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Abstract In this paper we study several translations that map models and formulae
of the language of second-order arithmetic to models and formulae of the language
of truth. These translations are useful because they allow us to exploit results from
the extensive literature on arithmetic to study the notion of truth. Our purpose is to
present these connections in a systematic way, generalize some well-known results
in this area, and to provide a number of new results. Sections 3 and 4 contain
some recursion- and proof-theoretic results about Kripke-style fixed-point theories
of truth. Section 5 shows how to derive full second-order arithmetic from principles
of truth. Section 6 investigates the proof-theoretic strength of disquotation without
an arithmetical base theory.

Keywords Truth · Second-order arithmetic · Relative interpretations · Definability

1 Introduction

In this paper we study several translations, essentially known to experts, that map
models and formulae of the language of second-order arithmetic to models and for-
mulae of the language of Peano arithmetic augmented by a truth predicate. These
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translations are useful because they allow us to exploit results from the extensivelit-
erature on arithmetic in order to study the notion of truth. Our purpose is to present
these connections in a systematic way, to generalize some well-known results in this
area, and to provide a number of new results.

While this paper is essentially a technical one, many of its results should be of
great philosophical interest. Deflationists such as Horwich [18] claim that truth and
satisfaction (truth of) are merely expressive devices. This idea can be spelled out in
various ways. According to Parsons [26], the notion of truth enables us to generalize
sentence places while the notion of satisfaction allows us to quantify into predicate
position. The direct method of generalizing sentence and predicate places is by intro-
ducing quantifiable variables that can occupy sentence and predicate position; that
is, by introducing second-order variables. A natural way, then, of understanding the
idea that truth and satisfaction enable us to generalize sentence respectively predicate
places is to say that a theory of truth must be able to emulate or interpret some form
of second-order quantification. The translations presented in this paper may help us
to make this idea precise.

Secondly, interpretations of (subsystems of) second-order arithmetic into theories
of truth can be seen as ontological reductions. In second-order arithmetic, the second-
order quantifiers are usually taken to range over sets of numbers. For some sets X

we can find a predicate P such that n ∈ X if and only if P is true of n. Since we can
identify predicates with their Gödel numbers, talk of certain sets of numbers can be
reduced to or replaced by talk of numbers and satisfaction. Well-known examples in
this area are the reduction of the system of arithmetical comprehension to the typed
compositional theory of truth and the reduction of ramified analysis to the Tarskian
hierarchy of truth. An early philosophical discussion of both results can be found in
Parsons [25], who also sketches a proof of both results. These examples show that
we may identify arithmetical respectively hyperarithmetical sets with the predicates
(or their Gödel codes) of which they are the extension. (For technical details I refer
the reader to Halbach [10, 11]. For further discussion, see Halbach [12].) The results
in this paper show that we can reduce even stronger subsystems of second-order
arithmetic to theories of truth.

There are some further philosophical issues on which our results may shed some
light, such as the question of what constitues a good axiomatization of a seman-
tic truth theory (Fischer et al. [8]), or the question of the ‘unsubstantiality’ of truth
(Horsten [17], Shapiro [31], Ketland [19], Halbach [13]). However, I won’t attempt
to draw any substantial philosophical conclusions in this paper and leave a proper
assessment for another occasion.

This paper is structured as follows. In Section 2 we set up the overall framework
of the paper. The ideas and results presented there are more or less known to experts.
We fix a translation function from the language of second-order arithmetic to the
language of truth. The main idea is to translate a formula of the form t ∈ Y as ‘the
result of substituting t for the free variable in the formula y is true’ or ‘y is true of t’.
With every interpretation S for the truth predicate we canonically associate a Henkin
structure MS for the second-order language. It is then shown that a second-order
sentence is true in MS if and only if its translation is true when S is assigned as the
extension of the truth predicate.
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In Section 3, we apply the translation lemma to obtain some complexity results for
Kripke-style fixed-point theories of truth [20]. We show that whenever a valuation
scheme satisfies some minimal criteria, then all inductive sets are weakly definable
in the least fixed point of that valuation scheme, while the sets that are strongly defin-
able are exactly the hyperarithmetical ones. The proof presented here is more general
than those currently available in the literature as it applies to the Strong Kleene
scheme and the supervaluation schemes as well as to Leitgeb’s theory [21]. It also
applies to a valuation scheme strictly weaker than the Strong Kleene. We also give a
very short proof that all inductive sets are definable in Herzberger’s revision theory
[16].

In Section 4, we draw some proof-theoretic consequences. It is shown that the least
fixed points of the valuation schemes satisfying the criteria set out in the previous
section validate (the translations of) the theories ID1 and Δ1

1 − CA0. The axioms of
the latter could therefore be taken into account for axiomatizations of the semantic
theories. We also present some sufficient conditions under which all fixed points of
a valuation scheme satisfy the theory of positive disquotation.

In Section 5 it is shown how to turn comprehension axioms into truth-theoretic
axioms. We present a disquotational theory of truth that relatively interprets full
second-order arithmetic, and show it to be consistent. This strengthens a result of
Schindler [30] that parameter-free second-order arithmetic is reducible to principles
of truth.

Section 6 investigates the proof-theoretic strength of uniform disquotation with-
out its base theory. This is done by recovering weak set theories from the
T-biconditionals. It is shown that typed uniform disquotation, over logic alone, inter-
prets Tarski’s theory R while the theory of positive uniform disquotation, over logic
alone, interprets Robinson arithmetic Q.

In Section 7 we conclude with some final remarks.

Technical Preliminaries The language of Peano arithmetic, LPA, is a first-order lan-
guage that contains a denumerably infinite set of individual variables v0, v1, v2, . . .,
the connectives ¬, ∨ and ∧, the quantifiers ∀, ∃ and the identity symbol =. We
assume that all other connectives are defined in the usual way. The sole non-logical
symbols are the individual constant 0, the unary function symbol S for the successor
function, the binary function symbols + and · for addition and multiplication, respec-
tively, and function symbols for certain primitive recursive (p.r.) functions that we
are going to specify in the course of the paper. If h is such a p.r. function, we write h.
(with a subdot) for the corresponding function symbol. The language LT is obtained
from LPA by augmenting the latter with the unary predicate symbol T .

The theory PA contains the defining axioms for zero, successor, addition, multipli-
cation and the other p.r. function symbols together with all instances of the induction
axiom scheme

ϕ(0) ∧ ∀x(ϕ(x) → ϕ(Sx)) → ∀xϕ(x)

where ϕ(x) is a formula of LPA. The theory PAT is obtained from PA by extending
the induction axiom scheme to the full language LT.

If n is a number, we write n for its numeral, i.e., the term that is obtained by
applying the successor symbol S n-many times to the constant 0. We assume some
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effective Gödelcoding of the expressions of LT. If σ is some expression, we write #σ

for its code and �σ� for the numeral of its code. We occasionally identify expressions
with their codes.

Let sk
i (m, n) = #ϕ(n/xj ), provided that m = #ϕ codes a formula with exactly k

free variables and xj is its i-th free variable (according to the index ordering). If one
of these conditions is not satisfied we let sk

i (m, n) = 0. The functions sk
i are primitive

recursive and will be represented by the symbols s.
k
i . Given ϕ := ϕ(x, y, z) with

exactly x, y, z free and index(x) < index(y) < index(z), we write �ϕ(ẋ, ẏ, ż)� for
s.

1
1(s.

2
2(s.

3
3(�ϕ�, z), y), x), and similarily for formulae with n free variables. We often

write s. instead of s.
1
1. Then the uniform T-schema can be written as

∀x1 . . . ∀xn(T �ϕ(ẋ1 . . . ẋn�) ↔ ϕ(x1, . . . , xn))

For more details on this notation, I refer the reader to Cantini [6] or Halbach [15].
Standard models of LT have the form (N, S), where N is the standard model of PA

and S ⊆ ω interprets the truth predicate T .
Let us now turn to the language of second-order arithmetic. The language L2 of

second-order arithmetic is obtained from LPA by adding the binary relation symbol
∈ plus second-order or set variables X0, X1, X2, . . . (Let us call v0, v1, . . . number
variables.) This gives us new formulae of the form t ∈ X and ∀Xϕ.

L2 is a two-sorted first-order language with usual (first-order) rules for both set
and number quantifiers. Intended Henkin models for L2 have the form (N,M),
where M ⊆ ℘(ω) and the set variables Xi range over the elements of M. We call
such models ω-models.

A formula ϕ ∈ L2 is called arithmetical iff it contains no second-order quantifiers.
Note that such a formula might contain free second-order variables. (Sometimes we
also refer to the formulae of LPA as arithmetical. It should always be clear from the
context which sense is intended.)

A formula ϕ ∈ L2 is Π1
n (Σ1

n) iff its has the form Q1X1 . . . QnXnψ , where ψ is
arithmetical, Q1 . . . Qn is a string of alternating second-order quantifiers, and Q1 is
universal (existential).

A set X ⊆ ω is Π1
n (Σ1

n) iff X = {n | (N, ℘ (ω)) |= ϕ(n)}, where ϕ(x) is a
Π1

n(Σ1
n) formula with exactly x free. (That is, a set is Π1

n iff it is definable by a Π1
n -

formula in the standard model of second-order arithmetic.) A set X ⊆ ω is Δ1
n iff X

is both Π1
n and Σ1

n . For more information on the analytic hierarchy I refer the reader
to Shoenfield [32].

The theory Z2, called full second-order arithmetic or classical analysis, is formu-
lated in L2 and contains besides the axioms of PA with induction extended to the full
language L2 all instances of the comprehension axiom scheme

∀y1 . . . ym ∀Y1 . . . Yn ∃X ∀x (x ∈ X ↔ ϕ(x, y1, . . . , ym, Y1, . . . , Yn))

where ϕ(x, y1, . . . , ym, Y1, . . . , Yn) is a formula of L2 containing exactly the dis-
played variables free. The subsystem ACA of arithmetical comprehension is obtained
by restricting the comprehension axiom scheme to arithmetical L2-formulae. Sub-
systems of analysis are studied in Simpson [33].

