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Historically, magnetic resonance imaging (MRI) has con-
tributed little to the study of Parkinson’s disease (PD),
but modern MRI approaches have unveiled several
complementary markers that are useful for research
and clinical applications. Iron- and neuromelanin-
sensitive MRI detect qualitative changes in the substan-
tia nigra. Quantitative MRI markers can be derived from
diffusion weighted and iron-sensitive imaging or volu-
metry. Functional brain alterations at rest or during task
performance have been captured with functional and
arterial spin labeling perfusion MRI. These markers are
useful for the diagnosis of PD and atypical parkinson-
ism, to track disease progression from the premotor
stages of these diseases and to better understand the
neurobiological basis of clinical deficits. A current

research goal using MRI is to generate time-dependent
models of the evolution of PD biomarkers that can help
understand neurodegeneration and provide reliable
markers for therapeutic trials. This article reviews recent
advances in MRI biomarker research at high-field (3T)
and ultra high field-imaging (7T) in PD and atypical par-
kinsonism. VC 2017 The Authors. Movement Disorders
published by Wiley Periodicals, Inc. on behalf of Inter-
national Parkinson and Movement Disorder Society.

Key Words: Parkinson’s disease; atypical parkin-
sonism; MRI; iron; neuromelanin; diffusion MRI; fMRI;
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Parkinson’s disease (PD) and other parkinsonian dis-
orders are growing health problems because popula-
tions are constantly aging. The positive and
differential diagnosis of these diseases is therefore an
important challenge for modern neuroimaging techni-
ques. Early diagnosis would allow early therapeutic or
preventive strategies as well as a better understanding
of the dynamics of lesion deposition in the central ner-
vous system. Early diagnosis includes the identification
of the premotor features that precede overt classical
symptoms by many years to decades.1

Magnetic resonance imaging (MRI) of the brain now
provides complementary techniques that can detect
disease-related changes in many brain regions affected by
parkinsonian disorders. Current MRI biomarkers in PD
fall into several categories. Biomarkers of neurodegenera-
tion include atrophy on structural MRI and probably
neuromelanin-sensitive signal changes. The biomarkers of
tissue microstructure include diffusion imaging measures.
The biomarkers of iron deposition are extracted using
R2* measurements and quantitative susceptibility map-
ping (QSM). The biomarkers of brain function have been
used to study the neural correlates of motor and nonmo-
tor symptoms in terms of neural circuits and neurochemis-
try. These markers have been used to categorize PD
patients from healthy controls (HCs) to follow disease
progression and to differentiate parkinsonian disorders.

High-Field MRI of Parkinsonism and
Its Progression

Diagnosis of PD and Premotor PD Versus
Healthy Controls

Magnetic Resonance Imaging Techniques

A number of MRI techniques can now detect
changes in the substantia nigra (SN) in PD. Iron

content can be quantified using iron-sensitive techni-
ques such as the R2* relaxation rate or susceptibility-
weighted imaging and QSM, 2 techniques that use
information in phase images about variations in the
local magnetic field. Nigral changes reflecting increases
have been consistently reported in PD at 1.5T and
3T.2-7 However, PD values overlapped with those of
HCs, and a few studies found no changes in PD, limit-
ing its clinical use as disease marker today.8-10

Increased iron content was also reported in symptom-
atic and asymptomatic leucine-rich repeat kinase 2
(LRRK2) and Parkin mutation carriers.3 Asymptomat-
ic carriers had R2* values in the range of PD values,
suggesting that iron deposition may occur early during
the preclinical phase of the disease.3 QSM may have
higher sensitivity than R2* for delineating PD-related
changes in the substantia nigra (SN) pars compacta
(SNpc) and better correlate with clinical measures,
suggesting a higher potential of QSM as a biomarker
of iron-related pathology.11

Recently, a new MRI finding has been described in
the SN in PD using iron-sensitive MRI. Controls con-
sistently displayed a hyperintense, ovoid area within
the dorsolateral border of the otherwise hypointense
SNpc. Histopathological correlation (Fig. 1A)12 sug-
gested that this dorsolateral nigral hyperintensity
(DNH) or nigral hyperintensity corresponded to
nigrosome-1, a calbindin-negative subregion in the
SNpc.13,14 Across studies, the signal loss of DNH had
a high sensitivity (79% to 100%) and specificity
(84.6% to 100%) to separate PD from HC (Fig.
1B)13-17 and may be helpful in differentiating PD from
uncertain movement disorders such as drug-induced
parkinsonism,17 essential tremor, and dystonic trem-
or.14 DNH signal loss was found in at least 2=3 of
patients with idiopathic rapid eye movement sleep
behavior disorder (iRBD)18 (Fig. 1B) and in clinically
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asymptomatic LRKK2 carriers,19 suggesting that this
sign may assist in the identification of prodromal
degenerative parkinsonism.

