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Summary. In response to the 2015 Royal Statistical Society’s statistical analytics challenge,
we propose to model the fixation locations of the human eye when observing a still image by
a Markov point process in R2. Our approach is data driven using k -means clustering of the
fixation locations to identify distinct salient regions of the image, which in turn correspond to
the states of our Markov chain. Bayes factors are computed as the model selection criterion
to determine the number of clusters. Furthermore, we demonstrate that the behaviour of the
human eye differs from this model when colour information is removed from the given image.
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1. Introduction

Ocular movement data have posed a particularly tough challenge to researchers and offer
many potential insights into human visual behaviour as well as many practical applications.
As the most detailed information about a visual scene confronting the eye can only be
extracted through the relatively small fovea at the retina’s centre, complex ocular movements
have evolved to absorb quickly as much information as possible through the eye (Zuber, 1981;
Hacisalihzade et al., 1992). The contribution, if any, of colour information to vision through
saliency models and fixation location prediction has been heavily investigated (Baddeley and
Tatler, 2006; Frey et al., 2008; Ho-Phuoc et al., 2012; Hamel et al., 2014; Amano and
Foster, 2014). Much research has gone into understanding ocular movement from the rapidly
jerking saccades to the relatively still fixations. A better understanding of such movements
has a wide range of applications from diverse fields of research such as evolutionary biology
(Dominy and Lucas, 2001; Sumner and Mollon, 2000), neuroscience (Koch and Ullman, 1987;
Desimone and Duncan, 1995), image segmentation (Ko and Nam, 2006; Achanta et al., 2008)
and image compression and resizing (Chen et al., 2003; Wang et al., 2003; Avidan and Shamir,
2007).

In this paper, we shall specifically focus on the eye’s fixations by modelling such a sequence of
fixations as a point process in R2. The distribution of fixations over a given image is treated as a
finite mixture model comprised of disjoint salient regions, which correspond to the interesting
bits of the image; see McLachlan and Peel (2004). This set of salient regions is used as the state
space of a Markov chain. Each fixation is then an observation from the mixture component
corresponding to the current state of the Markov chain. Under this model, it is shown that the
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presence or absence of colour information in the image drastically affects the behaviour of a
given sequence of fixations.

There has been much past research on the statistical analysis of static spatial point patterns
and spatial point processes; for an overview, see Diggle (2003) and Illian et al. (2008). The
inhomogeneous Poisson process and its generalizations, such as the Cox process (Cox and
Isham, 1980; Møller et al., 1998; Brix and Diggle, 2001; Diggle et al., 2013; Taylor et al., 2013)
in which the intensity of the process is itself a stochastic process, have demonstrated tremendous
value to inference in the realm of spatial statistics. However, these approaches treat the pairs of
points as independent conditional on such an underlying stochastic process. Alternatively, the
incorporation and estimation of an interaction term for such Markov point processes has been
also investigated (Baddeley et al., 2000; Jensen and Nielsen, 2000; Berthelsen and Møller, 2008).
These interactions generally take on the form of preferences for attraction or repulsion between
points. In contrast, our approach is a little more heavy handed by cutting the plane into a finite
set of states for a Markov chain. The argument for taking this approach arises from the intuition
that most still images are comprised of a finite number of interesting objects to examine, which
will be our Markov states. This idea is similar to the earlier work of Stark and Ellis (1981) and
Hacisalihzade et al. (1992). However, whereas Hacisalihzade et al. (1992) manually partitioned
an image, we shall take a data-driven approach to segment an image into a set of finite disjoint
pieces of interest.

It is worth emphasizing that these ‘finite disjoint pieces of interest’ are constructed solely
from the data. They may correspond to regions of high saliency, which are those regions of
sharp local contrast (Koch and Ullman, 1987; Itti and Koch, 2000). These are the regions
whose ‘features differ from the surrounding features’ (Ho-Phuoc et al., 2012) or are surprising
in an information theoretic sense (Bruce and Tsotsos, 2009). However, saliency lacks a concrete
definition and is often thought of as an amalgamation of low level image features such as sharp
contrasts in luminosity and colour channels. Some researchers (Tatler et al., 2011; Schütz et al.,
2011) have taken a more critical stance towards saliency stating that it ignores such high level
image features as faces and text (Cerf et al., 2009), which particularly attract the eye’s gaze. As
well, such low level features do not take into account the learned behavioural aspects of the
eye’s movements, systematic tendencies between successive fixations and viewing bias (Tatler
and Vincent, 2008; Amano and Foster, 2014; Le Meur and Coutrot, 2016). Our analysis allows
us to remain agnostic towards such debates. The data define the interesting regions, and it is
left to vision researchers to decide, for example, whether a given region is interesting because it
contains high level semantic information or low level luminosity contrast or some other feature
which draws the gaze of the eye.

