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ABSTRACT Protein phosphorylation is the most frequent eukaryotic post-translational modification and
can act as either a molecular switch or rheostat for protein functions. The deliberate manipulation of protein
phosphorylation has great potential for regulating specific protein functions with surgical precision, rather
than the gross effects gained by the over/underexpression or complete deletion of a protein-encoding
gene. In order to assess the impact of phosphorylation on central metabolism, and thus its potential for
biotechnological and medical exploitation, a compendium of highly confident protein phosphorylation sites
(p-sites) for the model organism Saccharomyces cerevisiae has been analyzed together with two more
datasets from the fungal pathogen Candida albicans. Our analysis highlights the global properties of the
regulation of yeast central metabolism by protein phosphorylation, where almost half of the enzymes
involved are subject to this sort of post-translational modification. These phosphorylated enzymes, com-
pared to the nonphosphorylated ones, are more abundant, regulate more reactions, have more protein–
protein interactions, and a higher fraction of them are ubiquitinated. The p-sites of metabolic enzymes are
also more conserved than the background p-sites, and hundreds of them have the potential for regulating
metabolite production. All this integrated information has allowed us to prioritize thousands of p-sites in
terms of their potential phenotypic impact. This multi-source compendium should enable the design of
future high-throughput (HTP) mutation studies to identify key molecular switches/rheostats for the manip-
ulation of not only the metabolism of yeast, but also that of many other biotechnologically and medically
important fungi and eukaryotes.
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Since the advent of the functional genomic technologies, there has been
an ongoing community effort to characterize and model the complete

metabolic network of the yeast, Saccharomyces cerevisiae (Herrgård
et al. 2008). The aim is to be able to simulate yeast metabolism in silico
and so generate accurate predictions of the phenotypic consequences of
genetic manipulations, including multiple gene deletions (Szappanos
et al. 2011) and the recruitment of foreign genes to construct novel
biosynthetic pathways (Szczebara et al. 2003; Galanie et al. 2015;
Nielsen 2015). Genome-scale stoichiometric models of the yeast met-
abolic network that allow the computation of the steady-state distribu-
tion of metabolic fluxes (Flux Balance Analysis) have proved useful in
this regard (Dobson et al. 2010; Orth et al. 2010).

Despite these successes, there is an urgent need to improve these
models by incorporatingmetabolic control and biomass composition in
an accurate and context-dependent manner (Dikicioglu et al. 2015), as
well as the various levels of transcriptional and post-transcriptional
regulation (Pir et al. 2012). Several studies have clearly revealed the
high importance of post-transcriptional regulation (Gygi et al. 1999;
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Greenbaum et al. 2003; Castrillo et al. 2007; Schwanhäusser et al. 2011).
Physiological perturbations can trigger a rapid reconfiguration of the
fluxes through the metabolic network and the immediacy of such re-
sponses is thought to be largely due to changes at the level of enzyme
activity, rather than changes in the expression of enzyme-encoding
genes (Ralser et al. 2009; Bouwman et al. 2011; Oliveira et al. 2012;
Kochanowski et al. 2013). These alterations in enzyme activity are
often the consequence of the interactions of these protein catalysts
with small molecules, including substrates and cofactors. However,
the post-translational modification of enzyme molecules, e.g., by
phosphorylation, are likely to play an important role in metabolic
adaptations since they also have rapid kinetics (Oliveira et al. 2012;
Oliveira and Sauer 2012; Schulz et al. 2014; Tripodi et al. 2015;
Chen and Nielsen 2016). Intriguingly, the energetic cost of pro-
tein synthesis is nine times higher than that of transcription
(Schwanhäusser et al. 2011); therefore, post-translational regula-
tion via amino acid modifications seems to be a very rapid and
energy efficient level of regulation.

Protein phosphorylation is the most abundant post-translational
modification that may alter the structure, function, localization, mo-
lecular interactions, or degradation of a protein (Nishi et al. 2014), and
may therefore function as a molecular switch or rheostat of enzyme
activity (Chen and Nielsen 2016). The importance of this level of reg-
ulation is highlighted by the fact that up to 23% of intracellular ATP
may be utilized by protein kinases for phosphorylating their numerous
targets (Ptacek et al. 2005; Carpy et al. 2014). Furthermore, this type of
regulation is expected to be tightly controlled, otherwise the ATP sup-
ply would be rapidly depleted (Krebs and Stull 1975). The identification
of crucial p-sites in key proteins offers synthetic biologists the prospect
of manipulating molecular pathways or organismal phenotypes with
greater precision than can be achieved by either the deletion or under/
overexpression of complete genes (Oliveira et al. 2012; Oliveira and
Sauer 2012).