High-resolution spin echo T1-weighted images are
sensitive to the paramagnetic properties of neuromela-
nin, a pigment that is contained in the SNpc and show
the SNpc as an area of high signal intensity (Fig. 2).20

The reduced size and signal intensity of the SN was
reported in PD patients using neuromelanin-sensitive
imaging with high diagnostic accuracy.20 This tech-
nique may help distinguish PD from essential tremor.21

Biomarker changes in PD were shown to predominate
in the SNpc delineated using neuromelanin-sensitive
imaging when compared with T2 imaging.22

Diffusion weighted imaging is sensitive to micro-
structural tissue changes that alter the regional diffu-
sion of water molecules. Using diffusion tensor
imaging, reduced fractional anisotropy (FA) in the
SN was reported, although with a large variability of
results across studies.23 More advanced diffusion
modeling approaches including free-water measure-
ments24 or neurite orientation dispersion and density
imaging25 may provide more reliable results to distin-
guish PD patients from HCs. Free water (ie, the

fractional volume of unconstrained diffusion) and
free-water corrected FA (ie, a measure of the tissue
compartment of the voxel) can be extracted from dif-
fusion data using a bitensor model (Fig. 3). Free
water in the SN is elevated in PD when compared
with HCs, suggesting that this measurement is
robust.24 Measuring diffusion changes in the ventro-
lateral SN is also important to find consistent
effects,22,26 and this region corresponds with patholo-
gy in PD.27 Last, structural connectivity of the SN
with the basal ganglia and thalamus is reduced in PD
patients as shown using diffusion-based fiber
tracking.28,29

Resting-state fMRI (rs-fMRI) using blood oxygen
level-dependent contrast (BOLD) has allowed the
exploration of brain connectivity between functionally
linked cortical regions constituting resting-state net-
works (RSNs).30 The rs-fMRI in PD showed that
dopamine depletion leads to a remapping of cerebral
connectivity characterized by decreased coupling in
the cortico-striatal sensorimotor network and between
the striatum and the brain stem.28,31-36 Increased cou-
pling, interpreted as compensatory, was observed in
PD in the associative networks28,37 and intraregionally

FIG. 1. The dorsolateral nigral hyperintensity. (A) susceptibility-weighted imaging (SWI) image of a healthy control (HC), demonstrating the magnified
dorsolateral nigral hyperintensity (DNH) within the right substantia nigra (SN). Yellow arrows mark the DNH in the survey as well as in the magnified
illustration. (B) SWI images demonstrating the DNH in two healthy controls, its absence in two patients each with PD and idiopathic rapid eye move-
ment sleep behavior disorder (iRBD) as well as its absence in one patient each with multiple system atrophy (MSA) and progressive supranuclear
palsy (PSP). RN, red nucleus.
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within the primary motor cortex (M1) and the cere-
bellum.31 Connectivity changes were modulated by
levodopa.33,38 Functional alterations in M1 may be

related to prolonged dopaminergic treatment rather
than PD per se because alterations were not detected in
drug-na€ıve patients.33 Changes in functional

FIG. 3. Diffusion imaging and free water. Free-water values from individual participants and group-level values are shown for PD, multiple system
atrophy parkinsonian variant (MSAp), and progressive supranuclear palsy (PSP). (A) Progression of free water in an individual patient with PD. Free
water is shown in a color scale from yellow 5 low free water and blue 5 high free water. It is clear that free water is elevated in the posterior region
of the substantia nigra at baseline and becomes further elevated at 1 year of progression (1 Yr.).24,212 (B) Free-water maps from individual control,
PD, MSAp, and PSP participants are shown. Free-water accumulation becomes worse in the PSP participant when compared with the PD and
MSAp participants.76

FIG. 2. Neuromelanin imaging. (A) Axial neuromelanin-sensitive T1-w images of the SN and (B) the locus coeruleus/subcoeruleus area (LC/LSC) in a
healthy control (HC), a patient with PD with rapid eye movement sleep behavior disorder (PD-RBD), and a patient with idiopathic rapid eye move-
ment sleep behavior disorder (iRBD). The normal SN (arrowheads) and the locus area (arrows) are visible as areas of high signal intensity. There is a
decrease in size and signal intensity of the substantia nigra (SN) and locus area in participants with RBD.
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connectivity were also detected in asymptomatic
LRRK2 G2019S mutation carriers, suggesting that func-
tional changes may occur early during the preclinical
phase of the disease, whereas structural changes were not
detected in these patients.39,40 Last, functional connectivi-
ty (FC) mapping within the basal ganglia networks dif-
ferentiated PD patients from both HCs and other
neurodegenerative diseases with high accuracy.38,41