Modelling eye fixations as a spatial point pattern was previously discussed in Barthelmé et al.
(2013) where an inhomogeneous Poisson process was utilized. The location-dependent rate
parameter of the inhomogeneous Poisson process was determined by a measure of the saliency
of each region of a given photograph. Alternatively, Kümmerer et al. (2014) applied deep neural
networks to identify salient regions and ultimately to predict fixations. But, as is mentioned in
Ho-Phuoc et al. (2012),

‘there is no computational saliency model that can predict an observer’s fixation location better than
the model using fixations from other subjects’.

In light of that, we take a data-driven approach to modelling sequential fixation locations by
using nine of the 10 subjects to train our model and the 10th for validation. Bayes factors are used
as a model selection criterion; see Good (1967) for the use of Bayes factors in the multinomial
hypothesis setting, and Kass and Raftery (1995) for a general overview of Bayes factors and
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Fig. 1. Example of the three colour schemes, (a) normal, (b) abnormal and (c) greyscale, under analysis
with plotted fixations of all 10 subjects on each

model selection. Our modelling approach does not incorporate any direct information about the
images themselves. With additional thought, our Markov states could ultimately be constructed
from a saliency map and the high level information in the images rather than from the data.

The data under scrutiny come from the study of Ho-Phuoc et al. (2012) who were interested in
whether the presence, absence or modification of the colour in a given image affects how the eye
moves when looking at this image. Their study consisted of three colour schemes: normal colours,
abnormal colours and greyscale. Normal refers to the unmodified image. Abnormal corresponds
to swapping the red–green and blue–yellow chrominance channels. Greyscale corresponds to
the complete removal of all colour information. An example of the three colour schemes with
plotted fixations for all 10 subjects is displayed in Fig. 1.
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The data were collected as follows. 10 observers were selected for each of the three colour
schemes totalling 30 subjects in all. Each subject was presented with 60 photographs under a
fixed colour scheme. Each photograph was displayed for 5 s, and the position and duration of
each fixation were recorded. Although there has been interest in the analysis of ‘task-based’
ocular movements such as searching a photograph for a point in interest, in this experiment no
instructions were given leading to a ‘free-viewing’ scenario. For each individual fixation, a data
entry includes the horizontal and vertical position of the fixation, the duration in milliseconds,
the fixation’s sequence number, the subject identifier, the colour scheme, the image number and
the orientation of the image. A more detailed explanation of the data, the experiment and the
method of collection can be found in Ho-Phuoc et al. (2012).

In this paper, Section 2 introduces a discrete time Markov model for the observed sequences of
ocular fixations. The states are determined through k-means clustering where cross-validation is
used to determine the optimal number of clusters. A further investigation of alternative clustering
methods, a closer look at the temporal dependence of the point process, a post hoc look at
the Markov transition probabilities and a display of the best and worst scoring photographs
under our model can be found in Sections 2.1, 2.2, 2.3 and 2.4 respectively. Section 3 proposes
reworking the discrete time model as a continuous time Markov chain through a closer analysis
of the fixations’ durations. Lastly, Section 4 concludes with potential applications.

The images that are analysed in the paper can be obtained from https://github.com/ca
chelack/eyeFixationData and the programs that were used to analyse them from

http://wileyonlinelibrary.com/journal/rss-datasets

2. Discrete time Markov model

Consider a sequence of n fixation positions from a single subject, X1, : : : , Xn ∈ R2, as a point
process in R2 and an associated sequence of n states S1, : : : , Sn ∈ {1, : : : , k}. We shall model
this state sequence as a Markov chain jumping between k different clusters corresponding to
interesting parts of the photograph. The fixation sequence will then be random observations
conditioned on the current state of the Markov chain. The model selection will decide between
such models for k=1, : : : , 10. The case k=1, our null model with which to compare the others, is
the naive model that the Xt for t =1, : : : , n are independent and identically distributed draws from
some underlying density f.x/. For k �2, we suppose a finite mixture model with k constituent
densities f1, : : : , fk corresponding to which part of the image the eye is focusing on. In this
model, the states evolve via a Markov chain with Xt for t = 1, : : : , n given by an independent
random draw from fSt .x/.

