) and horsetail matching (labelled ‘HM soln’) for an optimization run
that found the global minimizer of the corresponding metrics.

In Figure 8, the HM optimizations converge more often, and faster on average, than the DM opti-
mizations, illustrating improved computational efficiency. Furthermore, the global optimum under
the DMmetric is different from that under the HMmetric. This is an important point: since the DM
metric uses the L2 norm integrated over q, it penalizes peaks in a design’s PDF if they extend beyond
the target, and rewards short and wide PDFs (non-robust designs) where the distribution does not
overlap the target. In contrast, the HM metric intrinsically rewards peaks and penalizes tails in the
PDF and hence prefers robust designs. This leads to the DMoptimumbeing stochastically dominated
by the HM optimum in Figure 8. Therefore, not only is the horsetail matching approach an easier,
more computationally efficient problem for optimizers to solve than densitymatching, but it produces
better designs when the target is more ambitious than what is actually achievable.

Figure 8. Results of gradient-based density matching and horsetail matching on the test problem with a Gaussian target distribu-
tionN (3,1). The metric values for the global optima are: dhm for HM soln - 0.98, dhm for DM soln - 7.06, ddm for HM soln - 0.16, ddm
for DM soln - 0.088. (a) Density matching convergence. (b) Horsetail matching convergence. (c) PDFs of optimum designs. (d) CDFs
of optimum designs.
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5.3. Comparisonwithmulti-objective RO andweighted-sumRO

Here, the nonlinear algebraic test problem in Equation (22) is used to compare horsetail matching to
RO approaches that optimize mean and variance.

Firstly, a robust Pareto front (trading off mean and variance) is generated for the objective q using
the NSGA-II algorithm (Deb, Pratap, Agarwal, andMeyarivan 2002) (implemented via the Pythontm
package ECsPy2) with a population size of 100 for 60 generations. Then a weighted-sum method is
used to minimize fws = μ + σ 2 (the WS metric) where the weighting on both μ and σ 2 is equal to
one (also using the SLSQP method from the SciPy.minimize package, and using finite differencing
to obtain the gradient). Finally, two horsetail matching optimizations are run, one with a standard
target of t(h) = −5 (labelled ‘HM’ in Figure 9), and one with a uniform distribution target that has
the same mean and variance as the weighted-sum optimum solution (labelled ‘HMWS’).

The results inμ, σ 2-space are plotted in Figure 9(a) and the CDFs are plotted in Figure 9(b), along
with the CDF of the minimum μ design for comparison. Also, in Figure 10, optimization conver-
gences for the weighted-sum approach and theHM approach under the standard target are compared
from 50 random starting points.

Figure 9. Robust Pareto front and optimum designs inμ, σ 2-space, and the CDFs of the optimum design. (a) Robust Pareto front.
(b) CDFs of optimum designs.

Figure 10. Convergence of weighted-sum approach (with wμ = wσ 2 = 1) and horsetail matching under the standard target
(t(h) = −5). (a) Weighted-sum convergence. (b) Horsetail matching convergence.
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From Figure 9 it can be seen that theWS approach produced a design on the Pareto front, and the
HMapproachwith the uniform target found a similar design. It can also be seen that the design found
by horsetail matching under a standard target produced a design that stochastically dominates this
weighted-sumdesign. Although the weights for this optimizationwere chosen arbitrarily, it illustrates
a limitation of both the MO and WS approaches to robust optimization discussed in Section 2: by
treating mean and variance as separate objectives, the MO approach has wasted computational effort
by finding designs on the Pareto front that are stochastically dominated, and similarly theWSmethod
risks producing these designs under certain combinations of the weightings on μ and σ 2.

Additionally, comparing the minimum mean design and the HM optimum under the standard
target: the CDFs are overlapping and neither is stochastically dominated by the other; however, the
penalty to the mean is very small compared to the reduction in variance and so a designer is likely to
choose the HM optimum over the minimummean design since it is significantly more robust.

5.4. Lift-to-drag optimization of an Euler aerofoil

In order to validate these observations on a more practical test problem, here a robust aerofoil shape
optimization is performed. The freely available SU2 CFD solver3 is used, and a 2D transonic aerofoil
under inviscid flow conditions is considered at an angle of attack of 5◦ and an uncertainMach number
uniformly distributed over the interval [0.66, 0.69]. The NACA0012 aerofoil and the unstructured
mesh provided by SU2 for this aerofoil as a baseline are used, and a design space is parameterized
using Hicks–Henne bump functions at the locations specified in Table 2—note that this is a similar
design problem to that used to illustrate density matching in Seshadri et al. (2016).