The advent of HTP phosphoproteomic technologies in the last
decade has revolutionized the field, since hundreds or even thousands
of p-sites may be identified within a single HTP experiment. Neverthe-
less, serious concerns have been raised about the quality of these p-site
identifications in terms of both technical and biological noise (Lienhard
2008); indeed, it has been suggested that up to 65% of these p-sites may
be nonfunctional (Landry et al. 2009, 2014). In addition, the various
phosphoproteomic protocols capture distinct fractions of the total
phosphoproteome with moderate overlap among them (Bodenmiller
et al. 2007). Hence, any analysis of phosphoproteomic data poses a
series of challenges (Lee et al. 2015; Vlastaridis et al. 2016). Thus, before
identifying p-sites with potentially significant impact on protein func-
tion and organismal phenotype, there is an urgent need to: (i) strin-
gently filter these HTP data and (ii) compile datasets from many and
diverse protocols to ameliorate any potential biases (Amoutzias et al.
2012).

The goal of this study is to employ a compendium of stringently
filteredanddiversephosphoproteomicdata fromthebest-studiedmodel
eukaryote, S. cerevisiae and the pathogenic fungus Candida albicans
together with evolutionary, functional genomic, and phenotypic data so
as to: (i) reveal the impact of protein phosphorylation on central me-
tabolism, and (ii) prioritize the metabolism-related yeast p-sites in
terms of biological significance and assess their potential as targets of
future mutation studies with a focus on biotechnological and medical
applications. Furthermore, by identifying crucial phosphorylation
switches that regulate yeast metabolism, it should be possible,
with minimal effort, to significantly improve the predictive accuracy
of metabolic flux balance analyses.

METHODS
For S. cerevisiae, a high quality compendium of p-sites has been
employed from another computational analysis of our group concern-
ing the estimation of the total number of phosphoproteins and p-sites
in several eukaryotic species (Vlastaridis et al. 2017). This compendium
was generated from 20 HTP phosphoproteomic experiments found in
18 publications (Gruhler et al. 2005; Chi et al. 2007; Li et al. 2007;
Albuquerque et al. 2008; Bodenmiller et al. 2008, 2010; Beltrao et al.
2009; Huber et al. 2009; Holt et al. 2009; Gnad et al. 2009; Soufi et al.
2009; Aguiar et al. 2010; Saleem et al. 2010; Wu et al. 2011; Oliveira
et al. 2012; Mascaraque et al. 2013; Lee et al. 2013; Weinert et al. 2014).
Very stringent criteria were applied, such as 99% correct phosphopep-
tide identification and 99% correct p-site localization (see Supplemental
Material, File S1; spreadsheet: yeast p-sites). This compendium was an
update of a previous yeast compendium from 12 HTP datasets
(Amoutzias et al. 2012). In addition, the PhosphoGRID 2 dataset of
manually curated low-throughput (LTP) p-sites (serving as a “gold
standard”) (Sadowski et al. 2013) was integrated into the compendium.
For comparative phosphoproteomic analyses, two datasets from C.
albicans (Beltrao et al. 2009;Willger et al. 2015) weremined and filtered
by applying the same stringent criteria as for S. cerevisiae. All filtered
p-sites from the two species are organized in two spreadsheets (S.
cerevisiae p-sites and C. abicans p-sites) within File S1 and File S3.

For the comparative phosphoproteomics analysis between S. cere-
visiae S288C (Goffeau et al. 1996) and C. albicans (SC5314 Assembly
21, haploid protein complement), orthologous relationships were re-
trieved from the Candida Gene Order Browser (Maguire et al. 2013)
using synteny or, if not available, the best Blast hit. To estimate the
conservation of yeast p-sites in the orthologs of various ascomycetes,
orthologies were retrieved from the fungal orthogroups repository
(Byrne and Wolfe 2005; Wapinski et al. 2007). For each orthologous
pair of sequences, pairwise global alignment was performed with the
SSearch software (Pearson 2000) and orthologous amino acids were
retrieved from each alignment.

Once orthologs had been identified, the conservation of a p-site in
certain ascomycetae ancestorswas assessed by twodifferentmethods. In
the first method, a pairwise comparison of the homologous amino acids
between S. cerevisiae and another ascomycete was performed. If the
amino acid phosphorylated in S. cerevisiaewas also found conserved as
serine, threonine, or tyrosine in the other species, then the p-site was
assumed to be present in their common ancestor. In the second
method, the ancestral amino acid was inferred by maximum likelihood
ancestral sequence reconstruction, using the MEGA7 software (Kumar
et al. 2016). Conservation of S. cerevisiae p-sites in the other ascomy-
cetes is stored in the Excel spreadsheets “conservation_pairwise_comp”
and “conservation_MEGA_ASR” of File S3. Divergence dates between
extant fungi were retrieved from the TimeTree database (Hedges et al.
2015).