Arterial spin labeling MRI (ASL-MRI) permits the
quantification of cerebral tissue perfusion using magneti-
cally labeled protons in arterial blood water as an endog-
enous tracer.42 Studies have shown symmetrical
posterior> anterior cortical hypoperfusion in PD involv-
ing predominantly the parieto-occipital regions (Fig. 4)
and dorsolateral prefrontal cortex.43-46 The posterior per-
fusion deficits predominated in PD with versus without
dementia.43 ASL perfusion deficits overlapped with fluo-
rodeoxyglucose PET metabolic deficits in PD.47

Proton magnetic resonance spectroscopy (1H-MRS)
allows the quantification of changes in brain metabo-
lites that have reported a number of metabolic
changes at various levels of the central nervous system
in PD.48-50 In the SN, results were often contradictory
probably because of the small size of the structure.48

A recent study has shown that MRS detected metabol-
ic changes in the putamen in PD that were reversed by
L-dopa therapy, suggesting a possible role of MRS to
monitor treatment effects.48

Transcranial B-Mode Sonography (TCS)

An alternative method to measure iron-level content
is TCS. Increased echogenicity of the SN has been
observed in idiopathic PD using TCS and related to
increased tissue iron.51 TCS is highly sensitive for PD
and easily applicable, but the method is not entirely
specific as SN hyperechogenicity was also detected in
other neurodegenerative diseases such as progressive
supranuclear palsy (PSP) and corticobasal degenera-
tion.52 In HCs (�50 years), SN hyperechogenicity was
associated with a more than 20 times increased risk to
develop PD within 5 years.53 Thus, TCS can help
patient stratification and the identification of individu-
als at risk. TCS-MRI fusion imaging has shown that
the 2 techniques provide complementary findings.54

Limitations of TCS include reduced specificity,

because SN hyperechogenicity is found in 10% to
15% of the healthy population, and insufficient bone
window in more than 10% of the elderly population.

Data Fusion

High-field imaging offers the exciting possibility to
fuse information from different modalities. When com-
bining nigral relaxometry with other quantitative MR
parameters sensitive to complementary tissue character-
istics (ie, multimodal neuroimaging), better discrimina-
tion compared with the single markers alone could be
achieved.55,56 For instance, cortical thinning, rs-fMRI
(fractional amplitude of low frequency fluctuations),
and mean FA in a set of brain regions were jointly used
to accurately discriminate between PD patients and
HCs.57 Because the importance of combining bio-
markers in PD is becoming increasingly recognized,58 it
is expected that imaging data fusion approaches will
become more widespread in the future.

Neural Correlates of Motor and Nonmotor
Symptoms in PD

Studies using functional or structural imaging have
offered insights into the pathophysiology underlying
key symptoms in PD.59,60 The effect of dopaminergic
medication as well as the influence of genetic polymor-
phisms have also been investigated. These studies
detailed below have confirmed the interaction between
the basal ganglia and cortex and suggested that the
neurobiological processes in PD reflect the interaction
of more complex interconnected neural networks rath-
er than being related to discrete “circuit failures.”

Motor Symptoms

PET and fMRI during the performance of motor tasks
have provided variable results across studies. A recent
quantitative meta-analysis identified consistent func-
tional abnormalities in PD.61 The most consistent
abnormality was a relative decrease in motor activation
in the posterior motor putamen, globally increasing
with the degree of motor impairment.61 Dopaminergic
medication consistently caused a relative increase in
putaminal activity. Motor activation also differed
between PD patients and HCs in a set of frontoparietal
areas, including pre-SMA, M1, and the inferior and
superior parietal lobules.61 However, both increases
and decreases in activity were reported for these
regions, indicating a complex relationship between
altered cortical activation during motor tasks and
nigrostriatal dopaminergic denervation. Using rs-fMRI,
studies have shown that functional correlations between
the striatum and the brain stem correlated with the
UPDRS III score in PD.36,62 Functional imaging studies
have also suggested that different motor phenotypes
may be related to distinctive underlying

FIG. 4. Pseudocontinuous arterial spin labeling MRI to quantify region-
al cerebral blood flow in an individual with PD and mild cognitive
impairment. Low occipital perfusion is noted (arrow).

L E H E R I C Y E T A L

514 Movement Disorders, Vol. 32, No. 4, 2017



pathophysiology. Cognitively unimpaired akinetic-
dominant PD patients showed decreased FC in the
default mode network (DMN; a task-negative network
operating across the hippocampal formations, posterior
cingulate, and intraparietal sulcus) when compared
with tremor-dominant patients and HCs.63 An effective
connectivity study suggested that tremor might result
from a pathological interaction between the basal gan-
glia and the cerebellothalamic circuit64 arising in the
internal globus pallidus and being propagated to the
cerebellothalamo-cortical circuit via the motor
cortex.65

Freezing of Gait (FOG). Although early work exam-
ined FOG using an imagined gait paradigm,66 more
recent studies used a virtual reality approach.67-71

These fMRI studies have identified the abnormal inter-
play that occurs in PD between the motor, basal gan-
glia, pedunculopontine, and cognitive control
networks that would normally coordinate effective
automatic movement. Diffusion-based tractography in
FOG patients showed reduced connectivity of the
pedunculopontine nucleus with the cerebellum, thala-
mus, and the frontal cortex.72