Another notion that we will use frequently in this paper is that of a relative inter-
pretation. Giving a general definition of that notion is a tricky business (cf. Visser
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[36]), but for our purposes the following should suffice. Roughly, a theory T1 in LT1

is relatively interpretable in a theory T2 in LT2 if and only if there is a definitional
extension of T2 in an expansion of LT2 and a translation I from LT1 to the expan-
sion of LT2 such that (i) I replaces every non-logical expression of LT1 by one of
the same kind and arity (but not necessarily the same sort), (ii) I preserves logical
structure, possibly relativizing quantifiers, and (iii) I preserves theoremhood. Here,
the notion of a definitional extension is the standard one as in e.g. Monk [22, p. 208];
for instance, we assume the usual uniqueness and existence conditions for function
symbols. In practice, we will often specify a translation by specifying a formula with
n free variables as translation of an n-ary predicate symbol instead of specifying a
predicate symbol in an expansion as required by the definition.

We use bold face letters to indicate strings of expressions. For example, x denotes
x1, . . . , xn and �ϕ� denotes �ϕ1�, . . . , �ϕn�. It should always be clear from the
context what the length of the string is.

2 Truth-Sets and Second-Order Structures

In this section we introduce our first translation from L2 to LT. The ideas and results
presented here are more or less known to experts, although we are not aware of a
systematic presentation of them in the literature. The purpose of this section is mainly
to set up the overall framework of this paper. Recall that standard models of LT have
the form (N, S), where N interprets the arithmetical vocabulary and S ⊆ ω interprets
the truth predicate T . Let us call S a truth-set. Any truth-set S ⊆ ω encodes or
determines a Henkin structure (N,MS) for L2 as follows:

Definition 1 Let S ⊆ ω and ϕ ∈ Form1
T (=an LT-formula with exactly one free

variable).

1. Sϕ = {n | #ϕ(n) ∈ S} ⊆ ω

2. MS = {
Sϕ | ϕ ∈ Form1

T

} ⊆ ℘(ω)

For example, assume that S contains (the codes of) all true LPA-sentences, i.e.,
S ⊇ {#ϕ | ϕ ∈ LPA,N |= ϕ}. Then MS contains all arithmetically definable subsets
of ω. For instance,

Sx=3 = {n | #(n = 3) ∈ S} = {n | N |= n = 3} = {3}
and

S∃y(x=2y) = {n | #(∃y(n = 2y)) ∈ S} = {0, 2, 4, . . .}
In particular, for any S ⊆ ω we have

ST x = {n | #(T n) ∈ S} = {n | n ∈ S} = S

In the terminology of Cantini [5, 6], MS is the envelope of S; we will call it the
set of sets encoded by S. Note that by Tarski’s undefinability theorem, in general we
do not have Sϕ = {n | (N, S) |= ϕ(n)}. Hence MS does not coincide with the set
of sets that are definable in the classical structure (N, S). However, we will later see
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(Section 3) that MS may coincide with the set of sets that are definable in S in some
non-classical logic.

As mentioned in the introduction, we occasionally identify expressions with their
codes. Accordingly, we also write Sk for Sϕ , provided that k = #ϕ. Occassionally,
we also denote Sϕ by St when t is a term denoting #ϕ.

Now consider the following translation function from the language L2 to the truth
language LT.

Definition 2 The function ∗ : L2 → LT is defined as follows:

Here, the predicate Fm1
T (v) naturally represents the set of (codes of) formulae

of LT that contain exactly one free variable; the function symbol s. (introduced in
the introduction) represents the substitution function defined by s(#ϕ, n) = #ϕ(n),
provided ϕ is a formula with exactly one free variable. Thus, on the above translation,
the formula t ∈ Xi is translated as:

T he result of substituting t f or the f ree variable in (the f ormula) v2i+1 is true

The translation replaces set quantifiers with quantifiers relativized to formulae with
one free variable; this accords with what we said in the introduction, namely that we
want to identify sets of numbers with the predicates of which they are the extension.
The set variables are mapped to variables with an odd index, and number variables
to variables with an even index. In order to increase readability, we will often omit
the indices of the variables and use some suggestive notation instead. For example,
the translation of a second-order formula of the form ∀x∃Y (x ∈ Y ) will simply be
written as ∀x∃y(Fm1

T (y) ∧ T s. (y, x)).
Sometimes it is convenient to add set constants to L2. Given MS , we let the set

constant Sϕ denote the set Sϕ . We expand our above translation function by letting

If h is a variable assignment for (N,MS), define the assignment h∗ for (N, S) by
h∗(v2i ) := h(vi) and h∗(v2i+1) := min{k ∈ Form1

T | Sk = h(Xi)}. It is easily seen
that our translation preserves the denotation of arithmetical terms.
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Proposition 1 Let h be an assignment for (N,MS). Then t (N,MS),h = t∗(N,S),h∗
for

all number terms t of LPA.

The following central proposition shows that a second-order sentence is true in
the set of sets encoded by S if and only if its translation into the language of truth
is true in the truth-set S (i.e., if the truth predicate is interpreted by S). Roughly, the
gist of this result is that we can convert or translate questions regarding truth-sets into
questions regarding second-order structures which are often better understood. We
will see several applications of this in subsequent sections.

Proposition 2 (Translation Lemma) Let S ⊆ ω, let ϕ(y,X,Sγ ) ∈ L2, and let h be
an assignment for (N,MS). Then:

(N,MS), h |= ϕ ⇔ (N, S), h∗ |= ϕ∗

Proof By induction on the complexity of formulae.
The case t1 = t2 follows from Proposition 1.
Consider t ∈ Xi , where t is any term. Let t (N,MS),h = n and h(Xi) = A. Then

there is a k such that k = min{m | Sm = A}. Then

Next, consider t ∈ Sγ , where t is any term. Let t (N,MS),h = n. Then

The cases ¬ψ, ψ ∧ χ, ψ ∨ χ, ∃xψ and ∀xψ follow easily from the I.H.
Now consider ∀Xiψ and let

M =
{
k ∈ Form1

T | ∀m ∈ Form1
T (Sm = Sk → k ≤ m)

}

Then:

(N,MS), h |= ∀Xiψ ⇔ ∀A ∈ MS : (N,MS), h(A : Xi) |= ψ (1)

⇔ ∀k ∈ Form1
T : (N,MS), h(Sk : Xi) |= ψ (2)

⇔ ∀k ∈ M : (N,MS), h(Sk : Xi) |= ψ (3)

⇔ ∀k ∈ M : (N, S), h∗(k : v2i+1) |= ψ∗ (4)

⇔ ∀k ∈ Form1
T : (N, S), h∗(k : v2i+1) |= ψ∗ (5)

⇔ (N, S), h∗ |= ∀v2i+1

(
Fm1

T (v2i+1) → ψ∗) (6)
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The implication from Eqs. 3 to 2 follows from the definition of M and the exten-
sionality of sets. The equivalence between Eqs. 3 and 4 is given by the inductive
hypothesis, since [h(Sk : Xi)]∗ = h∗(k : v2i+1) for every minimal k. The step from
Eqs. 4 to 5 is justified because in translated formulae, such as ψ∗, v2i+1 occurs only
in contexts of the form Ts. (v2i+1, t). By the definition of the sets Sk , if Sm = Sk then

for any term t and assignment h′.
The case ∃Xψ is proved in a similar way.

As a corollary we get:

Proposition 3 Let S ⊆ ω and let ϕ be a closed L2-formula. Then:

(N,MS) |= ϕ ⇔ (N, S) |= ϕ∗

We note the following special case. Let ϕ(X) be an arithmetical L2-formula that
contains X as sole set variable. Then, in any L2-structure (N,M), the truth value of
ϕ depends (apart from the numbers assigned to the number variables) only on the set
assigned to X. Let P be that set. Then we have

(N,M), h(P : X) |= ϕ(X) ⇔ N, h |= ϕ(P )

where P is a set constant interpreted by P . The Translation Lemma implies:

Proposition 4 Let ϕ(X) be an arithmetical L2-formula that contains X as sole set
variable. Then

N |= ϕ(Sk) ⇔ (N, S) |= ϕ∗(t)

where tN = k.

Sometimes it is convenient to assume that the language L2 additionally contains
n-ary relation variables Xn

1 , Xn
2 , . . . for every n > 1. It is straightforward to extend

our apparatus to cover this more general situation and we will occasionally make use
of this in what follows.

For example, on the syntactic side, a formula of the form Y 2(x1, x2) translates
into a formula of the form Ts. (s.

2
2(y, x2), x1). A formula of the form ∀Ynϕ translates

into a formula of the form ∀y(Fmn
T (y) → ϕ∗), where Fmn

T (x) represents the set of
LT-formulae with exactly n free variables. On the semantic side, if ϕ(x, y) is an LT-
formula containing exactly x, y free, and S ⊆ ω, we let Sϕ = {〈n, m〉 | #ϕ(n, m) ∈
S}. It should be obvious that Propositions 1 to 4 can be extended to the more general
case.

Of course, since there is a primitive recursive coding machinery in the language of
arithmetic, we could simply do with the unary case. However, I believe that the pre-
sentation of some of the later results will be more perspicuous if we avoid additional
coding.
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3 Definability in Fixed-Point Theories

The Translation Lemma is useful because it allows us to transfer results about arith-
metic to theories of truth. Let us illustrate this by proving some definability results for
Kripke-style fixed-point theories of truth. These results are well-known for particu-
lar choices of a valuation scheme, but the Translation Lemma allows us to generalize
these results to a wide range of valuation schemes (in particular, it also applies to Leit-
geb’s [21] theory of truth and to a scheme strictly weaker than the Strong Kleene, as
well as to the revision theory of truth) and prove them in a uniform way. We assume
that the reader is familiar with Kripke’s theory (cf. Kripke [20]) and introduce the
following definitions only to fix some terminology.

A partial model for LT is a triple (N, E, A), where E ⊆ ω is the extension and
A ⊆ ω is the anti-extension of the truth predicate, and E ∩ A = ∅. A valuation
scheme V is a function mapping partial models and sentences to the set {0, 1, u}. We
write (N, E, A) |=V ϕ iff V assigns 1 to ϕ and (N, E, A). We make a few minimal
assumptions:

(V1) The arithmetical vocabulary is interpreted in the standard way and every LPA-
sentence receives the same truth value under V as it receives in the standard
model N.

(V2) A sentence of the form T t receives the value 1 iff tN ∈ E and receives the
value 0 iff tN ∈ A.

(V3) A conjunction is true under V iff both conjuncts are true under V .
(V4) A universal sentence is true under V iff all its instances are true under V .
(V5) A sentence receives value 1 under V iff its negation receives value 0 (and

vice versa).