For the functional and statistical analyses, many publicly available
functional genomics datasets were integrated, such as three protein
abundance datasets from two publications (Ghaemmaghami et al. 2003;
Newman et al. 2006), two protein half-lives datasets (Belle et al. 2006;
Christiano et al. 2014), one compendium/list of highly confident es-
sential genes (Giaever et al. 2002; Steinmetz et al. 2002; Pache et al.
2009), one protein ubiquitination dataset (Peng et al. 2003), one dataset
of highly confident genetic interactions (Costanzo et al. 2010), one com-
pendium of highly confident protein–protein interactions (Batada et al.
2006), a list of genes and themetabolic reactions that they are involved in
(included in the updated version 7.6 of the yeast metabolic model)
(Dobson et al. 2010), and a dataset of biotechnologically important genes
that have been annotated as such in the Saccharomyces Genome
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Database (Cherry et al. 2012). The integrated functional data are
stored in the Excel spreadsheets “yeast p-sites” and “functional_
information” of File S1 and File S2. Of note, many of the above
properties/measurements may be context dependent or change
significantly from one physiological condition to another.

A negative phosphoproteomewas also defined, which comprised an
extension of the negative phosphoproteome from our previous study of
2012 (Amoutzias et al. 2012). More specifically, in the 2012 study, a
nonphosphoproteome comprised 2219 ORFs that had no evidence of
phosphorylation, even with less stringent filtering criteria. In this
updated analysis, any of these 2219 ORFs that were now found to be
phosphorylated were removed from the negative phosphoproteome,
resulting in an updated negative set of 2167 ORFs.

Data integration was performed with the PERL programming
language and statistical analyses with the R programming language
(https://www.R-project.org/) (R Core Team 2015). Mapping of the
yeast phosphoregulated enzymes to the KEGG metabolic map was
performed with the KEGG mapper computational tool (Kanehisa
et al. 2012), using the Uniprot identifiers of the yeast phosphorylated
proteins.

To control for protein abundance as a potential confounding factor
(Levy et al. 2012) in the comparison between the phosphoproteome
and the negative phosphoproteome, relevant abundancemeasurements
[based on the most thorough dataset of Ghaemmaghami et al. (2003)]
were converted to log10 values and binned in 8–10 groups. Equal
numbers of phosphoproteins and nonphosphoproteins were randomly
selected from each bin, thus generating a Protein Abundance Con-
trolled phosphoproteome and negative phosphoproteome. The same
procedure was followed for the metabolic phosphoproteome and the
metabolic negative phosphoproteome.

For the structural analyses, the available X-ray crystal structures of
selected enzymeswere retrieved fromRCSBPDB (Rose et al. 2015). The
interactions of p-sites with surrounding residues and ligands or sub-
strates were identified and then all heteroatoms were removed prior to
the simulations. Molecular dynamics (MD) were performed for se-
lected enzymes in their native and phosphorylated states with all-atom
representation in explicit solvent using AMBER 14 and the ff14SB force
field (Case et al. 2005; Hornak et al. 2006). The phosphorylated en-
zymes were prepared by mutating the corresponding residues to their
phosphorylated forms (net charge of 22e2), which were treated with
the optimized parameters of the phosaa10 force field (Homeyer et al.
2006). Simulations were performed for 100 ns using the GPU-version

of the PMEMD program (Salomon-Ferrer et al. 2013) and the trajec-
tory analysis was performedwith the CPPTRAJmodule of AmberTools
15 (Roe and Cheatham 2013) after mass-weighted RMSD fitting with
respect to the initial coordinates of the backbone atoms. Visual inspec-
tion of the trajectories and rendering of the figures was performed with
VMD (v1.9) (Humphrey et al. 1996).

Data availability
The authors state that all data necessary for confirming the conclusions
presented in the article are represented fully within the article.

RESULTS AND DISCUSSION

The updated yeast p-site compendium
The new S. cerevisiae compendium consists of 14,339 p-sites in
2633 ORFs (see Table 1 and Excel spreadsheet “yeast p-sites” of File
S1) and constitutes a significant increase of 47% (for p-sites) over a
previous compendium of 12 publicly available HTP phosphoproteomic
datasets (Amoutzias et al. 2012). It is designated as 21UHQ, where
21 stands for the number of datasets, U stands for phosphopeptides
uniquely matched to only one protein, and HQ stands for high-quality
phosphopeptides, based predominantly on 99% correct peptide iden-
tification and 99% correct p-site localization. Compared to the original
yeast p-site compendium, the new one has been expanded by eight
more HTP datasets and also includes the latest version of the Phos-
phoGRID 2 (PG2) subset (Sadowski et al. 2013), which is based on
manually curated LTP p-sites. PhosphoGRID is considered the gold
standard of yeast p-sites.