Levodopa-Induced Dyskinesia. Levodopa-induced
dyskinesia (LID) represents a major debilitating side
effect of long-term dopaminergic treatment in PD.
fMRI has been successfully used to study the impact of
aberrant striatal response to levodopa on the motor sys-
tem in PD patients with LID. Using fMRI during the
performance of visuomotor tasks, PD patients with LID
off medication showed stronger activation of the SMA
and reduced activation of the right inferior frontal
gyrus than patients without LID.73 A single fast-acting
dose of soluble levodopa triggered an abnormal activa-
tion in the pre-SMA and putamen in PD patients with
peak-of-dose LID relative to patients without LID,74

and abnormal effective connectivity between the pre-
SMA and M1.75 This network reorganization in the
time period preceding dyskinesias strongly predicted
clinical ratings of dyskinesia severity. PD patients with
LIDs also expressed alterations in functional coupling
between the frontal cortex and putamen in the absence
of motor activity.76,77 These fMRI studies provided evi-
dence for an aberrant dopaminergic modulation of
putaminal activity and cortico-putaminal connectivity
as a central abnormality in PD patients with LID. This
abnormal cortico-putaminal connectivity may be a
promising target for therapeutic brain stimulation78

and may be used to screen for the efficacy of new anti-
dyskinetic treatments.

Nonmotor Symptoms

Hyposmia. Hyposmia is a well-established and early
nonmotor symptom of PD79,80 with a possible role as

a potential biomarker of PD progression and cognitive
decline.81,82 PD patients with hyposmia, compared
with those without hyposmia, showed decreased FC in
both olfactory- and non-olfactory-related cortical
areas and increased FC in the left anterior/posterior
cingulate cortex, with a potential compensatory role.83

Atrophy was also reported in olfactory regions in
association with olfactory deficits.84

RBD. RBD has shown an incomparable potential as
a prodromal PD marker, with an estimated period of
10 to 15 years of progressive neuronal loss before the
onset of the core motor symptoms.85 This motivated
several studies that have investigated the neural corre-
lates of iRBD in recent years.86-90 RBD has been relat-
ed to the damage of the locus coeruleus-subcoeruleus
complex, a region that contains neuromelanin-
containing catecholaminergic neurons (Fig. 2B).91 A
reduced neuromelanin signal was observed in patients
with PD and RBD91 as well as those with iRBD (Fig.
2B).92 Two recent studies have shown that the nigros-
triatal connectivity pattern is altered in patients with
iRBD93 and that basal ganglia connectivity measures
may differentiate both iRBD and PD from HC.94

Depression. Depression in PD may be considered a
disease-related dysfunction at the interface between
emotional and cognitive processing.95 Using different
rs-fMRI approaches, an intrinsic dysfunction within
the dorsolateral prefrontal cortex has been observed in
depressed PD patients.96,97 This cortical area has a
pivotal role in the prefrontal-limbic network and is
also involved in cognition and executive functions.98,99

Using rs-fMRI, the role of abnormal connectivity of
the amygdala in dysfunctional mood modulation has
been emphasized in depressed PD patients.100,101 The
presence of apathy in PD was associated with a dis-
rupted FC in frontostriatal pathways.102,103

Fatigue. Fatigue is a common and disabling symptom
in PD patients.104 A recent rs-fMRI study has revealed
that fatigue was associated with a divergent FC pat-
tern within the sensorimotor and DMN in drug-na€ıve
PD patients.105 Fatigue severity correlated with con-
nectivity changes, suggesting that an efficient function-
al interplay between these cortical areas might be
necessary to maintain motor performance without the
development of fatigue.

Visual Hallucinations. Visual hallucinations are com-
mon neuropsychiatric features in more advanced PD.
Reduced gray matter was reported in limbic regions in
these patients.106 Although the ability to capture
hallucination-related activity using fMRI is restrict-
ed,107 recent work has demonstrated that visual hallu-
cinations seem to arise from an increased engagement
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of the DMN with the primary visual system.108,109

This is paralleled by a disengaged dorsal attention net-
work (representing regions of the frontal eye fields
and superior parietal lobule). The disengagement of
the dorsal attention network might indicate a deficient
protective mechanism that could help prevent the
emergence of hallucinations. These findings may pro-
vide the basis of future treatments targeting pathologi-
cal network activity.110