In this paper, we consider only valuations V that are monotonic (i.e. V preserves the
values 0 and 1 if one moves from a partial model to one extending it). Given a partial
model (N, E, A) and a monotonic valuation scheme V , the Kripke-jump JV delivers
the partial model (N, E′, A′), where E′ is the set of sentences that receive value 1
in (N, E, A) and A′ is the set of all sentences that receive value 0 in (N, E, A). We
denote E′ by JV (E). A partial model (N, E, A) is a fixed point of JV iff (N, E, A) =
(N, E′, A′). The least fixed point of JV is obtained by iterated applications of the
Kripke-jump, starting with the partial model (N, ∅, ∅), and taking unions at limit
stages. We denote the partial model obtained at stage α by (N, Eα, Aα), and the least
fixed point by (N, E∞, A∞). (Note: Eα always refers to the extension of the truth
predicate at stage α in the construction of the least fixed point, where we start the
hierarchy with the empty set.) The classical close-off of an arbitrary partial model
(N, E, A) is the classical model (N, E).

A set X ⊆ ω is weakly definable in (N, E, A) iff there is a ϕ(x) ∈ LT such that
X = {n | (N, E, A) |=V ϕ(n)}. If (N, E, A) is a Kripke fixed point, then

Eϕ = {n | #ϕ(n) ∈ E}
= {n | (N, E, A) |=V T �ϕ(n)�}
= {n | (N, E, A) |=V ϕ(n)}
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Thus, whenever (N, E, A) is a fixed point, ME coincides with the collection of sets
that are weakly definable in (N, E, A).

A set X ⊆ ω is called Π1
1 -hard iff every Π1

1 -set Y is many-one reducible to X,
i.e., there is a recursive function f such that for all n ∈ ω, n ∈ Y iff f (n) ∈ X. A set
X is called Π1

1 -complete iff X is Π1
1 -hard and X is a Π1

1 -set.
It is well-known that E∞ is a Π1

1 -complete set of integers for several choices of
V . This was proved for the Strong Kleene scheme by Burgess [3] and Cantini [5] (the
result was already announced by Kripke), for the van Fraassen scheme by Burgess
[3], for the Cantini scheme by Cantini [6],1 and for Leitgeb’s [21] theory (which is
based on his notion of semantic dependence) by Welch [40]. The proof in [40] was
generalized by Fischer et al. [8] to cover a range of further supervaluational schemes
(for example, supervaluations based on maximal consistent extensions). Leitgeb’s
theory is not defined in the Kripkean way, but in Beringer and Schindler [1] it is
shown that Leitgeb’s theory coincides with the least fixed point of a particular 3-
valued valuation scheme that we dubbed the Leitgeb valuation scheme, VL. Thus,
Leitgeb’s theory can be considered as a special case of Kripke’s.2 (Thus, whenever
we talk about Kripke’s theory of truth in what follows, Leitgeb’s theory is always
included.) We observe the following:

Proposition 5 IfME∞ contains all Π1
1 -sets, then E∞ is Π1

1 -hard.

Proof For every Π1
1 -set P we need to find a recursive function such that n ∈ P iff

f (n) ∈ E∞. By assumption, P = (E∞)ϕ ∈ ME∞ for some ϕ(x). Let f (n) :=
#ϕ(n).

Using the Translation Lemma, we can give a short and uniform proof that E∞ is
Π1

1 -hard for a wide range of valuation schemes, including all of the schemes men-
tioned above. (We call the class of these valuation schemes nice.) There is no general
argument by which one could show that E∞ is itself a Π1

1 -set, but for the valuation
schemes that are usually discussed in the truth-theoretic literature such arguments are
straightforward.

The general strategy of the proof is as follows. Any Π1
1 -set P can be seen as the

slice or projection of the fixed point I of a particular operator. This operator is given
by a particular formula ϕ of L2. Whenever V is nice, we can utilize our translation
function to find a formula ϕ′ of LT such that (E∞)ϕ′ = I . The set P can be easily

1By the van Fraassen scheme we mean the scheme vF introduced in Burgess [3] and by the Cantini
scheme we mean the scheme FV introduced in Cantini [6].
2We briefly sketch Leitgeb’s theory for those readers not familiar with it. A sentence ϕ depends on S ⊆ ω

iff for all P ⊆ ω we have (N, P ) |= ϕ ⇔ (N, S ∩ P) |= ϕ. Let G0 = ∅ and let Gα+1 be the set of (codes
of) sentences that depend on Gα . If γ is a limit ordinal, let Gγ be the union of all Gα for α < γ . Next, let
T0 = ∅ and let Tα+1 be the set of (codes of) sentences that are elements of Gα and are true in the classical
model (N, Tα). At limit stages, we take unions again. This hierarchy reaches a fixed point, T ∞, which
Leitgeb proposes as interpretation for the truth predicate. The valuation scheme VL is defined as follows.
Let VL(N, E,A)(ϕ) = 1 if ϕ depends on E ∪ A and (N, E) |= ϕ, and = 0 if ϕ depends on E ∪ A and
(N, E) � ϕ, and = u otherwise. Then E∞ = T ∞.



Some Notes on Truths and Comprehension

recovered from (E∞)ϕ′ . This shows that ME∞ contains all Π1
1 -sets and we can apply

Proposition 5.
We briefly recall some concepts and results from the theory of inductive def-

initions. For more details we refer the reader to Moschovakis [23]. Suppose that
ϕ(x1, . . . , xn, X

n) is an arithmetical L2-formula (with all free variables displayed)
in which Xn occurs only positively (that is, every occurrence of Xn is in the scope of
an even number of negation signs). The positive elementary operator Γϕ : ℘(ωn) →
℘(ωn) determined by ϕ is defined by

Γϕ(S) = {〈k1, . . . , kn〉 | N |= ϕ(k1, . . . , kn, S)}
This operator is monotone in the sense that, whenever S ⊆ S′, then Γ (S) ⊆ Γ (S′).
Let us inductively define

– I 0
ϕ = ∅

– Iα+1
ϕ = Γϕ(Iα

ϕ )

– I
γ
ϕ = ⋃

α<γ Iα
ϕ , when γ is a limit ordinal.

Let Iϕ := I κ
ϕ where κ is least with I κ

ϕ = I κ+1
ϕ . We call Iϕ the least fixed point of the

positive elementary operator Γϕ , or simply the set build up by Γϕ . The existence of Iϕ

follows from the monotonicity of the operator Γϕ and a simple cardinality argument.
It is a well-known result that if P is a Π1

1 -set then there is a formula ϕ :=
ϕ(u, y, X2) such that for all n, n ∈ P iff 〈〈〉, n〉 ∈ Iϕ . In other words, P is the 〈〉-slice
of Iϕ . Here, ϕ(u, y, X2) is of the form

Seq(u) ∧ (ψ(u, y) ∨ ∀zX2(u�z, y)) (7)

for some LPA-formula ψ(u, y), Seq(u) expresses that u is the code of a (finite)
sequence of natural numbers, u�z denotes the concatenation of the sequence u with
the sequence 〈z〉, and 〈〉 denotes the empty sequence.

Our goal is to find a formula ϕ′ of LT such that (E∞)ϕ′ = Iϕ . In fact, we will
show that (Eα)ϕ′ = Iα

ϕ for every α.
To this end, let I ∗

ϕ be a closed term of LT such that

I ∗
ϕ = �ϕ∗(u, y, I ∗

ϕ )�

is provable in PA. Such a term can be constructed by diagonalisation.3 The definition
of the term I ∗

ϕ is adapted from Cantini [5]. Unpacking notation, we observe that
ϕ∗(u, y, I ∗

ϕ ) is shorthand for

The displayed formula is our desired formula ϕ′.

3Let and Observe that
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There are some valuation schemes such that E∞ is not Π1
1 -hard (for instance, Cain

and Damnjanovic [4] have shown that the Weak Kleene scheme does not necessarily
generate a Π1

1 -hard fixed point, depending on the chosen Gödel coding).4 However,
we will show that whenever V is nice in the sense of the following definition, E∞
will indeed be Π1

1 -hard.

Definition 3 A valuation scheme V is nice iff the following conditions hold for all
partial models (N, E, A) and sentences ϕ, ψ ∈ LT :

(N1) if ψ ∈ LPA and N |= ψ then (N, E, A) |=V ψ ∨ ϕ

(N2) if (N, E, A) |=V ϕ and ψ ∈ LPA then (N, E, A) |=V ψ ∨ ϕ

(N3) if a disjunction ψ ∨ ϕ is true under V and ψ ∈ LPA, then (at least) one of
ψ, ϕ is true under V

In other words, the conditions require that if ψ ∈ LPA, then ψ ∨ϕ is true under V

iff ψ or ϕ is true under V . The Strong Kleene scheme, the Leitgeb scheme, the van
Fraassen scheme and the Cantini scheme are all nice. Moreover, it is easily seen that
any supervaluation scheme is nice.5 The Weak Kleene scheme, however, is not nice,
because it does not satisfy property (N1). There is a nice valuation scheme strictly
lying between the Weak and Strong Kleene scheme. It is obtained by adopting the
Weak Kleene rules for the existential and universal quantifier but the Strong Kleene
rules for conjunction and disjunction.

Properties (N1)-(N3) ensure (together with (V1)-(V4)) that the formula
ϕ∗(u, y, I ∗

ϕ ) is satisfied in a partial model (N, E, A) if and only if it is satisfied in its
classical close-off (N, E):

Proposition 6 Assume that V is nice and that ϕ(u, y, X2) is an instance of Eq. 7.
Then for all m, n ∈ ω and all partial models (N, E, A) we have:

(N, E, A) |=V ϕ∗(m, n, I ∗
ϕ ) ⇔ (N, E) |= ϕ∗(m, n, I ∗

ϕ )

Proof ⇒: Assume (N, E, A) |=V ϕ∗(m, n, I ∗
ϕ ), that is

Since the sentence in question is a conjunction, (V3) implies that both conjuncts must
hold in (N, E, A). Since the first conjunct is arithmetical, (V1) implies that it must
be true in the standard model, hence it also holds in the classical model (N, E). The
second conjunct is a disjunction, of which the first disjunct is again arithmetical. Thus
by (N3), either ψ(m, n) or ∀zT s. (s.