Due to concerns about technical and biological noise in phospho-
proteomic data (Lienhard 2008; Landry et al. 2009), we constructed a
highly confident subset consisting of 5519 p-sites in 1557 ORFs that
includes p-sites identified in three or more HTP experiments and/or
any of the PG2 LTP data (see Table 1). The criterion for three or more
experiments was based on simulations and a series of five different anal-
yses with the original compendium (Amoutzias et al. 2012). The corre-
sponding highly confident subset is now designated as 21UHQ_HC,
where HC stands for High Confidence.

A crucial issue is the reliability of p-sites that have been identified
only once or twice by HTP experiments, since biological and technical
noise are serious concerns. In order to address this, the PG2 dataset was
employed to perform a crude extrapolation. Of the 536 highly confi-
dent p-sites that are detected both by PG2 and any of the 20 HTP

n Table 1 The number of unique p-sites and phosphoproteins identified in the various phosphorylation compendiums and subsets

Total
p-Sites

Total p-Sites
Found in

PFAM Domains
Highly

Confident p-Sites

Highly Confident
p-Sites Found in
PFAM Domains Phosphoproteins

Phosphoproteins
with Highly
Confident
p-Sites

12UHQ 9783 2059 2566 (26%) 431 2374 1112 (47%)
20UHQ (only HTP) 13,244 2625 4156 (31%) 698 2587 1421 (55%)
21UHQ (including PG2) 14,339 3036 5519 (38%) 1175 2633 1557 (59%)
21UHQ metabolism

(including PG2)
1668 527 499 99 412 197

21UHQ metabolism
essential proteins
(including PG2)

339 153 79 34 71 36

p-sites identified in three or more experiments are designated as Highly Confident. 12UHQ refers to the Amoutzias et al. (2012) dataset. 20UHQ (only HTP) refers to
the p-sites identified by 20 HTP experiments in Vlastaridis et al. (2017). 21UHQ (including PG2) refers to the p-sites identified by 20 HTP experiments and by
PhosphoGrid2 in Vlastaridis et al. (2017). 21UHQ metabolism (including PG2) refers to the p-sites identified by 20 HTP experiments and by PhosphoGrid2 in
Vlastaridis et al. (2017) that were in metabolic proteins. 21UHQ metabolism essential proteins (including PG2) refers to p-sites identified by 20 HTP experiments
and by PhosphoGrid2 in Vlastaridis et al. (2017) that were in essential metabolic proteins. p-site, phosphorylation site; HTP, high-throughput.

Volume 7 April 2017 | Phosphoproteins in Yeast Metabolism | 1241

http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.037218/-/DC1/FileS1.xlsx
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.037218/-/DC1/FileS2.xlsx
https://www.R-project.org/
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.037218/-/DC1/FileS1.xlsx
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.037218/-/DC1/FileS1.xlsx


experiments, 270 were found in three or more HTP experiments
(designated as high overlap HTP), whereas 266 are found in one or
two HTP experiments (designated as low overlap HTP). The ratio for
high/low overlap is almost one. Therefore, for every high overlap HTP
p-site there exists one low overlapHTPp-site that has a high probability
of being valid. Based on this empirical ratio, an extrapolation was
performedonthewholephosphoproteomicdataset,whichhas4156high
overlap and 9088 low overlapHTP p-sites. Thus, we predict that 46% of
those 9088 low overlap sites could eventually be verified as highly
confident by new experiments. The above crude extrapolation estimates
that two thirds (66%) of the current total (low + high overlap) HTP
p-sites will turn out to be functional. This is in moderately good
agreement with an independent estimation by Landry et al. (2009) that
was based on other datasets and an evolutionary analysis, where they
estimated that 65% of their HTP p-sites could be nonfunctional. Nev-
ertheless, in their dataset, they applied less stringent detection criteria
than those we employed and probably included a higher fraction of
noisy p-sites.