These constituent densities were modelled empirically by clustering the fixation locations from
nine of the 10 subjects; the model was then tested on the 10th. Cross-validation was performed
across all training subjects to optimize this model. Let X1, : : : , Xn be the test sequence of fixation
locations for a single subject with n being the total number of fixations made by this subject, and
let Y

.j/
t be fixation t of subject j from the training set where t =1, : : : , nj with nj being the total

number of fixations made by subject j. A Bayes factor was computed for each subject, and the
results were averaged into a final score for each picture. The training fixation points were clustered
via k-means clustering with 10 random starts. Other clustering methods are discussed in Section
2.1. For each cluster, a two-dimensional kernel density estimate with Gaussian kernel was
computed. An example of these clusters and density estimates can be seen in Fig. 2. Each fixation
in the test set was assigned a cluster on the basis of proximity to the cluster centre. A k-nearest-
neighbours classifier was also implemented to assign clusters but returned very similar results.
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Fig. 2. (a) The four clusters of fixation locations for a given image and (b)–(e) the corresponding kernel
density estimates for the fixation location model: fixations on image 25, BF D 0.00267

The observed initial states and transitions between states were treated as observations from a
multinomial random variable with a Dirichlet conjugate prior. Specifically, the Markov initial
state probabilities, πi for i∈{1, : : : , k}, and Markov transition matrix, pi,i′ for i, i′ ∈{1, : : : , k},
were treated as Dirichlet random variables with the Jeffreys prior and updated by the nine
subjects in the training data. Let ci be the number of initial fixations Y

.j/
1 in state i, and let mi,i′ be

the number of observed transitions from Y
.j/
t−1 ∈Si to Y

.j/
t ∈Si′ for t =2, : : : , nj. The posteriors are

π ∼Dirichlet.0:5+ c1, : : : , 0:5+ ck/,

pi,· ∼ Dirichlet.0:5+mi,1, : : : , 0:5+mi,k/:

Therefore, the Bayes factor is

BF= P.Xt|Yt , k =1/

P.Xt|Yt , k/
=

n∏
t=1

f.Xt/

Eπ,p

{
πs1fs1.X1/

n∏
t=2

pst−1,st fst .Xt/

}

where the expectation is taken with respect to the Dirichlet posterior. In practice, this value is
approximated via Monte Carlo integration.

To identify a difference in the computed Bayes factors between each of the three colour
schemes, a three-category analysis of variance was run on the log2(BF)s, yielding a strongly
significant p-value of 1:87×10−5. Thus, the null hypothesis that the three sets of log2(BF)s have
equal means is rejected. Furthermore, a post hoc Tukey test was run to construct three pairwise
confidence intervals for the differences of the means with a 95% familywise coverage probability.
This results in the following simultaneous confidence intervals and p-values:

normal–abnormal, [−2:01, −1:55] p-value 0:95;

normal–greyscale, [−4:79, −1:24] p-value 0:00027;

abnormal–greyscale, [−5:02, −1:47] p-value 0:000079:
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Consequently, the presence of colour, whether normal or not, results in the majority of images
scoring a relatively smaller Bayes factor than in the greyscale setting. This implies that our
proposed Markov model better describes the ocular fixation data when colour information is
present.

Furthermore, the Bayes factors for colour and greyscale images separate sufficiently well
that this model applied to observed sequences of fixations can be used as a weak classifier for
whether or not the subjects are observing an image with colour information. Indeed, over all
of the 60 pictures and three colour schemes, 14 normal, 13 abnormal, but only one greyscale
picture scored a Bayes factor less than 0.01. The threshold that most separates this data set
is 0.2, which correctly separates 66% of the normal and 71% of the abnormal schemes from
the greyscale images. Thresholding the Bayes factor as a classification criterion for whether
or not the observed photograph has colour, is normal or abnormal results in the receiver
operating characteristic curves of Fig. 3. The collection of displayed receiver operating char-
acteristic curves includes two implementing k-means clustering where inclusion is based on
either proximity to the cluster centre or the k-nearest-neighbours method. Two hierarchi-
cal clustering methods are also included, which will be discussed more in Section 2.1. Here,
‘true positive’ refers to the percentage of coloured photographs with Bayes factor below the
threshold and ‘false positive’ for the percentage of greyscale photographs below the thresh-
old.