2
2(I ∗

ϕ , y), u�z) must be true in the partial model

4For additional results on the Weak Kleene scheme see Speranski [34], where it is shown that adding a
symbol for proper substraction solves the problem.
5Where a scheme is supervaluational iff it is given by a rule of the following form: (N, E,A) |=V ϕ iff
for all S ⊇ E, if Φ(S,E,A) then (N, S) |= ϕ, where Φ is a condition such that for every partial model
(N, E,A) there is an S ⊇ E with Φ(S,E,A).
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(N, E, A). In either case, the disjunction will hold in the classical model (N, E) as
well.

By (V3) it suffices to show that both conjuncts hold in (N, E, A). We already know
that it holds in its close-off. Since the first conjunct is arithmetical, it holds in the
partial model because of (V1). So let us turn to the second conjunct (the disjunction).
Now, if (N, E) |= ψ(m, n), then, since ψ is arithmetical, it must be true in the
standard model of arithmetic and therefore, by (V1), hold in the partial model as well.
But then the disjunction must hold in the partial model because of property (N1) of
a nice valuation. On the other hand, suppose that (N, E) |= ∀zT s. (s.

2
2(I ∗

ϕ , y), u�z).
Then this must hold in the partial model because of (V1), (V2) and (V4). But then
(N2) ensures that the disjunction must hold there as well.

Combining the above proposition with the Translation Lemma we get:

Proposition 7 Assume that V is nice and that ϕ(u, y, X2) is an instance of Eq. 7.
Then for all α ∈ ON we have:

Iα
ϕ = (Eα)I∗

ϕ
:= {〈m, n〉 | #ϕ∗ (

m, n, I ∗
ϕ

) ∈ Eα
}

In other words, the set Iα
ϕ build up by the positive operator Γϕ at stage α is identical

with the set weakly defined by the formula ϕ∗(u, y, I ∗
ϕ ) in the partial model obtained

in the Kripke construction at stage α (starting with the empty set as extension and
anti-extension at stage 0).

Proof By transfinite induction on α.
α = 0: Since E0 = ∅, we get (E0)I∗

ϕ
= ∅ = I 0

ϕ .

α = β + 1: Let 〈m, n〉 ∈ (Eβ+1)I∗
ϕ

, whence by definition #ϕ∗(m, n, I ∗
ϕ ) ∈

Eβ+1. Since (at successor levels) the extension of the truth predicate comprises pre-
cisely those sentences that are true at the preceding level, we get (N, Eβ, Aβ) |=V

ϕ∗(m, n, I ∗
ϕ ). It follows from Proposition 6 that the formula also holds in the classical

close-off, that is (N, Eβ) |= ϕ∗(m, n, I ∗
ϕ ). By I.H., (Eβ)I∗

ϕ
= I

β
ϕ , so Proposition 4

yields N |= ϕ

(
m, n, I

β
ϕ

)
, whence by definition 〈m, n〉 ∈ I

β+1
ϕ .

For the other direction, assume that 〈m, n〉 ∈ I
β+1
ϕ . So N |= ϕ

(
m, n, I

β
ϕ

)
,

whence by I.H. and Proposition 4, (N, Eβ) |= ϕ∗(m, n, I ∗
ϕ ). Hence, by Proposition 6,

(N, Eβ, Aβ) |=V ϕ∗(m, n, I ∗
ϕ ) and therefore #ϕ∗(m, n, I ∗

ϕ ) ∈ Eβ+1 by definition of
Kripke jump, which means that 〈m, n〉 ∈ (Eβ+1)I∗

ϕ
.

α is a limit ordinal: by I.H. and definition we get:

(Eα)I∗
ϕ

=
⋃

β<α

(Eβ)I∗
ϕ

=
⋃

β<α

Iβ
ϕ = Iα

ϕ
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Now we can easily see that all Π1
1 -sets are weakly definable in the minimal fixed

points of a nice valuation scheme.

Proposition 8 If V is nice then

1. ME∞ ⊇ {
P | P is Π1

1

}

2. E∞ is Π1
1 -hard

Proof Ad 1. If P is a Π1
1 -set, then for appropriate ϕ we have n ∈ P iff 〈〈〉, n〉 ∈ Iϕ

for every n. Let ϕ′ := ϕ∗(〈〉, x, I ∗
ϕ ). It follows from the previous theorem that P =

(E∞)ϕ′ .
Ad 2. This follows from the first item and Proposition 5.

Note also the following:

Proposition 9 If V is nice and E∞ is itself Π1
1 , then E∞ is Π1

1 -complete and
ME∞ = {

P | P is Π1
1

}
.

Proof It suffices to show that ME∞ ⊆ {
P | P is Π1

1

}
. Now if (E∞)ϕ ∈ ME∞ , then

(E∞)ϕ is elementary definable in the structure (N, E∞) by the formula Ts. (�ϕ�, x)
and thus is Π1

1 , because (by assumption) E∞ is Π1
1 .

Note that in order to prove the above complexity results it is sufficient to assume
that (N1)-(N3) hold merely for those partial models that arise in the construction of
the least fixed point.

Let us call an LT-formula ϕ(x) total with respect to S (or S-total) iff

(N, S) |= ∀x(T �ϕ(ẋ)� ∨ T �¬ϕ(ẋ)�)

That is, a formula is S-total iff for every n, either #ϕ(n) ∈ S or #¬ϕ(n) ∈ S. If
ϕ(x) is E∞-total, negation clause (V5) implies that every instance ϕ(n) will have a
definite truth value in the partial model (N, E∞, A∞).

Let us say that a set X ⊆ ω is strongly definable in the partial model (N, E, A) iff
X = {n | (N, E, A) |=V ϕ(n)} for some E-total formula ϕ. It is known for the Strong
Kleene and Cantini scheme that the sets strongly definable in the least Kripke fixed
point are exactly the hyperarithmetical sets. (See Cantini [5, 6].) The proposition
below extends this result to all valuation schemes that are nice.

A set P is hyperarithmetical iff both P and its complement are Π1
1 (i.e. if P is

Δ1
1). It is well-known that a set P is hyperarithmetical iff P = Ji for some H-index

i, where Ji and H are inductively defined as follows (see e.g. Shoenfield [32, chapter
7.9]). Let We denote the domain of the e-th partial recursive function under some
enumeration W .

– For each e, (0, e) is an H-index.
– If e is an H-index, then (1, e) is an H-index.
– If every number in We is an H-index, then (2, e) is an H-index.
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For each H-index i we define a set Ji as follows.

– If i = (0, e), then Ji = We.
– If i = (1, e) and e ∈ H , then Ji = (ω \ Je).
– If i = (2, e) and We ⊆ H , then Ji = ⋃

k∈We
Jk .

Thus, the hyperarithmetical sets are obtained by starting with the recursively enu-
merable sets and closing them under complements and certain countable unions. Let
HYP denote the collection of hyperarithmetical sets.

Proposition 10 If V is nice and E∞ is Π1
1 , then

HYP = Mtot
E∞ := {(E∞)ϕ | ϕ is E∞-total}

Proof “⊆”: With every set Ji we will associate an E∞-total LT-formula ϕi such
that Ji = (E∞)ϕi

. Notice first that for every We there is an LPA-formula ψe(x) that
elementary defines We in N. Now, if i = (0, e) let ϕi = ψe(x). If i = (1, e) then let
ϕi = ¬ϕe(x). If i = (2, e) then let ϕi = ∀y(¬ψe(y)∨T s. (y, x)). Using the Translation
Lemma and the properties of a nice valuation scheme, one proves by induction on
the H -indices that every ϕi is E∞-total and (E∞)ϕi

= Ji . If i = (0, e) this follows
from (V1). If i = (1, e) this follows from the I.H. and the definition of E∞-totality.
If i = (2, e) this follows from the I.H. and (N1) and (V4).

“⊇”: Assume that ϕ is E∞-total. We have to show that (E∞)ϕ is Δ1
1. Under the

assumptions, Proposition 9 implies that both (E∞)ϕ and (E∞)¬ϕ are Π1
1 . Now by

(V5), ¬ϕ is E∞-total too, and (E∞)¬ϕ is the complement of (E∞)ϕ . This means
that (E∞)ϕ must be Σ1

1 . Thus (E∞)ϕ is both Σ1
1 and Π1

1 , hence it is Δ1
1.

Notice that the only use of (V5) that we made in this paper is in the ⊇-direction of
the proof of Proposition 10. All previous results (and most results in the next section)
can be proved without assuming (V5).

At the beginning of this Section 1 briefly mentioned that it is also possible to show
that every Π1

1 -set is weakly definable in the revision theory of truth. (Of course, it
is well-known that the revision theory defines much more sets than that. See Welch
[39].) In fact, the proof is even simpler than for Kripke’s theory. Let us briefly
consider the case of Herzberger’s theory in [16].

Let R0 = ∅, let Rα+1 = {#ϕ | (N, Rα) |= ϕ} and let

Rγ = {#ϕ | ∃β < γ∀α(β ≤ α < γ ⇒ #ϕ ∈ Rα}
when γ is a limit ordinal.

Proposition 11 Let Γϕ be an elementary positive operator given by the formula
ϕ(x1, . . . , xn, X

n). Let I ∗
ϕ = �ϕ∗(x, I ∗

ϕ )�. Then (Rα)I∗
ϕ

= Iα
ϕ for every α ≤ κ (where

κ is the closure ordinal of the operator Γϕ).

Notice that Proposition 11 is more general than Proposition 7: here, ϕ can be any
elementary Xn-positive formula, in contrast to Proposition 7 which only applies to
formulae of the form Eq. 7. In the next section, we will see that this strengthening also
holds for Kripke-style theories that satisfy stronger requirements than (N1)-(N3).
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Proof By transfinite induction on α. Trivial for α = 0. Let α = β + 1. Then

(Rβ+1)I∗
ϕ

= {m | #ϕ∗(m, I ∗
ϕ ) ∈ Rβ+1}, by definition

= {m | (N, Rβ) |= ϕ∗(m, I ∗
ϕ )}, by definition

= {m | N |= ϕ(m, (Rβ)I∗
ϕ
)}, by prop. 4

=
{
m | N |= ϕ(m, I

β
ϕ )

}
, by I.H.

= I
β+1
ϕ , by definition

Finally, for limits γ , if m ∈ (Rγ )I∗
ϕ

then by definition there must be a β such
that ϕ∗(m, I ∗

ϕ ) is true in all models (N, Rα) where β ≤ α < γ . Thus, by I.H. and
Proposition 4, N |= ϕ(m, Iα

ϕ ) for β ≤ α < γ , which implies m ∈ I
γ
ϕ .