Our own literaturemining revealed (at that time) that the phospho-
proteomic data available for fungi other than S. cerevisiae were rather
limited, although very recently a comparative phosphoproteomic anal-
ysis has been performed in 18 fungi (Studer et al. 2016). The only other
closely related ascomycete for which sufficient phosphoproteomic data
were available to allow meaningful comparative analyses was C. albi-
cans, with two datasets comprising 9438 nonredundant p-sites. By
identifying the homologous amino acids between S. cerevisiae and C.
albicans (see Methods), comparative phosphoproteomics revealed that

only 7% (692) of those 9438C. albicans p-sites have also been identified
as phosphorylated in S. cerevisiae. Interestingly, 12% (81/692) of these
conserved phosphorylation events between the two species had a mu-
tation from serine to threonine and vice versa to one of the two species.
We did not observe such amutation for phosphorylated tyrosines,most
probably due to their very low number (five). These observations are
explained by the lack of tyrosine kinases in yeast and the dual specificity
of certain serine/threonine kinases that may further phosphorylate
some tyrosines (Stern et al. 1991; Hunter and Plowman 1997; Zhu
et al. 2000; Manning et al. 2002). Moreover, the use of the 9438 C.
albicans p-sites together with amino acid conservation in S. cerevisiae
suggests phosphorylation for another 2122 homologous serines, thre-
onines, and tyrosines in S. cerevisiae that have not been detected as
phosphorylated yet in that species, but that are likely to be detected by
future studies; these would increase the S. cerevisiae phosphoproteome
by 15%, from 14,399 to 16,461 p-sites.

The fact that few p-sites appear as phosphorylated and conserved
between the two species is not surprising. It could be attributed to several
factors, such as the incompleteness of the p-site compendia of the two
species and experimental biases, since the C. albicans compendium was
based only on two experiments (Boekhorst et al. 2008, 2011). In a
recently published study, our group has estimated that the total S.
cerevisiae phosphoproteome may be ca. 40,000 p-sites (Vlastaridis
et al. 2017). Other contributing factors could be the evolutionary distance
of �300 million years between S. cerevisiae and C. albicans (Hedges
et al. 2015), the high evolutionary turnover generally observed for
p-sites, the fast network rewiring at the phosphorylation-regulatory

Figure 1 Protein phosphorylation is likely to exert significant control over S. cerevisiae central metabolism. Nodes represent metabolites and lines
represent reactions in the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic map. Blue color is for reactions that are controlled by at
least one enzyme that undergoes phosphorylation. Red color is for reactions that are controlled by at least one enzyme that contains High
Confidence (HC) p-site/s. Mapping was performed with the KEGG mapper tool (Kanehisa et al. 2012), using the Uniprot identifiers of the yeast
phosphorylated enzymes.
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level, and the relaxed localization constraints for p-site conservation
(Iakoucheva et al. 2004; Moses et al. 2007; Landry et al. 2009, 2014;
Beltrao et al. 2009; Shou et al. 2011; Freschi et al. 2014). Overall, the
extrapolation enabled by this comparative phosphoproteomics
analysis did not have a profound effect on the quantitative expan-
sion of the S. cerevisiae dataset. On the other hand, the conserved
p-sites that have withstood such strong forces of mutation and
evolution and are detected by these yet imperfect technologies are
expected to be of very high functional importance; thus, in qualita-
tive terms, the gain may be greater than the simple increase in p-site
numbers implies.

A substantial part of the yeast central metabolism is
regulated by phosphorylation
The Yeast 7.6 genome-scale metabolic model is manually curated by
experts andcontains 2302 reactions that have been assignedoneormore
of the 909 (15%) protein-coding genes to be catalyzing these specific
reactions. Based on the stringency criteria to define a p-site (designated
as ALL for all p-sites andHC), 412 (45%) or 197 (22%) of themetabolic
proteins are phosphorylated and may control 1176 or 656 reactions,
respectively. Thus, protein phosphorylation is likely to exert significant
control over the yeast central metabolism (see Figure 1). A previous
analysis on older and less filtered datasets also identified half of the
metabolic proteins as being phosphorylated (Oliveira and Sauer 2012).
Similarly, a review focused on yeast carbon metabolism reported more
than half of the relevant enzymes to be targets of post-translational
modifications (Tripodi et al. 2015), whereas another review has iden-
tified 41 phosphoregulated enzymes that have been experimentally
verified (Chen and Nielsen 2016). Furthermore, genetic perturbations
of the yeast kinome revealed significant changes in concentrations of
hundreds of intracellular metabolites (Schulz et al. 2014). Although the
current phosphoproteomic data are incomplete in terms of individual
p-site detection, an analysis by our group has revealed that most of the
phosphoproteins have already been detected (Vlastaridis et al. 2017),
thus these conclusions appear robust.

A significant proportion of metabolic proteins are phosphorylated
and yet there does not seem to be anymajor enrichment or depletion for
phosphorylation in metabolic enzymes compared to the rest of the
proteome (45 and 27% for ALL and HC, respectively). Twelve percent
(1668/14339) of ALL and 9% (499/5519) of HC p-sites are found in
metabolic proteins (designated as phosphometabolic proteins). On
average, phosphometabolic proteins have 4 and 2.5 p-sites (ALL and
HC, respectively), whereas the rest of the phosphoproteome has 5.7 and
3.7 p-sites, respectively, a statistically significant difference (Wilcoxon
p-value , 0.006). In addition, 31% of ALL metabolic and 20% of HC
metabolic p-sites are found within PFAM domains, indicating a poten-
tially significant impact on structure, and probably on function. In
contrast, 21% of ALL and 21% of HC p-sites are found within PFAM
domains (see Table 1). Nevertheless, the next section shows that im-
portant enzymes tend to be regulated by phosphorylation.