Autonomic Dysfunction and Pain. Dysautonomic
and especially cardiovascular symptoms are frequent
and present early in PD.111 Abnormal heart rate fre-
quency variability assessed during rapid eye movement
sleep in PD correlated with changes in diffusion mea-
sures in the medulla oblongata, suggesting that dam-
age in this region underlies cardiac autonomic
dysfunction.112 Orthostatic hypotension is also a com-
mon and disabling autonomic feature most frequently
seen in late-stage PD and is associated with falls and
cognitive impairment.113,114 In PD patients with cog-
nitive impairment, a larger orthostatic drop in blood
pressure correlated with lower posterior cerebral ASL-
MRI perfusion, which in turn was associated with
visuospatial and attentional deficits on neuropsycho-
logical testing.115 MRI also showed that persistent
pain in PD was associated with cortical thinning and
resting-state functional changes in the frontal, tempo-
ral, and insular areas as well as a accumbens–hippo-
campus disconnection.116

Cognitive Decline

Volumetry and Cortical Thickness. Cognitive decline
in PD was associated with greater atrophy in many
brain regions, including the frontal, parietal, and tem-
poral areas and substantia innominata. Atrophy is
greater in PD with dementia than with mild cognitive
impairment (PD-MCI) and accelerates with disease
progression.60 Impairment in specific domains corre-
lated to both anterior and posterior cortical thinning
in PD-MCI.117 Two recent longitudinal MRI studies
reported a higher rate of cortical thinning in PD-MCI
patients in the SMA/preSMA area, superior temporal
gyrus, superior parietal region, and basal forebrain
when compared with PD with normal cognition and
HCs and the magnitude of cortical thinning correlated
with cognitive decline.118,119 These results indicate
that early MCI in PD is indicative of a faster neurode-
generation process. The findings also suggest that ana-
tomical MRI could be helpful in distinguishing
subtypes of MCI that are associated with cortical
pathology and subsequent progression to dementia.120

White Matter Signal Hyperintensities (WMH). WMH
seen on T2, FLuid Attenuated Inversion Recovery
(FLAIR), and proton density-weighted MR sequences

most commonly represent cerebral small vessel disease.
A large prospective cohort study demonstrated that
the presence of more than 2 cardiovascular risk factors
was associated with worse UPDRS III motor scores
and cognitive impairment and that WMH were associ-
ated with worse cognition and postural instability.121

Task-Based fMRI. A large number of fMRI studies
have looked at cognitive deficits in PD using tasks
relying on executive processes that solicit frontostriatal
pathways.122 fMRI studies while performing attention-
al set-shifting tasks indicated reduced frontostriatal
activity in PD.123,124 Prefrontal cortex activity in PD
patients depended on whether the striatum was neces-
sary for the task.124,125 Reduced prefrontal–caudate
activation was reported in PD-MCI patients off medi-
cation during the performance of a set-shifting task126

or in drug-na€ıve PD-MCI patients during the perfor-
mance of a working-memory task.127 Other task-
based fMRI and PET results support the idea that the
integrity of medial temporal function is important for
preserving cognitive function in PD and may compen-
sate for deficient striatal and prefrontal activa-
tion.126,128,129 The respective effects of dopamine
replacement therapy on the ventral and dorsal stria-
tum in PD was also studied using fMRI. In PD
patients, dopamine replacement impaired encoding
and facilitation across trials relying on the ventral stri-
atum, whereas it enhanced interference related to
assimilating conflicting influences on selection across
trials relying on the dorsal striatum.130 These studies
support the concept that impairments specific to the
ventral striatum in PD patients can be explained by
the ventral tegmental area dopamine “overdose”
hypothesis.131,132 In summary, fMRI studies of cogni-
tive deficits in PD have argued for frontostriatal and
also temporal lobe deficits at least in some patients,
suggesting the involvement of both the nigrostriatal
and the mesocortical dopaminergic pathways.

Resting-State fMRI. Resting-state fMRI studies have
provided evidence of FC changes both within and
between individual RSNs, including particularly the
DMN, frontoparietal, salience, and associate visual
networks, which seem to be crucial for cognitive per-
formance success in PD. DMN connectivity or its cou-
pling with other networks was disrupted in PD with
normal cognition133-136 although not in all studies,137

as well as in PD-MCI135 and PD with mild demen-
tia.138 In contrast, the occurrence of cognitive deficits
in PD was associated with abnormal FC within the
frontoparietal network or between this network and
other RSNs even after controlling for dopaminergic
medication in PD with MCI135,139 and demen-
tia.138,140 The changes in FC differed in patients with
executive and visuospatial/memory deficits. Executive
performance was associated with FC in frontoparietal
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areas139,141,142 and with the nigrostriatal dopaminer-
gic function assessed using DAT.141 The normally
existing anticorrelation between the attentional fronto-
parietal networks and the DMN was decreased in PD-
MCI.133,139 Decreased memory and visuospatial and
executive functions were related to abnormal interac-
tions between the dorsal attentional and the DMN.62