Conversely, if m ∈ I
γ
ϕ then there is some β such that for all α with β ≤ α < γ ,

m ∈ Iα
ϕ . By I.H. and Proposition 4 we get m ∈ (Rα)I∗

ϕ
for all α with β ≤ α < γ and

thus m ∈ (Rγ )I∗
ϕ

. Therefore (Rγ )I∗
ϕ

= I
γ
ϕ .

4 Axioms

The correspondence between truth-sets and second-order models that we introduced
in Section 2 seems to be a good way to measure the amount of second-order quantifi-
cation that a semantic theory of truth is able to mimick. The theorems of the previous
section indicate, I believe, a certain lower bound on the proof-theoretic strength that
we should expect from a good axiomatization of the minimal Kripke fixed points.
For example, a semantic theory that encodes all inductive sets should be axiomatized
by a theory that formalizes or interprets the theory of inductive definitions, ID1. A
similar idea is suggested in Fischer et al. [8, section 3.2].

The language LID1 extends the language LPA by a predicate constant Iϕ for
every arithmetical L2-formula ϕ(x, X) (with all free variables displayed) in which X

occurs only positively. On the intended interpretation, the constant Iϕ is interpreted
by the least fixed point Iϕ of the operator Γϕ .

ID1 is the theory in LID1 that contains in addition to the axioms of PA and full
induction in LID1 all sentences of the form

∀x(ϕ(x, Iϕ) → Iϕ(x))

and
∀x(ϕ(x, ψ) → ψ(x)) → ∀x(Iϕ(x) → ψ(x))

where ψ(x) is an arbitrary formula of LID1 containing exactly x free, and ϕ(x, ψ)

is obtained from ϕ(x, X) by replacing every occurrence of t ∈ X by ψ(t). In order
to avoid variable clashes, we assume that variables in ψ are renamed if necessary.
The first axiom expresses that Iϕ is closed under the operator defined by the formula
ϕ(x, X) while the second expresses that Iϕ is the least such set. For more on ID1, see
Pohlers [27].

The system ÎD1 is the subtheory of ID1 that contains besides the axioms of PA and
full induction in LID1 all sentences of the form

∀x(Iϕ(x) ↔ ϕ(x, Iϕ))
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where ϕ(x, X) and Iϕ are as above. This axiom expresses that Iϕ is a fixed point of
the operator Γϕ (but not necessarily the least one).

Since every fixed point Iϕ of an elementary positive operator Γϕ is Π1
1 , we can

find (via Proposition 8) a formula ϕ′ ∈ LT such that Iϕ = (E∞)ϕ′ for every nice
valuation V . (Note, however, that while ϕ is an arbitrary X-positive formula, ϕ′ will
be of the form Eq. 7.) In order to translate ID1 into LT, we may stipulate that Iϕ is
translated as �ϕ′� and Iϕ(x) as T s.(�ϕ′�, x). Call the resulting translation #. (On the
arithmetical vocabulary, # is just the identity function.) As I will point out below,
the translation # has a certain disadvantage, but it is enough for the following result,
which is a corollary of Proposition 8:

Proposition 12 If V is nice then (N, E∞) |= (ID1)
#

For example, if V is the Strong Kleene scheme, then V satisfies the antecedent
of the above proposition. The Kripke-Feferman theory KF (see Feferman [7]) can be
seen as an axiomatization of the Strong Kleene fixed points, but it doesn’t count as
a satisfactory axiomatization of the minimal fixed point if one adheres to the proof-
theoretic criterion suggested at the beginning of this section. Burgess has given a
variant of KF, called KFB (the acronym stands for ‘Kripke-Feferman-Burgess’) that
does have the same strength as ID1. The additional strength over KF is obtained by
adding a minimality axiom scheme which basically says that if ϕ(x) satisfies the KF
axioms, then all true sentences fall under the extension of ϕ(x) (cf. Halbach [15, chap.
17] for details). Another way to strengthen KF, which has already been pointed out
by Cantini [5, p. 105], is to add the (translation of the) second axiom scheme of ID1 to
KF. Proposition 12 above shows that the resulting system is still sound with respect
to the minimal Strong Kleene fixed point.

The theory PUTB (the acronym stands for positive uniform T-biconditionals) is a
subtheory of KF and has been investigated by Cantini [5] and Halbach [14]. In the fol-
lowing paragraphs, we prove some simple facts about models of PUTB. In Section 6
we return to this theory, where we will investigate the proof-theoretic strength of
positive disquotation without the arithmetic base theory.

Definition 4 PUTB is the theory in LT that extends PAT by all sentences of the form

∀x1 . . .∀xn(T �ϕ(ẋ1, . . . , ẋn)� ↔ ϕ(x1, . . . , xn))

where ϕ is T -positive (i.e. every occurrence of T is in the scope of an even number
of negation signs).

The theory PUTB interprets the theory ÎD1, but the translation # introduced above
won’t do. Under the translation #, a fixed point Iϕ gets mapped to a formula ϕ′
with the appropriate extension, but the formula ϕ′ does not ‘preserve’ the syntac-
tic shape of the formula ϕ. (To repeat, the formula ϕ′ is an instance of Eq. 7,
while ϕ can be an arbitrary X-positive formula.) In order to get a formula with the
right syntactic properties, we apply Cantini’s trick again. Thus, where ϕ(x, X) is a
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X-positive formula, let I ∗
ϕ be a closed term of LT such that I ∗

ϕ = �ϕ∗(x, I ∗
ϕ )�. Now

expand the translation ∗ (of Section 2) by translating Iϕ as I ∗
ϕ .

Proposition 13 (Cantini [5]) PUTB � (ÎD1)
∗

Proof Since ϕ(x, X) is X-positive, ϕ∗(x, I ∗
ϕ ) is T -positive, hence the following is an

axiom of PUTB:

∀x(T �ϕ∗(ẋ, I ∗
ϕ )� ↔ ϕ∗(x, I ∗

ϕ ))

Since I ∗
ϕ = �ϕ∗(x, I ∗

ϕ )�, this is equivalent to

The preceding formula is the translation of

∀x(Iϕ(x) ↔ ϕ(x, Iϕ))

(Re-naming variables where appropriate.)

Notice that the proof doesn’t work if we use the translation # instead of ∗, because
�ϕ′� �= �ϕ∗(x, �ϕ′�)�.

We have already seen that the close-offs of minimal fixed points of nice valuation
schemes satisfy (ID1)

# and therefore (ÎD1)
#. But do all of them also satisfy PUTB and

therefore (ÎD1)
∗? If V is strong in the sense of the definition given below, the answer

is ‘yes’. In that case, the answer applies not only to the minimal fixed points but to
arbitrary fixed points as well. Moreover, if V is strong in the sense of the following
definition then the minimal fixed point also satisfies (ID1)

∗.
In order to state the definition, we need to fix some terminology. A formula of LT

is in negation normal form if it is build up from atomic and negated atomic formulas
using ∧, ∨, ∀ and ∃ only, without further use of ¬. For every formula ϕ ∈ LT , let ϕnf

be a unique formula in negation normal form that is logically equivalent (in classical
logic) to ϕ. To fix things, we let ϕnf be the unique formula that is obtained from ϕ by
applying the transformation rules in [2, chap. 19].

Definition 5 A valuation scheme V is strong iff the following conditions hold for all
partial models (N, E, A) and sentences ϕ, ψ ∈ LT :

(S1) if ϕ is true under V , then ϕ ∨ ψ and ψ ∨ ϕ are true under V

(S2) if for some t , ϕ(t) is true under V , then ∃xϕ is true under V

(S3) if (N, E, A) |=V ϕ then (N, E) |= ϕ

(S4) (N, E, A) |=V ϕ iff (N, E, A) |=V ϕnf

Note that (S1) implies (N1) and (N2). Condition (S3) expresses that V is clas-
sically sound: if a sentence is true in a partial model, then it is true in its classical
close-off. The Strong Kleene, the van Fraassen and the Cantini scheme are strong.
The Weak Kleene and the Leitgeb scheme are not strong, however, because both
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violate condition (S1).6 In Beringer and Schindler [1] it is shown that the Cantini
scheme is the strongest valuation scheme that is classically sound. Thus, no superval-
uational scheme stronger than Cantini’s satisfies condition (S3). Properties (S1)-(S4)
enable us to extend Proposition 6 to every T -positive formula:

Proposition 14 Let (N, E, A) be a partial model and let ϕ be a T -positive formula.
If V is strong then

(N, E, A) |=V ϕ ⇔ (N, E) |= ϕ

Proof The left-to-right direction follows from the classical soundness of V , (S3).
The right-to-left direction is proved by induction on the build-up of the T -positive
formula ϕ. We assume that ϕ is in negation normal form. This is justified by (S4). If
ϕ is of the form s = t , s �= t , or T t , this is trivial. Since ¬T t is not T -positive, we
can ignore it. If ϕ is a disjunction, the claim follows from the induction hypothesis
and property (S1) of a strong valuation. Similarly, if ϕ is a conjunction, a universal or
existential statement, the claim follows from the induction hypotheses and properties
(V3), (V4) and (S2), respectively.

Proposition 15 If V is strong and (N, E, A) is any fixed point of JV then (N, E) |=
PUTB.

Proof Let ϕ be a T-positive sentence and assume that (N, E) |= ϕ. Then Proposi-
tion 14 shows that (N, E, A) |=V ϕ, which implies by the fixed point property that
(N, E, A) |=V T �ϕ�. This means #ϕ ∈ E, so also (N, E) |= T �ϕ�. Now assume
that (N, E) |= ¬ϕ. Since V is classically sound (S4), ϕ has value 0 or u in the par-
tial model (N, E, A) and consequently, #ϕ /∈ E. So (N, E) |= ¬T �ϕ�. So (N, E) |=
ϕ ↔ T �ϕ� for all T-positive ϕ, whence by standardness (N, E) |= PUTB.

I do not know the answer to the following:

Question 1 If (N, E, A) is the minimal (any) fixed point of the Leitgeb valuation
scheme, do we have (N, E) |= PUTB?

A further consequence of Proposition 14 is the following:

Proposition 16 Suppose that V is strong. Let ϕ(x1, . . . , xn, X
n) be an arithmetical

L2-formula (with all free variables displayed) in which Xn occurs only positively,
and I ∗ϕ = �ϕ∗(x, I ∗

ϕ )�. Then (Eα)I∗
ϕ

= Iα
ϕ for all α ∈ ON .