The general properties of yeast central metabolism
likely to be regulated by phosphorylation
The general properties of the phosphorylated metabolic proteins (des-
ignated as phosphometabolic), compared to the negative phosphome-
tabolic proteins, are summarized in Figure 2 and in more detail in File
S2, Excel spreadsheet “stats.” All subsequent reported differences are
statistically significant (p-value , 0.05) and were performed with the
appropriate Wilcoxon or x-squared test. Phosphometabolic proteins
are: (i) significantly more abundant (305–540% higher), (ii) have more
kinase–target interactions (1–1.4 vs. 0.3–0.4; 185–327% higher), (iii)
have longer total length (602–682 vs. 369–388 amino acids; 55–76%
higher), (iv) longer intrinsically disordered regions (159–204 vs. 71–74
amino acids; 114–175% higher), (v) more protein–protein interactions
(1–1.5 vs. 0.5; 75–194% higher), and (vi) regulate more reactions (4–5
vs. 3.7–3.8; 3–36% higher). Furthermore, a higher fraction of them are
ubiquitinated (37–53% vs. 19–23%; 64–176% higher). It seems that
some synergism exists between protein phosphorylation and ubiquiti-
nation in the proteins of the yeast metabolic network (Tripodi et al.
2015). All of the above conclusions hold true even when controlling for

Figure 2 The general properties of the phosphoproteome, compared to the negative phosphoproteome. The bars show which properties of the
phosphoproteome are higher/lower (% difference), compared to the negative phosphoproteome. Only statistically significant differences are
shown. This is estimated for various datasets. HC, High Confidence subset of the phosphoproteome; MetPhos_vs_MetNegPhos, metabolic
proteins of the phosphoproteome vs. metabolic proteins of the negative phosphoproteome set. PAC, Protein Abundance Controlled dataset;
Phos_vs_NegPhos: phosphoproteome vs. negative phosphoproteome.
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protein abundance as a confounding factor. GOSlim analysis with
Bingo (Maere et al. 2005) revealed an enrichment for the GO term
“Vacuole,” when phosphometabolic proteins were compared to the
background (all metabolic proteins). In general, phosphometabolic
proteins retain many of the general properties of the whole phospho-
proteome (see Figure 2), except the higher number of genetic interac-
tions, the shorter protein half-lives [only for the Belle et al. (2006)
dataset; conflicting results for the Christiano et al. (2014) dataset],
and the higher fraction of essential genes (when controlling for protein
abundance). Reassuringly, analyses on this updated whole phospho-
proteome compendium confirm the global properties observed in a
previous analysis (Amoutzias et al. 2012) with a compendium of
12 HTP datasets, even when controlling for protein abundance. This
was expected, since the 2012 dataset comprised 2372 phosphoproteins,
whereas the new compendium comprises 2633 phosphoproteins. This

is another indication of the view that the majority of the yeast phos-
phoproteome has been discovered (Vlastaridis et al. 2017).

In terms of evolution, gene duplications and especially the whole-
genome duplication (WGD) that occurred in the hemiascomycete
lineage �100 million years ago (Pöhlmann and Philippsen 1996;
Wolfe and Shields 1997; Kellis et al. 2004; Dietrich et al. 2004;
Scannell et al. 2007) are known to have played a significant role in
shaping the yeast genome and especially metabolism (Papp et al.
2004; Conant andWolfe 2007; Conant 2014). Intriguingly, a significant
fraction of total kinase–substrate relationships may have been rewired
during this period by the evolutionary forces of nonfunctionalization,
neofunctionalization, and subfunctionalization, suggesting rapid adap-
tion at this level (Amoutzias et al. 2010; Freschi et al. 2011). On average,
19% (1096/5884) of S. cerevisiae protein-coding genes are present in
duplicate as a result of the WGD, whereas 23% (207/909) of the genes

Figure 3 Conservation of p-sites in vari-
ous ascomycete ancestors. Conservation
was inferred by two different methods: pair-
wise comparison of yeast with other extant
species (red boxes in the phylogenetic tree)
and ancestral sequence reconstruction. Dark
blue bars show % conservation of all meta-
bolic p-sites. Light blue bars show % conser-
vation of all nonmetabolic p-sites. Red bars
show % conservation of High Confidence (HC)
metabolic p-sites. Orange bars show conser-
vation of HC nonmetabolic p-sites.
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encoding metabolic proteins are WGD paralogs. For the metabolic
enzymes that are phosphoproteins, this proportion increases to 28%
(ALL:115/412) and 32% (HC: 64/197). All the above differences are
statistically significant (p-value, 0.05), according to the hypergeomet-
ric test. This agrees with a previous observation, based on a smaller
dataset, that phosphorylation is a factor that affects the survival of genes
after WGD (Amoutzias et al. 2010).