Ultimately, the ocular fixation data for greyscale images do not provide evidence that the
Markov model is a better explanation than merely modelling the fixations as a collection of
independent random draws. Although it is doubtful that the removal of colour actually reduces
the eye to a pure random search, this result does support the drop in efficiency that is witnessed
in the greyscale setting. In contrast, the coloured cases are well modelled as if jumps between
interesting regions of the image occur in a Markovian fashion. This suggests that the absence
of colour can make it more difficult for subjects to identify and scan through interesting parts
of an image.

2.1. Clustering methods
The use of k-means clustering with Euclidean distance puts a heavy assumption on our model.
Specifically, this approach partitions a photograph into Voronoi cells, which are by design
all convex polygons. This approach strives to construct spherical and similarly sized clusters
specifically removing the possibility of non-convex or nested clusters. In light of this, a variety
of agglomerative hierarchical clustering methods were also tested.

These ‘bottom-up’ hierarchical clustering methods begin with each fixation occupying its
own cluster. The methods iteratively combine clusters on the basis of a combining criterion
and an underlying metric. In our analysis, the metrics chosen to test were the Manhattan or
L1-, the Euclidean or L2- and the maximum or L∞-distances. The linkage methods chosen were
Ward’s minimum variance method (Ward, 1963; Murtagh and Legendre, 2014), complete linkage
clustering and the unweighted pair group method with arithmetic mean (Sokal and Michener,
1958). See section 14.3 of Hastie et al. (2005) or section 8.5 of Legendre and Legendre (2012)
for an overview of such methods.

Of the various combinations of such metrics and linkage criteria, none performed noticeably
better than k-means, and many combinations performed worse. Fig. 3 includes two receiver
operating characteristic curves by using Ward’s method with L∞- and L1-distances. As the
clusters formed via hierarchical clustering need not be convex, the k-nearest-neighbours method
was used to determine to which cluster a given fixation from the testing set belonged. A variety
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Fig. 3. Receiver operating characteristic curves for thresholding on the Bayes factor to determine whether
the photograph being viewed is in colour (true positive) or greyscale (false positive): four clustering methods
are plotted with similar results ( , k -means, cluster centres; , k -means, k -nearest-neighbour
method; , L1-distance, Ward (1963); , L1-distance, Ward (1963))
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of values k were tested. Lastly, a Gaussian mixture model was also fitted to the data via an EM
algorithm. The performance of our model under this clustering method was also similar to the
k-means results.

2.2. Temporal dependence
The Markov model proposed confirms strongly the spatial dependence of the sequences of
fixations, but it can further be used to identify temporal dependence in such sequences. A
threshold to delineate significant Bayes factors was chosen as 0.15. Of the 180 data sets, which
correspond to 60 pictures and three colour schemes, 93 surpassed this threshold, providing
moderate to strong evidence in favour of the Markov model. For each of those 93 images, the
corresponding fixations were partitioned into two groups: those that occurred in the first 2 s of
the experiment, and those that occurred after the 2-s mark. Given a model with k states, counts
of the observed states from the two disjoint timeframes were compared in a 2 × k contingency
table by using the Kruskal–Wallis criterion to test for an association (Kruskal and Wallis, 1952).
Simulations from the exact null distribution of the Kruskal–Wallis test statistic were performed
by the R package kSamples (Scholz and Zhu, 2016) and were used to compute p-values for
each of the 93 tables. The Benjamini–Hochberg procedure (Benjamini and Hochberg, 1995) was
employed to control the false discovery rate. Of the 93 p-values, 44 were deemed significant with
a false discovery rate of 0:05. This provides strong evidence that in many situations there is a
temporal dependence regarding in which region the eye will fixate.

However, although the subjects may begin by fixating in one specific cluster only to move to
another for the latter half of the time interval, there is no significant evidence to claim that the
Markov transition probabilities evolve over time. Indeed, the above procedure was run again
but on the matrix of observed transition counts for each of the 93 data sets under scrutiny.
The Kruskal–Wallis test was now run on each row of the matrix as a separate block and those
statistics were combined to obtain an overall test statistic for each image. After applying the
Benjamini–Hochberg test with a false discovery rate of 0:05 again, none of the p-values were
sufficiently small to be designated as significant. Thus, although the human eye is shown to have
a preference for in which cluster to start and in which cluster to end, transition probabilities
remain fixed over the timespan of this experiment.