The difference to Proposition 7 is that here ϕ can be an arbitrary arithmetical
Xn-positive formula while Proposition 7 only applied to formulae of the form Eq. 7.

6This claim is obvious for the Weak Kleene scheme. For the Leitgeb scheme, a counter-example to (S1)
can be found in Schindler [29].
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Proof By transfinite induction on α. Trivial if α = 0. Let α = β + 1. Then we have:

(Eβ+1)I∗
ϕ

= {m | #ϕ∗(m, I ∗
ϕ ) ∈ Eβ+1}, by definition

= {m | (N, Eβ, Aβ) |=V ϕ∗(m, I ∗
ϕ )}, by Kripke jump

= {m | (N, Eβ) |= ϕ∗(m, I ∗
ϕ )}, by Proposition 14

= {m | N |= ϕ(m, (Eβ)I∗
ϕ
)}, by Proposition 4

=
{
m | N |= ϕ(m, I

β
ϕ )

}
, by I.H.

= I
β+1
ϕ , by definition

In the third line, Proposition 14 applies because the translation of a positive L2-
formula is T -positive.

If α is a limit ordinal, the claim follows easily from the I.H.

As a corollary to Proposition 16, we get:

Proposition 17 If V is strong then (N, E∞) |= (ID1)
∗

In the previous section, we have seen that the sets that are strongly definable in the
least fixed points of nice valuation schemes are exactly the hyperarithmetical sets. A
little modification of the Translation Lemma shows that the system Δ1

1 −CA0 is true
in the classical close-offs of those fixed points.

Δ1
1-CA0 is the theory in L2 that contains in addition to the axioms of Q and axioms

of arithmetical comprehension all sentences of the form

∀Y∀y(∀x(ϕ(x, y,Y) ↔ ψ(x, y,Y)) → ∃X∀x(x ∈ X ↔ ϕ(x, y,Y))),

where ϕ(x, y,Y) ∈ L2 is a Π1
1 -formula and ψ(x, y,Y) ∈ L2 is a Σ1

1 -formula, and
the induction axiom

∀X(0 ∈ X ∧ ∀x(x ∈ X → x + 1 ∈ X) → ∀x(x ∈ X)).

The minimal ω-model of the system Δ1
1-CA0 is the structure (N,HYP). (For

details, I refer the reader to Simpson [33].)
Let tot (x) abbreviate the formula

Here, ¬. represents the function that sends the code of a formula to the code of its
negation. The function ∗∗ : L2 → LT is defined as the function ∗ except for the
following clause:

(∀Xiϕ)∗∗ = ∀v2i+1(tot (v2i+1) → ϕ∗∗)
Let Mtot

S = {Sϕ | ϕ ∈ LT , ϕ is S − total}. The following proposition states that
whenever ϕ is a second-order formula, then its translation under ∗∗ is true in S iff
the original sentence is true in Mtot

S .

Proposition 18 Let S ⊆ ω and ϕ(y,X,Sγ ) ∈ L2. Then:
(
N,Mtot

S

) |= ϕ ⇔ (N, S) |= ϕ∗∗
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Proof Similar to the proof of Proposition 2.

Proposition 19 If V is nice and E∞ is Π1
1 then

(N, E∞) |=
(
Δ1

1-CA0

)∗∗

Proof Since Mtot
E∞ = HYP by Proposition 10 and (N,HYP) |= Δ1

1 −CA0, the claim
follows from Proposition 18.

5 Reducing Comprehension to Disquotation

The results in the last section suggest that we can obtain proof-theoretically strong
disquotational theories of truth by adopting as axioms translations of compre-
hension axioms. More precisely, the idea is that we take the following uniform
T-biconditionals as axioms:

∀z∀y
(
Fm1

T (y) → ∀x(T �ϕ∗(ẋ, ż, ẏ)� ↔ ϕ∗(x, z, y))
)

(8)

where ϕ(x, z,Y) is an arbitrary formula of L2, and Fm1
T (y) is shorthand for

Fm1
T (y1) ∧ . . . ∧ Fm1

T (yn).
Unfortunately, this will lead to inconsistency. The reason is that we can instantiate

the quantifier on ∀y to any LT-formula, in particular to formulae that are not in the
range of the translation function ∗, such as the liar sentence.

Proposition 20 The schema (8) is inconsistent with PA.

Proof Consider the L2-formula ¬(x ∈ Y ). This is arithmetical, and its translation
is ¬Ts. (y, x). (Let’s assume that the index of the variable y is higher than that of x.)
Applying (8) to ¬Ts. (y, x) and unpacking notation we get

Let n be �¬T s. (z, z)�. Since PA proves Fm1
T (n), we get:

The last biconditional follows from the previous one because s. (n, n) = �¬T s. (n, n)�.

There are at least two ways out of the problem. First, one could restrict the per-
missible instances of Eq. 8 to formulae that do not contain free set variables. The
resulting system is ω-consistent and interprets Z−

2 , that is second-order arithmetic
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with comprehension for all L2-formulae that do not contain free set variables. This
was shown in Schindler [30]. The second option is to keep the parameters but restrict
the quantifers in Eq. 8 to a suitable class of formulae. The obvious choice is to restrict
the quantifiers to formulae that lie in the range of the translation function; thus, we
may instantiate the quantifier on y above to the term �¬T s. (y, x)�, for example, but
not to �¬T s. (z, z)�.

We will first show how this works for the case of arithmetical L2-formulae because
the general case involves some subtleties that obscure the main idea for the consis-
tency proof. At the end of this section, we will sketch how to extend the method
to formulae of arbitrary complexity. It should be possible to extend it to third- and
higher-order systems as well. Since we will only deal with classical theories in what
follows, we assume for simplicity that the symbols ∨, ∃ are no longer among the
primitive vocabulary but defined.

We first expand the language of L2 by adding abstraction terms. This is neces-
sary to close the range of the translation function under instantiations of quantified
formulae (see below). Let L0

2 be the result of adding to L2 a term {x | ϕ} for every
LPA-formula ϕ containing only the number variable x free. Let Ln+1

2 be the result
of adding to Ln

2 a term {x | ϕ} for every arithmetical L2-formula ϕ containing only
the number variable x free. Thus, while ϕ must not contain any set variables at all,
it may contain expressions of the form t ∈ {x | ψ} as subformulae (where ψ is an
arithmetical formula of Ln

2). Finally, let L+
2 be the union of these languages.

Proposition 21 The recursion theorem for primitive recursive functions yields the
existence of a primitive recursive translation function τ : L+

2 → LT such that:

where is a function symbol for τ in LT.

We abbreviate the formula —which expresses that x is
in the range of the translation function τ—by Trsl(x).

The reason for adding the abstraction terms to the language L2 is to ensure that the
predicate Trsl(x) is closed under “instantiation” in the following sense: if ϕ(x2i+1) is
in the range of τ and t = �τ(ψ)� for some ψ in the domain of τ , then ϕ(t/x2i+1) is
also in the range of τ . Note that this is provable in PA (by “internal” induction on the
complexity of ϕ). This is crucial for the proof of Proposition 22 below.
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Definition 6 The theory UTB(ACA) is given by the axioms of PAT plus all instances
of the following scheme:

∀z∀y(Trsl(y) → ∀x(T �τ(ϕ)(ẋ, ż, ẏ)� ↔ τ(ϕ)(x, z, y))) (9)

where ϕ(x, z,Y) ∈ L2 is arithmetical, and Trsl(y) is shorthand for Trsl(y1) ∧ . . . ∧
Trsl(yn).

It is well known that ACA, which is non-conservative over PA, is interpretable in
the compositional theory CT but not in the disquotational theory TB, which is a con-
servative extension of PA (for a proof, see Halbach [15]). The following proposition
shows that ACA is interpretable in the disquotational theory UTB(ACA). While the
latter (presumably) does not prove any (non-trivial) truth-theoretic generalizations
for its own truth predicate, it is able (via the interpretability result) to define a truth
predicate for PA for which the compositional clauses are derivable.

Proposition 22 ACA is relatively interpretable in UTB(ACA).

Proof It is easy to see that the translations of all arithmetical and induction axioms
of ACA are derivable in PAT. Let ϕ ∈ L2. We have to show that the translation of the
comprehension axiom for ϕ is a theorem of UTB(ACA). We instantiate the quantifiers
in Eq. 9 and unpack notation to get:

Since PA proves that �τ(ϕ)(x, ż, ẏ)� is the code of a formula of LT that has exactly
x free, and τ is “closed under instantiations” (provably in PA), we have

Trsl(y) → Trsl(�τ(ϕ)(x, ż, ẏ)�)
This implies:

and, by logic:

Now we re-introduce universal quantifiers:

This is the translation of the comprehension axiom for ϕ.

In order to show the consistency of UTB(ACA), we will define a set S ⊆ ω such
that MS is the collection ARITH of arithmetically definable sets. Since (N,ARITH)

is a model of ACA, a variant of the Translation Lemma will then show that (N, S) is
a model of UTB(ACA).

Let the term {x | ϕ} denote the set {n | (N,ARITH) |= ϕ(n)} ∈ ARITH. This is
well-defined, since ARITH is closed under arithmetical definability.

Now we let

1. S = {#τ(ϕ) | ϕ ∈ L+
2 , (N,ARITH) |= ϕ}
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2. Sτ(ϕ) = {n | #τ(ϕ(n)) ∈ S}
3. MS = {

Sτ(ϕ) | ϕ ∈ L+
2

}

It is not very hard to see that MS = ARITH. By induction on the build-up of ϕ we
prove:

Proposition 23 For every ϕ ∈ L+
2 : (N,ARITH) |= ϕ ⇔ (N, S) |= τ(ϕ)

This is proved in a similar way as Proposition 2. The only new case is t ∈ {x | ϕ}.
Recall that {x | ϕ} denotes the set of n such that (N,ARITH) |= ϕ(n). Let tN = m.
Then

Proposition 24 The theory UTB(ACA) has an ω-model.

Proof Let ϕ(x, z, Y1, . . . , Yk) be an arithmetical L2-formula with exactly the dis-
played variables free. Let n,m ∈ ω be arbitrary and r1, . . . , rk ∈ ω be such that
N |= Trsl(ri) for i ≤ k. Then ri = #τ(ψi) for some ψi . Thus

(N, S) |= τ(ϕ)(n,m, �τ(ψ1)�, . . . , �τ(ψk)�)

⇔ (N,ARITH) |= ϕ(n,m, {x | ψ1}, . . . , {x | ψk}) by Prop. 23

⇔ #τ(ϕ)(n,m, �τ(ψ1)�, . . . , �τ(ψk)�) ∈ S by defn of S

⇔ (N, S) |= T �τ(ϕ)(n,m, �τ(ψ1)�, . . . , �τ(ψk)�)�
Since (N, S) is a standard model, we have

Thus, (N, S) |= UTB(ACA).