Phosphorylation sites of metabolic proteins tend to be
more conserved than average
Our comparative phosphoproteomic analysis reveals that 115 p-sites,
conserved and phosphorylated in both S. cerevisiae and C. albicans,
could regulate 72metabolic proteins that in turn are involved in 271 re-
actions of the yeast 7.6 metabolic model (see File S2; spreadsheet
“reactions-proteins”). The fraction of conserved phosphorylations
between the two species that are involved in metabolism is higher
than expected by chance (17%–115/692 vs. a background of 12%–1668/
14339; hypergeometric test p-value , 2e25), thus, revealing that
p-sites of enzymes tend to be more conserved than the background
p-sites. Phosphoproteomic data are not so abundant in other ascomy-
cetes and the observed small overlap may also be attributed to missing
data and experimental biases (Boekhorst et al. 2008, 2011). We have
recently estimated the total yeast phosphoproteome at�40,000 p-sites
(Vlastaridis et al. 2017). To control for this factor, the level of conser-
vation of metabolic protein p-sites in other ascomycetes was also
assessed, but only at the amino acid level. Genomic and evolutionary
data, together with pairwise comparisons between two extant species or
with ancestral sequence reconstruction, were used to infer the homol-
ogous amino acid of a yeast p-site in various common ancestors. If the
yeast p-site was conserved as serine, threonine, or tyrosine in the
inferred ascomycete ancestor, then the assumption was that the phos-
phorylation event was also present in that ancestor. Next, a comparison
of the conservation at the amino acid level was performed for all the
p-sites found in S. cerevisiae central metabolism vs. p-sites in the rest of
the proteome (Figure 3). It is clear that the yeast p-sites that are found
in metabolic proteins are more conserved than the p-sites in other
proteins, and this difference is always statistically significant (Wilcoxon
test p-value , 0.05), independent of the method/datasets used. In
addition, as the evolutionary distance increases, so does the relative
level of conservation of metabolic protein p-sites. Based on the ances-
tral sequence reconstruction analysis, it is estimated that 1257 budding
yeast p-sites identified in 345 ORFs, which in turn are involved in

1003 reactions, could be conserved in the common ancestor between
S. cerevisiae and C. albicans/Debaryomyces hansenii.

Identification of p-sites in proteins that have a
biotechnologically interesting phenotype related to
metabolism and molecule production
The Saccharomyces Genome Database has mined and stored pheno-
types caused by various gene perturbations, such gene over/underex-
pression or even gene deletion. We manually inspected the phenotypes
and focused on the ones that, in our opinion, are biotechnologically
interesting. These phenotype terms mapped to 850 proteins, of which
408 were phosphoproteins, harboring 2363 p-sites. These phosphopro-
teins were not all annotated as participating inmetabolism. By applying
a stringent criterion of HC p-sites situated within conserved domains,
we identified 180 of them in 73 phosphoproteins. These findings are
summarized in Table 2. Obviously, there exist a significant number of
very good candidate p-sites that may regulate biotechnologically im-
portant phenotypes, especially those related to increased chemical com-
pound excretion and increased respiratory growth. These candidates
should be the initial targets of future studies, e.g., to examine the phe-
notypic impact of deleting specific p-sites. Due to the inherent technical
and biological noise of phosphorylation data, prioritization of p-sites
for detailed study is an important task (Beltrao et al. 2012; Xiao et al.
2016). Readers can perform their own customized prioritization on
these data using File S1.

Structural simulations of selected phosphorylation sites
in two essential metabolic proteins predict a significant
impact of phosphorylation on function
Yeast p-sites identified in many experiments, within essential enzymes
and also found conserved andphosphorylated inC. albicans, could have
great potential not only for the manipulation of metabolism (and thus
affect the growth rate of S. cerevisiae), but also for medical purposes
related to other closely related pathogenic fungi. In order to quickly
assess the importance of this p-site subset, computational structural anal-
yses were performed on two selected enzymes as a case study. The first
enzyme investigated was phosphoglycerate mutase 1 (Gpm1p), which
mediates the conversion of 3-phosphoglycerate to 2-phosphoglycerate
during glycolysis and the reverse reaction during gluconeogenesis
(Heinisch et al. 1991). This enzyme has a very promising p-site at
Ser116 that was found phosphorylated in 11 HTP experiments. Visual
inspection of the crystal structure revealed that this p-site is close to the

n Table 2 Number of p-sites that regulate proteins with a biotechnologically interesting phenotype