As a concrete example, the above procedure applied to the fixations on image 34 under the
abnormal colour scheme resulted in this image being partitioned into three clusters. Counting
the members of each cluster and the transitions between each pair of clusters resulted in Table 1.
During the first 2 s, more of the fixations occurred in cluster 3 than in cluster 1. During the
subsequent time interval, the reverse behaviour was witnessed. The contingency-table-based
comparison of the cluster counts returned an extreme p-value of 9:9 × 10−12 whereas the con-
tingency table test between the transition counts returned a much less exciting p-value of 0.16.
Note that, in Table 1 in the time �2 s section, the sum of the ‘total counts’ is precisely 10 more
than the sum of the ‘transitions’ as each of the 10 subjects had a final fixation with no subsequent
transition.

2.3. Analysis of transitions
The saccades, i.e. the rapid eye movement from one fixation to the next, have been intensely
studied in their own right. Brockmann and Geisel (2000) and Boccignone and Ferraro (2004)
treated such saccadic eye movements as a stochastic jump process working under the assumption
that the eye has evolved a search strategy to minimize the required time to absorb the necessary
information in the visual scene confronting it.
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Table 1. Counts of the observed fixations and transitions of the 10
subjects on image 34 with abnormal colours partitioned by two time
intervals†

Cluster Results for time< 2s Results for time�2s

Total counts Transitions Total counts Transitions

1 2 3 1 2 3

1 5 3 0 2 44 33 6 3
2 24 3 17 4 28 7 15 2
3 45 1 11 33 14 1 2 7

†The ‘total counts’ column refers to the total observed fixations in each
cluster during the specific time interval. The remaining columns refer to the
number of observed transitions from the row cluster to the column cluster.

For images that strongly fit the above Markov model, the saccades follow a natural mixture
model. For example, if the Markov point process is supported on two states, then the eye can
choose to stay in the same state (i.e. a short saccade) or transition to the other state (i.e. a long
saccade). This observation is in line with the work of Tatler and Vincent (2008) who referred
to ‘distinct modes’ of local search and global search strategies chosen by the human eye when
viewing complex scenes. Boccignone and Ferraro (2013) compared the eye’s search strategy with
the ‘feed-and-fly’ model of animal foraging referring similarly to local searches and large jumps.
Such dichotomous behaviour is readily evident in Fig. 4, which displays the two clusters of
fixations for image 9 in Fig. 4(a) and a kernel density estimate for the distribution of the saccade
lengths in Fig. 4(b). The kernel density estimate was computed with a Gaussian kernel using
the Sheather–Jones method of bandwidth selection (Sheather and Jones, 1991).

For a post hoc look at the observed transitions between states, we shall consider image 25
under the normal colour scheme, which is displayed in Fig. 2. Running the above analysis yielded
a decisively strong Bayes factor of 0.0009 in favour of the model k =4 over the model k =1. The
states are coloured red, green, cyan and purple moving from left to right across the image.

For each of the 10 subjects, the maximum likelihood estimate of the initial probabilities and
transition matrix from the Dirichlet posteriors were averaged into

π =

⎛
⎜⎝

0:05
0:45
0:13
0:37

⎞
⎟⎠,

p=

⎛
⎜⎝

0:51 0:29 0:14 0:06
0:30 0:26 0:24 0:20
0:07 0:18 0:58 0:18
0:05 0:11 0:13 0:70

⎞
⎟⎠:

Here, states 1, 3 and 4 fall into the often seen pattern of having probability higher than 50% of
remaining in the same state and of having other transition probabilities that roughly decrease as
the distance between clusters increases. This behaviour indicates that the human eye will spend
a short sequence of fixations examining one specific region of the photograph before jumping
to another and subsequently remaining there for another short sequence of fixations.
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(a)

(b)

Fig. 4. (a) Two clusters of fixations, image 9, and (b) a kernel density plot of the saccade lengths, image 9
(N D141; bandwidth 22.63)
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Fig. 5. (a) The four worst scoring pictures and (b) the four best scoring pictures for the three colour schemes
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2.4. The best and the worst
Using the strongest Bayes factor for each photograph, we can rank them in order of which best
fits the Markov model for k �2 clusters. The four best and worst photographs for each colour
scheme are depicted in Fig. 5. The normal coloured images are reasonably partitioned as the
worst scoring images contain a singular point of focus whereas the best scorers contain multiple
objects on which to fixate such as text and people. The abnormal setting gives similar results
barring the photograph of eight people in a raft, which scores strongly under normal colours but
produced the single worst score under the abnormal scheme. Presumably, the abnormal colour
scheme most disorients the brain when it is applied to objects with a narrow range of expected
colours such as human faces, which are generally not blue.