Now let us see how this method can be extended to L2-formulae of arbitrary com-
plexity. In order to prove the consistency of the resulting system, we will have to
define a set S ⊆ ω such (N,MS) is a model of second-order arithmetic. Pick a count-
able set A ⊆ ℘(ω) such that (N,A) is a model of Z2. Such models exist; we refer
the interested reader to Putnam et al. [28]. That (N,A) is a model of Z2 implies that
A is closed under second-order definabilty with parameters from A.

Since our goal is to construct S such that MS = A, every set in A must be coded
by a formula (with one free variable) of LT. In contrast to the arithmetical case, it is
not clear that every member of A can be defined by a formula of L2. Thus we need
to expand L2 by countably many set constants P1, P2, . . .; then we inductively add
an abstraction term {x | ϕ} for every formula of the expanded language that contains
exactly one free number variable. Call the resulting language L†

2.

Now we define a translation τ ′ from L†
2 to LT as in Proposition 21. In order to

translate the set constants, we pick for every i a term P ∗
i with P ∗

i = �T s. (P
∗
i , v2i)�
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(via diagonalization). The translation function τ ′ is defined exactly like τ with the
proviso that τ ′(Pi) = P ∗

i and τ ′(t ∈ Pi) = T s. (P
∗
i , τ ′(t)).

Definition 7 The theory UTB(Z2) is given by the axioms of PAT plus all instances of
the following scheme:

(10)

where ϕ(x, z,Y) ∈ L2.

Similarly to Proposition 22, we can prove:

Proposition 25 Z2 is relatively interpretable in UTB(Z2).

The inclusion of the terms P ∗
i into the range of the translation function is

entirely dispensable for the interpretability result, but they play a crucial role in the
consistency proof.

Let us now indicate how to modify the proof of Proposition 24 to obtain a con-
sistency proof for UTB(Z2). Let e be a bijection between {P1, P2, . . .} and A. Such
a function exists since A is countable. We let the constant Pi denote the set e(Pi).
Moreover, we let the term {x | ϕ} denote the set {n | (N,A) |= ϕ(n)}. This is
well-defined, since A is closed under definability.

As above, we let S consist of the set of sentences that are translations of L†
2-

sentences that hold in (N,A).
Obviously, MS ⊆ A. Moreover, since every set in A is definable by a formula

of the form x ∈ Pi , we can find an LT-formula ϕ (namely, the translation of x ∈ Pi

under τ ′) such that Sϕ = e(Pi). This implies A ⊆ MS , and therefore A = MS . A
variant of the Translation Lemma yields the desired consistency proof.

Proposition 26 The theory UTB(Z2) has an ω-model.

While UTB(Z2) is by no means a very elegant theory, it shows that principles of
truth need not be any weaker than our strongest arithmetical theories. The expres-
sive power gained by second-order quantification can be recovered in theories of
truth. There is, however, a certain mismatch. While second-order languages allows
us to generalize over any predicate of the second-order language, the truth predicate
of UTB(Z2) does not allow us to generalize over all predicates of the language of
truth, but only over those predicates that can be translated back into the second-order
formalism.

6 Truth Without a Base Theory

In the last section, we saw how to derive comprehension axioms from uniform T-
biconditionals. The derivation made use of some of the axioms of Peano arithmetic.
The use of those arithmetical axioms was essential, because we needed to show that
the formula in question is in the range of the translation function. This, in turn, is
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crucial because, under our translation, we relativized the set quantifiers to formulae
of a particular shape. If, on the other hand, we do not relativize the set quantifiers
to a predicate when setting up the translation, no arithmetical axioms are needed for
deriving comprehension axioms from uniform T-biconditionals.

In order to see this more clearly, let L∈ be the first-order language with identity
whose sole non-logical constant is the binary relation symbol ‘∈’. The language L∈
may be regarded as a sublanguage of LT by stipulating that x ∈ y is defined as,
or is shorthand for Ts.

1
1(y, x). Now, it is easy to see that any given instance of the

comprehension axiom scheme,

∀x1 . . . ∀xn ∃y ∀x0 (x0 ∈ y ↔ ϕ(x0, x1, . . . , xn)),

where y is not free in ϕ, is derivable in pure first-order logic from the corresponding
instance of the uniform T-schema,

∀x1 . . .∀xn∀x0 (T �ϕ(ẋ0, ẋ1, . . . , ẋn)� ↔ ϕ(x0, x1, . . . , xn))

While the uniform T-schema is still formulated in the language of LT (its formulation
involves the substitution function symbols and the Gödel numerals), the proof can be
carried out in pure first-order logic in the sense that no (non-logical) axioms of PA
are used in the derivation. For, by convention, T �ϕ(ẋ0, ẋ1, . . . , ẋn)� is shorthand for

Thus, instantiating the quantifiers ∀x1 . . .∀xn we get

whence by existential weakening,

Now we can re-introduce the universal quantifers and get

that is, by convention,

∀x1 . . .∀xn ∃y ∀x0 (x0 ∈ y ↔ ϕ(x0, x1, . . . , xn)).

Again, notice that only logical axioms have been used in this derivation. While the
formulation of the T-biconditional involves closed terms like �ϕ� (which is composed
of the successor function symbol S and individual constant 0)7 and function symbols
like s.

1
1, no non-logical axioms governing the behaviour of these symbols are assumed

anywhere in the derivation. For example, it is nowhere assumed that s.
1
1(�ϕ�, t) =

7Notice that in formulating the T-biconditionals, we have also assumed a Gödelcoding in the metalanguage
in order to pick a name for each formula. However, for the derivation (and the results below) it is entirely
irrelevant which name is actually chosen, and we could simply pick names at random, with the proviso
that no two formulae get the same name assigned.
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�ϕ(t)� or that 0 �= S(0). However, what is important is that the function symbols s.
n
n

are primitive. If they were eliminated using defining arithmetical formulas, one could
not ensure totality and functionality, and the derivation would fail.

The fact that uniform disquotation sentences behave like instances of naı̈ve com-
prehension has some interesting consequences, as we will show next. First, unlike the
ordinary (i.e., non-uniform) T-schema, the uniform T-schema leads to inconsistency
over logic alone. As Gupta [9] has shown, a theory can be classical, contain names for
its own expressions, obey the ordinary T-schema, and be consistent at the same time.
Only when in addition self-referential liar-like statements can be formulated do we
get inconsistency. In stark contrast, the uniform T-schema can lead to inconsistency
even in the absence of self-reference. Second, restricted (and consistent) instances of
the uniform T-schema, taken over logic alone, commit us to the existence of infinitely
many objects and suffice to interpret certain amounts of arithmetic, so that the set
of their consequences is essentially undecidable. In particular, typed uniform disquo-
tation interprets R while uniform positive disquotation interprets Q. It goes without
saying that the existence of infinitely many objects does not follow from the mere
presence of infinitely many names in the language.

The usual way of formalizing the liar paradox in arithmetic is as follows. We want
to obtain a fixed point of the predicate ¬T x, that is, a term l such that PA � l =
�¬T l�. For, given such a term l, the T-schema yields

T �¬T l� ↔ ¬T l,

whence by substitutivity of identicals we obtain the contradiction

T l ↔ ¬T l

In order to produce such a liar sentence, we appeal to the diagonal lemma. Let n :=
#¬Ts. (x, x). Now observe that s(n, n) = #¬Ts. (n, n), so PA proves s. (n, n) = �¬T s. (n,
n)�. So s. (n, n) is our desired term l. Notice that no contradiction follows from the
(non-uniform) T-schema if we don’t have the identity statement s. (n, n) = �¬T s. (n,
n)� as a further premise. By contrast, the identity is not required in order to derive a
contradiction from the uniform T-schema.

Proposition 27 The scheme ∀x(T �ϕ(ẋ)� ↔ ϕ(x)) is inconsistent over classical first-
order logic.

Proof By a simple application of Russell’s paradox. The uniform T-biconditional for
the formula ¬T s. (x, x) delivers, via the ‘translation’ provided at the beginning of this
section, that ∃y∀x(x ∈ y ↔ x /∈ x), which is logically inconsistent.

Next, we show that the typed theory of uniform disquotation, taken over logic
alone, interprets the arithmetical theory R introduced in Tarski et al. [35], which is
essentially undecidable and has only infinite models. (Roughly, R is Q formulated
with numerals. See also Monk [22, chap. 14].)

UTB is the theory, formulated in the language LT, whose axioms comprise those
of PAT and all sentences of the form:

∀x1 . . .∀xn(T �ϕ(ẋ1, . . . , ẋn)� ↔ ϕ(x1, . . . , xn)),
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where ϕ is a T -free formula (i.e. a formula of LPA). This theory is a conserva-
tive extension of PA. Let us denote by UTB− the theory that results from UTB by
dropping all non-logical axioms of PAT. Thus, this theory contains only the uniform
T-biconditionals for the T -free formulae, plus first-order logic with identity. To be
sure, while that theory is still formulated in the language LT, none of the Peano
axioms are assumed; e.g. we do not assume that 0 �= S(0).

Proposition 28 UTB− relatively interprets R.

Proof By a result of Visser [37], it is sufficient to show that UTB− interprets Vaught’s
set theory VS. The theory VS is formulated in the language L∈ and contains the
following axioms:

∃y ∀x ¬ x ∈ y

and
∀y1 . . . ∀yn ∃y ∀x (x ∈ y ↔ x = y1 ∨ . . . ∨ x = yn)

for every n ≥ 1. The first axiom gives us the empty set, while the second axiom
gives us singletons, (unordered) pairs, triples, etc. It is shown in Visser [37] that VS
interprets the theory R.

The formulae x �= x and ϕn(x) := (x = y1 ∨ . . . ∨ x = yn) (for every n ≥ 1) are
T -free. Thus UTB− has as axioms

∀x(T �ẋ �= ẋ� ↔ x �= x)

and
∀y1 . . .∀yn∀x (T �ϕn(ẋ, ẏ1, . . . , ẏn)� ↔ x = y1 ∨ . . . ∨ x = yn)

for every n ≥ 1. Using the ‘translation’ provided at the beginning of this section, it
is easily seen that the axioms of VS are interpretable in UTB−.