In PD-MCI, impaired visuo-spatial functions were
related to abnormal FC in the parietal and temporal
regions.139 FC changes in more posterior regions may
be associated with the evolution to dementia as shown
in a 3-year longitudinal study.142 Altogether, these
results are consistent with the concept of 2 distinct
cognitive syndromes in PD, which include dopaminer-
gically mediated frontostriatal executive impairments
and a “posterior cortical syndrome” more frequently
associated with the later development of demen-
tia.143,144 Longitudinal studies will have to demon-
strate whether these changes may predict cognitive
impairment and dementia in early PD.

fMRI in the Study of the Genetic Basis of Cognitive
Heterogeneity in PD. Cognitive heterogeneity in PD
may be mediated through the common genetic varia-
tion of several genes, including catechol-o-
methlytransferase (COMT), microtubule-associated
protein tau (MAPT), and APOE.145 The COMT gene
(val158met) polymorphism, which alters the activity of
this dopamine-regulating enzyme,146 has been shown
to influence performance on prefrontally based tasks
in PD.144,147,148 Early PD patients homozygous for the
COMT methionine allele when compared with the
valine allele showed impaired behavioral performance
on executive tasks and a reduced BOLD signal in the
frontoparietal networks (Fig. 5).149,150 This is likely to
reflect reduced dopamine turnover and higher presyn-
aptic dopamine levels in the frontal cortical regions
(with lower COMT enzyme activity), as demonstrated
using [18F]-dopa PET.151 Moreover, in HCs, val
homozygotes had impaired set-formation ability and
lower dorsolateral prefrontal cortex activation than
met homozygotes, whereas in patients, the opposite
relationship was observed.152 These data suggest a
regionally specific effect of COMT on cortical dopa-
mine that modulates executive performance in a
disease-specific way. This may be explained by the
well-established hypothesis of an inverted U-shaped
relationship between frontal dopamine levels and exec-
utive cognitive function, with both higher and lower
dopamine levels having a detrimental effect on perfor-
mance depending on the individual’s underlying dopa-
minergic status.145

A common inversion polymorphism in the MAPT
gene region with 2 distinct haplotypes, H1 and H2,153

is associated with PD risk.154 The H1 haplotype may
also increase the risk of developing dementia in
PD,155,156 although this association was not found in

all studies.157,158 In early PD patients without cogni-
tive impairment, the H1/H1 genotype was associated
with subtle impairment of memory recall ability, and
fMRI revealed reduced activation of the medial tem-
poral lobe during memory encoding.159 Hence this
genetic variant may be a general modifier of memory
function in PD even prior to clinical onset of disease.
Another fMRI study showed that the COMT, MAPT,
and APOE genotypes had dissociable effects on execu-
tive, visuospatial, and memory performance, which
were associated with regionally specific changes in cor-
tical BOLD activation in the frontostriatal (COMT),
parietal (MAPT), and temporoparietal regions
(APOE-e4).160

In summary, genetic fMRI studies support the con-
cept of distinct cognitive syndromes in early PD,
including a frontally based dysexecutive syndrome
reflecting dysfunction in dopaminergic networks and
influenced by the COMT genotype and a more poste-
rior cortically based cognitive syndrome dependent on
age and tau genotype.145

Parkinsonian Disorders Other Than PD

Multiple system atrophy (MSA), corticobasal degen-
eration, and PSP are distinct from PD in clinical fea-
tures, neurobiology, and prognosis. MRI allows
differentiating between these disorders from each oth-
er and from PD as well as examining their distinctive
pathophysiology. On structural images, PSP patients
show signs of midbrain and superior cerebellar pedun-
cle atrophy, whereas MSA patients present atrophy
and signal changes in the putamen and middle cerebel-
lar peduncle161-165 (see reviews in refs. 166,167). Reli-
able automated differentiation of parkinsonian
syndromes may be obtained by combining brain volu-
metry and support vector machine classification.168 A
loss of neuromelanin signal may discriminate moder-
ately between PD and atypical parkinsonism.169,170 A
loss of DNH does not seem to discriminate between
PD and other parkinsonian syndromes.13,14,16 Patients
with PSP and MSA can show discrete putaminal
changes using iron-sensitive MRI sequences such that
these changes can assist in the differential diagnosis of
PD from atypical parkinsonism.171-176

A meta-analysis suggested that diffusion MRI in
regions such as the cerebellum and putamen may help
distinguish MSA and PSP from PD.177 Increased free-
water values were found in the anterior and posterior
SN of all diseases (Fig. 1B).178 In addition, elevated
free-water values were found in the putamen, caudate,
and cerebellum for MSA and in the basal ganglia,
thalamus, cerebellum, and corpus callosum for
PSP.178 When combining free-water and free-water-
corrected FA, high predictive accuracy was observed
regarding the differential diagnosis among these
diseases.178
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Motor control studies of patients with PD, MSA,
and PSP using fMRI show an abnormal activation of
task-related structures.179 An abnormal fMRI activa-
tion was found in the basal ganglia, cerebellum, and
cerebrum as well as extensive and widespread volume
loss throughout the brain in MSA when compared
with PD.180 Reduced functional activity was found in
the contralateral caudate, primary motor and premo-
tor cortex, and ipsilateral putamen in PSP when com-
pared with PD.181 Highly connected cortical regions
suffered a disproportionate loss of FC in PSP, which
correlated with the regional expression of the gene
MAPT.182 Specific changes in the connectivity of the
dorsal midbrain and striatum also occurred in PSP,

including corticostriatal connections that correlated
with disease severity.181,183 These results suggest that
the magnitude and topology of functional brain net-
works is changed by PD, PSP, and MSA.