3. Continuous time Markov model

The most blatant omission from the previously described model is the time that is spent at each
fixation. In fact, evidence suggests that the colour scheme has a significant effect on the fixation
durations. In the initial investigation of this data set by Ho-Phuoc et al. (2012), Kolmogorov–
Smirnov tests were run between each pair of empirical distributions for the overall fixations
durations. They reported no significant difference between the normal and abnormal settings,
but they reported high significance between the greyscale and each of the coloured settings. We
shall now consider the fixations as a continuous time point process. It will be demonstrated that
this process is temporally homogeneous in the sense that the jumps occur at a fixed exponential
rate in accordance with earlier research (Salthouse and Ellis, 1980; Harris et al., 1988; Manor
and Gordon, 2003).

For t ∈ [0, 5], let Xt ∈ R2 be a continuous time point process corresponding to a subject’s
fixation location at any time t. If Xt achieves n + 1 unique values in the time interval, then
denote the jump times between adjacent values as T1, : : : , Tn where 0 < T1 < : : : < Tn < 5. For
all 180 data sets, the Anderson–Darling test was used to compare the empirical distribution of
these random jump times with a uniform distribution. To avoid edge effects, the time interval
of scrutiny was truncated to jumps occurring in between 0.5 and 4.0 s before the test was run.
Even without considering multiple-testing corrections, the smallest p-value of the 180 was an
unexciting 0.067. Each of the three sets of 60 p-values corresponding to one of the colour schemes
was aggregated by using Fisher’s method for combining independent tests to check for consistent
but weak deviations from uniformity. However, the resulting aggregated p-values for normal,
abnormal and greyscale images were the almost too flat 0.63, 0.993 and 0.998 respectively. This
provides strong evidence that, albeit after removing the edge effects, the fixations are uniformly
distributed in time and thus occur at a constant exponential rate.

The jump rate was estimated in the usual way by counting the total number of jumps that
occurred in the time interval [0.5, 4.0]. This was performed for each of the 180 images and
averaged over each of the three colour scheme sets. The resulting rates are 3.65, 3.62 and 3.25
fixations per second for normal, abnormal and greyscale colours respectively. Similarly to the
analysis of the Bayes factors in Section 2, an analysis of variance was run to compare the three
sets of 60 fixations rates. This resulted in a decisively strong p-value of 4:6×10−11. Computing
the post hoc 95% Tukey confidence intervals gives the following results:

normal–abnormal, [−0:12, −0:17] p-value 0:91;

normal–greyscale, [−0:54, −0:26] p-value less than 10−7;

abnormal–greyscale, [−0:51, −0:23] p-value less than 10−7:
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Fig. 6. Kernel density estimates of the distributions of the logarithm of the fixation durations separated by
colour scheme: , normal; , abnormal; , greyscale

This demonstrates that there is a significant drop in the fixation rate in the greyscale setting
compared with when colour information is present. Equivalently, in Fig. 6, the density plot of
the greyscale durations is noticeably shifted to the right of the other two density curves.

4. Summary and discussion

Ocular fixation data yield both a challenging and a useful analysis. We demonstrated that, in
the presence of colour information whether normal or abnormal, a sequence of fixations from a
human eye can be modelled as a Markov point process and that the fixations occur at a constant
rate. Furthermore, this Markov model breaks down when such colour information is removed
from the image, and the fixation rate drops significantly. Given that we believe this model, a
thorough analysis of the Dirichlet posteriors could yield interesting insight into how different
photographs are treated by the human eye.

This model has the potential to lead to future applications such as a passive diagnostic test
for sudden loss of colour vision, i.e., even with the 60 miscellaneous photographs of the given
data set, it is still possible to classify which observers are looking at colour images and which
are not. Indeed, simultaneously thresholding on the Bayes factors from Section 2 and on the
fixation rates from Section 3 allows for a true empirical classification rate of 0.317 for a set false
positive rate of 0.05. With a carefully constructed set of colour photographs to elicit Markovian
eye movements, one could then use data collected from healthy eyes to train a classifier to
determine whether a patient can see colour or not with no other active participation from the
patient besides staring at the set of diagnostic photographs.

Ultimately, there is still room for further analysis in at least two areas of note. In our model,
the spatial and temporal aspects of the process are treated separately. A more sophisticated point
process model could take such interdependences between these two dimensions into account.
Secondly, attempting to construct such a model from image information rather than fixation
data could offer insight into saliency maps and lead to more complex and interesting Markov
states than the convex polygons from the k-means approach.
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