Phenotype Terms
p-Sites/

Proteins (ALL)
p-Sites Within

Domains/Proteins (ALL) p-Sites/Proteins (HC)

p-Sites
Within Domains/
Proteins (HC)

Chemical compound excretion: increased 1497/248 284/189 564/147 109/43
Fermentative growth: increased 7/3 1/1 2/1 0/0
Fermentative metabolism: increased 85/10 10/6 38/10 3/3
Growth rate in exponential phase: increased 73/8 14/5 38/6 9/2
Nutrient uptake/utilization: increased 124/20 40/8 37/13 13/5
Respiratory growth: increased 416/75 116/41 170/46 43/18
Respiratory metabolism: increased 331/61 70/24 121/38 31/11
Utilization of carbon source: increased 36/8 9/5 16/4 5/2
Vegetative growth: increased 8/5 4/2 0/0 0/0
Viability: increased 67/17 16/9 24/9 2/2
ALL_RELATED_phenotypes 2363/408 496/183 887/247 180/73

p-site, phosphorylation site; ALL, all p-sites; HC, high confidence p-sites.
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catalytic site (see Figure 4A). The second protein investigated was
aspartyl-tRNA synthetase (Dps1p), an aminoacyl-tRNA synthetase
responsible for the charging of tRNAAsp with its cognate amino acid
(Sellami et al. 1985). Dps1p is a characteristic enzyme of a superfamily
that is crucial for the fidelity of translation of the genetic code (Chaliotis
et al. 2017). Dps1p harbors a very promising p-site at Ser301 that was
found phosphorylated in 10 HTP experiments. Examination of the
crystal structure of the Dps1p complex with tRNA revealed that this
p-site is in direct contact with the substrate (see Figure 4B).

To examine the potential effect of phosphorylation at the enzyme
sites described above, we employed a comparative MD study of each
enzyme in its native and phosphorylated state. The simulation systems
were based on the crystallographic coordinates of the yeast enzymes in
the substrate-free forms (PDB IDs: 5pgm for Gpm1p and 1eov for

Dps1p) (Rigden et al. 1999; Sauter et al. 2000). Our simulations indicate
that phosphorylation at either Gpm1p-Ser116 or Dps1p-Ser301 can
affect substrate binding, either directly or via perturbation of the struc-
tural dynamics in regions of the enzymes close to the active site (see
Figure 4, C and D). Using their own criteria, readers can use File S1 to
prioritize future structural simulations before proceeding to wet lab
experiments. With the current datasets, there exist at least 36 p-sites
in essential metabolic proteins that have been detected as phosphory-
lated in both species and need to be investigated with wet lab
experiments.

In summary, the integration of HTP data from various genomic,
proteomic, functional, and evolutionary sources has highlighted the
pivotal role of protein phosphorylation in the control of yeast central
metabolism, where almost half of the enzymes involved are

Figure 4 Molecular representations of two p-sites examined with molecular dynamic simulations in (A) the yeast phosphoglycerate mutase
(Gpm1p) and (B) aspartyl-tRNA (transfer RNA) synthetase (Dps1p). The X-ray crystal structures of the enzymes are illustrated with cartoons colored
by secondary structure and the p-site serine residues are shown with spheres (green C, red O, and blue N atoms). Distances between the p-sites
and the catalytic active sites are indicated with dashed lines between Ser116 and a sulfate ion in Gpm1p [ Protein Data Bank identifier (PDB ID):
5pgm], and between Ser301 and adenine-1 (A-1) of tRNA in Dps1p (PDB ID: 1asy). The red arrows indicate regions close to the active sites of the
enzymes that display altered dynamics upon phosphorylation. (C and D) Plots of the atomic fluctuations of the backbone Ca atoms extracted from
100-ns MD simulations of the native and phosphorylated enzymes.
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phosphorylated. These phosphorylated enzymes, compared to the
nonphosphorylated ones, are more abundant, have more protein–
protein interactions, regulatemore reactions, and a higher fraction of them
are ubiquitinated. Furthermore, the p-sites of metabolic proteins are more
conserved than the background p-sites. This analysis has also successfully
identified and prioritized potential high-confidence p-sites that are likely to
have a major impact on enzyme function and should be targets of bio-
technological andmedical importance. The crucial question in this new era
of HTP and integrative science is whether the numerous top-priority
targets identified in silico will be investigated by LTP validation studies
or by highly automated robotic procedures (King et al. 2004, 2009).
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