Notice that the above result does not imply that UTB− can prove that 0 �= S(0).
Rather, UTB− proves an interpretation of that claim, namely that

�x �= x� �= �x = �x �= x��
This is because VS interprets 0 as the empty set, that is the extension of the predicate
x �= x, and interprets 1 as the singleton of the empty set, that is the extension of the
predicate x = �x �= x�.

UTB− does not interpret Robinson arithmetic, Q, as an anonymous referee has
demonstrated to me. On the other hand, we can show that the theory of positive
uniform disquotation, over logic alone, does interpret Robinson arithmetic. Recall
from Section 4 that PUTB is the theory, formulated in the language LT, whose axioms
comprise those of PAT and all sentences of the form:

∀x1 . . .∀xn(T �ϕ(ẋ1, . . . , ẋn)� ↔ ϕ(x1, . . . , xn)),

where ϕ is a T -positive LT-formula. Here, a formula is called T -positive if no occur-
rence of the truth predicate is in the scope of an odd number of negation signs. Let
us denote by PUTB− the theory that results from PUTB by dropping all non-logical
axioms of PAT.
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Proposition 29 PUTB− relatively interprets Q.

Proof By a well known result, it suffices to show that PUTB− interprets adjunctive
set theory, AS. (A proof of this result can be found in Visser [38], who also gives a
short history of this result.) AS is the theory in L∈ and contains the following two
axioms:

∃y ∀x ¬ x ∈ y

and
∀z∀w ∃y ∀x (x ∈ y ↔ x ∈ w ∨ x = z)

The formulae x �= x and (Ts. (w, x)∨x = z) are T-positive. Therefore, PUTB−
contains the following two axioms:

∀x(T �ẋ �= ẋ� ↔ x �= x) (11)

and

(12)

Using the translation provided at the beginning of this section, it is seen that the
axioms of AS follow from PUTB−.

More precisely, Eq. 11 is shorthand for

from which we deduce in pure logic

Let ϕ := T s. (w, x)∨x = z. What Eq. 12 really says is:

Instantiating the quantifiers ∀z∀w to z, w, we get:

By existential weakening,

Now we re-introduce the universal quantifers and get

as desired.

The results in this section show that a good amount of arithmetic is already
encoded into the uniform T-biconditionals. As mentioned above, the use of the primi-
tive function symbols s.

n
n (for n ≥ 1) in the formulation of the uniform T-schema plays

an essential role (because we need to ensure totality and functionality), although the
fact that there are infinitely many is of no relevance. Instead of the infinitely many
symbols s.

n
n we could use a single binary function symbol h. in the formulation of the

uniform T-schema. (On the intended interpretation, h. denotes the function h such that
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h(m, n) = #ϕ(n/xj ) if m = #ϕ codes a formula with some free variables and xj is
the variable with the highest index in ϕ, and h(m, n) = 0 otherwise.)

7 Conclusions

In this paper we considered translations that map formulae of the language of second-
order arithmetic to formulae of the language of truth. From a technical point of view,
such translations are useful because they allow us to transform questions about truth
into questions about second-order arithmetic and to exploit the extensive literature
on the latter to answer questions about the former. We have seen several such appli-
cations in this paper. From a philosophical point of view, such translations indicate,
I believe, that there is a close connection between truth and satisfaction on the one
hand and second-order quantification on the other hand. The results in this paper, and
other similar results in the literature, support Parsons’ claim, mentioned in the intro-
duction, that truth and satisfaction are a means to quantify into sentence respectively
predicate position.

There are at least two directions into which the study of translations between
second-order arithmetic and theories of truth ought to be further developed. First,
our attention in this paper was restricted to ω-models and it might be interesting to
generalize some of the results to non-standard models. Second, our attention in this
paper was restricted to translations from second-order arithmetic into the language
of truth. Of course, the reverse is also possible. It is well known that theories of
truth can be interpreted in subsystems of second-order arithmetic too. As an example
(see [11]), one may take the interpretation of typed compositional theories of truth
(e.g. the systems of ramified truth RTα) into systems of predicative comprehension
(e.g. the systems of ramified analysis RAα). This raises the question of the composi-
tion of such interpretations. In [24], Nicolai has shown that the mutual embeddings
between typed truth and predicative comprehension cannot be lifted to stricter notions
of equivalence such as bi-interpretability. For example, he shows that while for each
n ∈ ω, RTn is an e-retract of RAn, the converse does not hold. Further interesting
work awaits us there.

Acknowledgments For their help in preparing this paper, I want to thank Timo Beringer, Catrin
Campbell-Moore, Volker Halbach, Carlo Nicolai, Stanislav Speranski, and two anonymous referees, one
of which spotted a flaw in an old proof of Proposition 14. A special thanks goes to Lavinia Picollo, in
particular for her help with Proposition 21 .

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Beringer, T., & Schindler, T. (2017). A graph-theoretic analysis of the semantic paradoxes. Under
review.

2. Boolos, G., Burgess, J., & Jeffrey, R. (2003). Computability and logic, 4th edn. Cambridge:
Cambridge University Press.

http://creativecommons.org/licenses/by/4.0/


Some Notes on Truths and Comprehension

3. Burgess, J.P. (1986). The truth is never simple. Journal of Symbolic Logic, 51, 663–681.
4. Cain, J., & Damnjanovic, Z. (1991). On the Weak Kleene scheme in Kripke’s theory of truth. Journal

of Symbolic Logic, 56, 1452–1468.
5. Cantini, A. (1989). Notes on formal theories of truth. Zeitschr. f. Math. Logik und Grundlagen d Math,

35, 97–130.
6. Cantini, A. (1990). A theory of formal truth arithmetically equivalent to ID1. Journal of Symbolic

Logic, 55, 244–259.
7. Feferman, S. (1991). Reflecting on incompleteness. Journal of Symbolic Logic, 56, 1–49.
8. Fischer, M., Halbach, V., Kriener, J., & Stern, J. (2015). Axiomatizing semantic theories of truth?

Review of Symbolic Logic, 8, 257–278.
9. Gupta, A. (1982). Truth and paradox. Journal of Philosphical Logic, 11, 1–60.

10. Halbach, V. (1995). Tarski hierarchies. Erkenntnis, 43, 339–367.
11. Halbach, V. (1996). Axiomatische Wahrheitstheorien Logica Nova. Berlin: Akademie Verlag.
12. Halbach, V. (2000). Truth and reduction. Erkenntnis, 53, 97–126.
13. Halbach, V. (2001). How innocent is deflationism? Synthese, 126, 167–194.
14. Halbach, V. (2009). Reducing compositional to disquotational truth. Review of Symbolic Logic, 2,

786–798.
15. Halbach, V. (2011). Axiomatic theories of truth. Cambridge: Cambridge University Press.
16. Herzberger, H. (1982). Notes on naive semantics. Journal of Philosphical Logic, 11, 61–102.
17. Horsten, L. (1995). The semantical paradoxes, the neutrality of truth and the neutrality of the minimal-

ist theory of truth. In P. Cortois (Ed.), The many problems of realism, vol. 3 of Studies in the general
philosophy of science (pp. 173-187). Tilburg University Press.

18. Horwich, P. (1998). Truth, 2nd edn. Oxford: Basil Blackwell.
19. Ketland, J. (1999). Deflationism and Tarski’s paradise. Mind, 108, 69–94.
20. Kripke, S. (1975). Outline of a theory of truth. Journal of Philosophy, 72, 690–716.
21. Leitgeb, H. (2005). What truth depends on. Journal of Philosphical Logic, 34, 155–192.
22. Monk, D.J. (1976). Mathematical logic. New York: Springer.
23. Moschovakis, Y.N. (1974). Elementary induction on abstract structures. Dover Publications.
24. Nicolai, C. (2016). Equivalences for truth predicates. Review of Symbolic Logic. forthcoming.
25. Parsons, C. (1983). Ontology and mathematics. In Mathematics in philosophy, Cornell University

Press, .
26. Parsons, C. (1983). Sets and classes. In Mathematics in philosophy, (pp. 209–220). Cornell University

Press.
27. Pohlers, W. (2009). Proof theory the first step into impredicativity. Berlin Heidelberg: Springer.
28. Putnam, H., Boyd, R., & Hensel, G. (1969). A recursion theoretic characterization of the ramified

analytical hierarchy. Transactions of the American Mathematical Society, 141(/142), 37–62.
29. Schindler, T. (2014). Axioms for grounded truth. Review of Symbolic Logic, 7, 73–83.
30. Schindler, T. (2015). A disquotational theory of truth as strong as Z−

2 . Journal of Philosophical Logic,
44, 395–410.

31. Shapiro, S. (1998). Proof and truth: Through thick and thin. Journal of Philosophy, 95, 493–521.
32. Shoenfield, J.R. (1967). Mathematical logic. Addison-Wesley.
33. Simpson, S.G. (2009). Subsystems of second order arithmetic, 2nd edn. Cambridge: Cambridge

University Press.
34. Speranski, S. Notes on the computational aspects of Kripke’s theory of truth. Studia Logica (2016),

doi:10.1007/s1122501696948.
35. Tarski, A., Mostowski, A., & Robinson, R. (1953). Undecidable theories. North Holland, Amsterdam.
36. Visser, A. (1997). An overview of interpretability logic. In Advances in modal logic, (pp. 307–359).

Stanford: CSLI Publications.
37. Visser, A. (2008). Pairs, sets and sequences in first-order theories. Archive for Mathematical Logic,

47, 299–326.
38. Visser, A. (2009). Cardinal arithmetic in the style of Baron von Münchhausen. Review of Symbolic

Logic, 2, 570–589.
39. Welch, P. (2001). On Gupta-Belnap revision theories of truth, Kripkean fixed points, and the next

stable set. Bulletin of Symbolic Logic, 7, 345–360.
40. Welch, P. (2015). The complexity of the dependence operator. Journal of Philosophical Logic, 44,

337–440.

http://dx.doi.org/10.1007/s11225�016�9694�8

	Some Notes on Truths and Comprehension
	Abstract
	Introduction
	Technical Preliminaries

	Truth-Sets and Second-Order Structures
	Definability in Fixed-Point Theories
	Axioms
	Reducing Comprehension to Disquotation
	Truth Without a Base Theory
	Conclusions
	Acknowledgments
	Open Access
	References