Sensitivity of MRI Markers to Disease
Progression

Longitudinal studies using iron-sensitive sequences
at 1.5T and 3T have revealed conflicting results.
Although some of the studies reported increased nigral
R2* over time,5,184 no longitudinal changes have been
reported by others.185,186 It seems that late-stage PD
might have lower nigral R2* values than early-stage
PD. A possible explanation of this finding may be that

FIG. 5. fMRI blood oxygen level-dependent activation during performance of the Tower of London planning task in a group of patients with early PD
stratified by catechol-o-methlytransferase val158met genotype. (A) Blood oxygen level-dependent activation during planning versus a control task in
the whole cohort rendered onto a canonical brain image (P <.05, false discovery rate correction for whole brain volume). (B) Activity in val (n 5 16)
versus met (n 5 15) homozygotes in the regions of interest indicated in (A), showing significant underactivation of the frontoparietal network activated
by the planning task in met versus val homozygotes, which was accompanied by an impairment in behavioral performance (not shown), reproduced
from ref. 150. DLPFC, dorsolateral prefrontal cortex; fMRI, functional magnetic resonance imaging; L, left; met, methionine; PPC, posterior parietal
cortex; R, right; ROI, region of interest; val, valine.
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consecutive gliosis with neuronal degeneration in late-
stage PD might lengthen T2 relaxation times within
the tissue and thus counteract the increase of relaxa-
tion rates.2 This could also explain that some authors
found no difference in iron content between PD
patients and HCs,8-10 whereas most studies did.2-7

Although relaxometry might track disease progression
early in the disease process,5 available evidence sug-
gests that relaxometry may not be a sufficient staging
biomarker by itself.187 QSM could be a better option,
providing a more direct measure of tissue magnetic
properties.11 This remains to be demonstrated as
QSM measurements had more variability estimated by
standard deviation as compared to R2*.188

Functional and structural MRI can also track the
progression of PD and parkinsonism and provide fur-
ther distinguishable differences between them. Task-
based fMRI has shown progressive functional deterio-
ration in the putamen and M1 in PD patients, but not
in HCs.77 In the same study, functional deterioration
in MSA was exclusively extrastriatal (M1, SMA, and
superior cerebellum), whereas PSP had additional
reduction in functional activity in the putamen. PD
progression can also be tracked by the loss of cortical
gyrification. A loss of gyrification was accelerated in
early-stage PD (1-5 years), whereas later stages
(5 1 years) were associated with significantly reduced
overall gyrification as well as prominent bilateral
reduction in the frontal and parietal areas.189 In addi-
tion, free-water values in the posterior SN were shown
to increase with the progression of PD (Fig. 3).24

These findings suggest that distinct markers and
rates of disease progression may help distinguish PD,
MSA, and PSP. Functional activity levels revealed by
fMRI and free-water and FA values derived from dif-
fusion MRI and perhaps iron-sensitive imaging are
promising MRI-based markers of the diseases and
their progression that may assist clinical assessment
and provide more accurate methods of diagnoses.

Ultra-High Field (UHF) Imaging

Advantages of UHF MRI

Increased static magnetic field results in an increased
signal-to-noise ratio, which can be used to reduce
measurement time and improve spatial resolution, and
improved tissue contrasts because of increased sensi-
tivity to susceptibility. Advantages of 7T imaging
include clear separation between the subthalamic
nucleus and the SN,190-195 and visualization of the
medullary lamina separating the 2 segments of the
globus pallidus and the putamen192 and thalamic
nuclei using either QSM192 or optimized T1-weighted
acquisition.196 In the SN, the DNH was initially
depicted using T2*w images at 7T,12,197,198 and
sequences were subsequently optimized at 3T.15 Using