The quantity of interest is lift-to-drag ratio, L/D, which is to be maximized, and so in this prob-
lem q = 150 − L/D is minimized to keep q positive and the formulation as a minimization problem,
therefore the CDFs of L/D plotted in Figure 11 are shifted complementary CDFs of q. This is mathe-
matically equivalent to performing a horsetail matching optimization maximizing L/D, but a simple
transformation is used to keep the implementation consistent.

First, a traditional MO robust design optimization is performed to obtain the Pareto front ofμL/D
and σL/D to get an idea of the design space and for comparison purposes. For this, the NSGA-II
algorithm is used with a population size of 50 for 60 generations. Third-order polynomial response
surfaces are used at each design to propagate the statistical moments, so the NSGA-II optimization
in total requires 50 × 60 × 4 = 12,000 CFD runs. The resulting Pareto front is plotted in Figure 12
(labelled ‘P. Front’).

Next, horsetail matching and density matching are run using a feasible target with mean and
standard deviation taken from a design on the Pareto front: a uniform target with μL/D = 60 and
σL/D = 10 (labelled ‘HM’ and ‘DM’), and finally horsetail matching is run under a standard target
where t(h) = 10 (equivalent to the target for L/D being 140, and labelled ‘HM Stand.’). Fifth-order

Table 2. Surface (upper or lower), location, and limits (as a
proportion of chord) for the Hicks–Henne bump functions that
make up the design space.

Surface Location Limits

U 0.05 ± 0.001
U 0.15 ± 0.006
U 0.30 ± 0.009
U 0.45 ± 0.009
U 0.60 ± 0.006
U 0.80 ± 0.002
L 0.10 ± 0.001
L 0.30 ± 0.007
L 0.55 ± 0.007
L 0.80 ± 0.002
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Figure 11. Distributions of L/D, optimization convergence and aerofoil shapes for the density matching and horsetail matching
optimizations towards a uniform target and the horsetail matching optimization under a standard target. (a) PDFs. (b) CDFs. (c)
Convergence of optimizations. (d) Optimum aerofoils.

Figure 12. Robust Pareto front for the aerofoil problem (zoomed in on the right around the uniform target point).

polynomials are used to propagate dhm and ddm. The results are plotted in Figure 11, where the PDFs
and CDFs of the initial, target and final designs are given, along with the corresponding aerofoil
shapes and the optimization histories—where the relativemetric (d − dfinal)/(dinitial − dfinal) is given
for ease of comparison. The values of μ and σ for the final designs are plotted in Figure 12.
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When the target is on the Pareto front and so feasible, both HM and DM converge to an aerofoil
design with a similar distribution to the target; however, it is observed that the computational effi-
ciency of HM is superior, mainly due to the two-step heuristic used by DM to avoid non-overlapping
PDFs.

Furthermore, when HM is used with a standard target, the optimum solution stochastically dom-
inates the designs found using a target on the Pareto front, and it reaches this solution faster: by 7
objective function calls (corresponding to a total of 42 CFD and 42 adjoint runs, since a fifth-order
polynomial is used) it has visibly converged. The MO approach to this robust optimization does not
get close to this design as it is far beyond the end of the obtained Pareto front in Figure 12, and
from Figure 11 the optimum aerofoil under this standard target is significantly different from the
other solution, especially on the lower surface. This highlights the ability of the HM approach to find
desirable designs from a robust design perspective.

6. Conclusions

Horsetail matching has been proposed as a formulation for optimization under uncertainty that min-
imizes the difference between a design’s cumulative distribution function and a target. By applying
the method to both an algebraic test function and a transonic aerofoil shape design problem, it is
compared to density matching (the most comparable alternative method) as well as traditional meth-
ods of robust optimization. It is shown to give better designs at lower computational cost than density
matching whilst also giving the designer the same flexibility. It is also shown to avoid stochastically
dominated designs at a comparable computational cost to the weighted sum of statistical moments
method.

The proposed implementation of the method relies on response surfaces for computational effi-
ciency, therefore an alternative implementation for situations where the efficacy of response surfaces
breaks down (e.g. a large number of uncertainties) would be desirable. Additionally, there exists a
richer set of options for characterizing uncertainties than probability distributions, so an extension
of the method able to optimize under different types of uncertainty would also be desirable. Such an
extension is being considered for future work.

Notes

1. https://www.scipy.org/
2. https://pypi.python.org/pypi/ecspy
3. Stanford University Aerospace Design Lab SU2 unstructured solver: http://su2.stanford.edu/
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