7T, the lateral boundaries of the SN showed an abnor-
mal shape in PD patients.197,199 Evidence also sug-
gested abnormalities in asymptomatic LRRK2
carriers.20 In theory, UHF MRI has the ability to dis-
tinguish the loss of function and connectivity of small
but critical nuclei such as the subthalamic, the nucleus
pedunculopontine nucleus, oculomotor nuclei, or stria-
tal subdivisions.200,201 Susceptibility-weighted imaging
at 7T has allowed the visualization of cortical laminar
structure in the cortex and the cerebellum,202,203 an
ability that was used to detect atrophy and signal
hypointensity in the deep layers of the primary motor
cortex of patients with amyotrophic lateral sclero-
sis.204 Using diffusion-based tractography, the
improved reconstruction of basal ganglia and brain
stem anatomical connections may be achieved in
humans in vivo205 and ex vivo.206 The imaging of
nuclei of biological interest such as 23Na (using spe-
cific hardware and coils) or glutamate (using chemical
exchange saturation transfer) becomes feasible, but the
interest of these techniques is not known in PD. UHF
strongly benefits MRS, providing increased chemical
specificity, better separation of metabolites such as
glutamate and glutamine, and better detection of
metabolites with smaller concentrations (eg, gamma-
Aminobutyric acid (GABA)). In mild-to-moderate PD,
neurochemical profiles were successfully recorded in
the SN at 7T, although this study did not show any
significant difference with HCs.48 The extent to which
the functional changes observed in parkinsonism relate
to abnormal neurotransmitters and plasticity is also
amenable to investigation by UHF MR spectroscopy.
For BOLD fMRI, higher field strength provides
increased contrast, resolution, and specificity.207

BOLD fMRI at 7T was able to distinguish activation
originating from the subthalamic nucleus and SN.208

It is expected that 7T fMRI will provide improved
sensitivity and spatial resolution for imaging basal
ganglia and brain stem structures in PD.

It is not yet known whether 7T imaging will allow
better separation of PD from atypical parkinsonism,
and its role in distinguishing these diseases remains to
be determined.

Limitations of UHF MRI

Brain imaging at UHF also comes with specific diffi-
culties and challenges that include B1 inhomogeneity,
increased geometric distortions and artifacts, restric-
tions because of increased power deposition and spe-
cific absorption rate, and less available coils. Most of
these challenges have been addressed by technical
improvements including appropriate multi transmit
and receive coil designs generating a B1 pattern with
improved homogeneity, radiofrequency shimming,
pulse sequence optimization, and postprocessing tech-
niques. There are more contraindications because of
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the presence of implanted metallic devices that are not
compatible with UHF systems or have not yet been
tested. The 7T systems are expensive and not certified
as clinical devices. UHF MR systems still require high-
ly skilled dedicated personnel to be operated efficient-
ly. As a result, UHF MR technology is not yet widely
available, but efforts to develop clinical UHF MR sys-
tems might change this situation in the coming years.

Future Directions of MRI

During the past 3 decades, MRI has become a well-
established method that can be used for the diagnostic
work-up of parkinsonism in clinical routine, providing
specific information that point toward the diagnosis of
a neurodegenerative condition.166,209 The role of MRI
has progressed from excluding symptomatic parkin-
sonism because of other pathologies to distinguishing
PD from atypical parkinsonism based on specific
changes in the basal ganglia and infratentorial struc-
tures.210 A combination of markers may assist in the
differential diagnosis of parkinsonism in clinical prac-
tice including surface or volume measurements in the
brain stem as well as diffusion and iron measurements
in the brain stem and basal ganglia. For instance,
changes in the putamen and cerebellum on diffusion
imaging are not present in typical early-stage PD but
represent an atypical parkinsonism.177 The develop-
ment of classifiers may also help clinicians to differen-
tiate between these conditions.

Only during the past decade have newer multimod-
al MRI techniques been applied in patients with PD
and atypical parkinsonism and have shown promis-
ing results in detecting abnormalities in the SN,
nigrostriatal pathway, and outside the nigrostriatal
system as summarized in this review. At present, 2
qualitative MRI biomarkers of the SN (DNH and
neuromelanin signal changes) seem well enough
established to be used in clinical practice in PD. Oth-
er quantitative markers are promising, including dif-
fusion imaging using advanced techniques such as
free water and iron imaging either using R2* or
QSM. However, these techniques are not yet avail-
able on conventional scanners, and clinicians lack
normative databases.

Quantitative measurements will be useful in tracking
the progression of patients in clinical trials and possi-
bly help to personalize patient care. However, quanti-
tative MRI-based PD biomarkers are still insufficiently
validated to be incorporated into therapeutic trials.
Probably the best candidate biomarkers for clinical tri-
als include iron, neuromelanin, and other quantitative
imaging methods such as diffusion imaging and relax-
ometry. The validity of these biomarkers of neurode-
generation in PD is insufficiently supported by
histological correlation studies. Important questions

are only beginning to be addressed, such as the follow-
ing: Do markers change with disease progression? Are
they correlated with clinical status? Are they sensitive
enough to detect changes in a longitudinal study?
What is the temporal evolution of biomarkers? Can
MR biomarkers predict responses to treat-
ment?74,75,211 Efforts should also be made to harmo-
nize data collection and processing, paving the way
for large multicenter cohort studies that use similar
inclusion criteria and data analysis. Standardized pulse
sequences for quantitative MRI-based markers should
yield more consistent results across sites. Last, UHF
imaging appears promising in PD but has been insuffi-
ciently studied.
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