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For health-economic analyses that use multi-state Markov
models, it is often necessary to convert from transition
rates to transition probabilities, and for probabilistic sen-
sitivity analysis and other purposes it is useful to have
explicit algebraic formulas for these conversions, to avoid
having to resort to numerical methods. However, if there
are four or more states then the formulas can be extremely
complicated. These calculations can be made using
packages such as R, but many analysts and other stake-
holders still prefer to use spreadsheets for these decision
models. We describe a procedure for deriving formulas
that use intermediate variables so that each individual

formula is reasonably simple. Once the formulas have
been derived, the calculations can be performed in Excel
or similar software. The procedure is illustrated by several
examples and we discuss how to use a computer algebra
system to assist with it. The procedure works in a wide
variety of scenarios but cannot be employed when there
are several backward transitions and the characteristic
equation has no algebraic solution, or when the eigenva-
lues of the transition rate matrix are very close to each
other. Key words: Markov model; transition rates; transi-
tion probabilities; spreadsheet. (Med Decis Making
XXXX;XX:xx–xx)

In discrete-time Markov chains, transitions are
described in terms of probabilities, which represent

the expected proportions that make the various transi-
tions in each cycle or time-period. In continuous-time
Markov chains, transitions are described in terms of
rates, which represent the instantaneous incidences of
transitions from one state to another. Medical decision
models are commonly constructed in the form of
multi-state Markov models, and they are usually ana-
lyzed using discrete time-periods because this is more
practical in spreadsheets and similar software. These
models therefore require a set of transition probabil-
ities as input.

From some primary data, it is possible to estimate
transition probabilities directly.1 But it is common
to estimate transition rates instead, mainly because
relative rates from other sources, such as rando-
mized controlled trials, can easily be incorporated
into rate estimates using the assumption of propor-
tional hazards. Methods for estimating transition

rates in multi-state settings with censoring and com-
peting risks have been described elsewhere.2

It is then necessary to convert from transition
rates to transition probabilities. It is common to use
the formula p tð Þ51� e�rt, where r is the rate and t
is the cycle length (in this paper we refer to this as
the ‘‘simple formula’’). But this is incorrect for most
models with two or more transitions, essentially
because a person can experience more than one type
of event in a single cycle. For example, they might go
from healthy to ill and from ill to dead within a sin-
gle cycle, or straight from healthy to dead. The sim-
ple formula is always wrong if there are competing
risks (that is, if from one state there are two or more
other states that a person can move to).

If the cycles are shortened then the simple for-
mula will be more accurate, because a person is less
likely to have two events in a single cycle. But this
has several disadvantages. It increases the number
of rows in the Excel spreadsheet, making the whole
exercise more cumbersome; there is no simple
answer to what lengths of cycles should be used to
achieve an appropriate degree of accuracy; and of
course it is mathematically incorrect, and correct
methods are preferable. A further issue is that
shorter cycles increase the computation time,
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though this would not be a big problem with mod-
ern computers and small models. (The simple for-
mula is discussed again at the end of the paper.)

The paper illustrates the steps required to solve
the Kolmogorov equations using the diagonalization
approach. We show how to derive and apply alge-
braic formulas for the conversions that can be used
for a wide variety of models with four or five states
and some models with six or more states. The for-
mulas use several sets of intermediate variables, so
that the individual formulas are relatively simple
and can be entered into an Excel spreadsheet, with
one formula in each cell and no need for macros or
Visual Basic. The mathematical methods them-
selves are not novel; the use of intermediate equa-
tions is really just a way of keeping the calculations
tidy, and provides clarity for those who may not be
familiar with the underlying mathematics.

Previous publications have given formulas for
converting rates to probabilities for certain two- and
three-state models3-5 and one four-state model.4 For
most models with larger numbers of states, the for-
mulas are extremely complicated and these publica-
tions recommend numerical methods with software
such as R (the msm package) or WinBUGS and
WBDiff. This approach may be practical if one is

willing and able to implement the entire model in R
or WinBUGS—though many analysts are still more
comfortable working with Excel, for example
because they consider it easier or because it facili-
tates presentation of results to other stakeholders.
In principle, WinBUGS can convert the rates to
probabilities and produce samples from a probabil-
istic sensitivity analysis, which can then be saved
and copied into a spreadsheet containing the deci-
sion model. However, this procedure might be
unwieldy as it involves multiple software packages.
Moreover, it is common for transition rates to vary
according to an external measure of time, such as
the age of the patient, which means that if numeri-
cal methods are used then the conversion from rates
to probabilities has to be done for each age-group or
cycle separately.

Our approach is aimed at analysts who develop
decision models in spreadsheets, and should also be
of interest to analysts who want to understand the
mathematical derivation of the formulas used to con-
vert rates to probabilities. The idea is that the analyst
can set up the formulas once, and then copy them so
that they are used for each age-group or cycle.
Univariate sensitivity analysis and probabilistic sen-
sitivity analysis are straightforward, as the direct
connection from the rates and their standard errors
to the transition probabilities is maintained and
there is no need to copy and paste the samples from
elsewhere. Another advantage is that this approach
might be easier to audit and validate than an analysis
where several software packages are used.

First we describe the mathematical background.
Then we describe the usual procedure for deriving
formulas to convert transition rates to probabilities,
for models with forward and backward transitions.
We illustrate this for a three-state model. We then dis-
cuss the situations in which the procedure does not
work (it is easier to explain these after an example).
Next we describe the new procedure with intermedi-
ate variables and illustrate it by examples with four
and five-state models. We also discuss how to derive
the formulas using a computer algebra system instead
of pen and paper. The final section is a discussion.

For all our example models, the formulas are set
out in the accompanying Excel files (see supple-
mentary material). For state-transition models of the
appropriate structures, these files can be used
directly. The analyst can simply copy the formulas
into their own Excel files or copy their own transi-
tion rates into a copy of one of our Excel files. For
models with other structures, the appropriate for-
mulas will have to be derived using our procedure.
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KOLMOGOROV’S EQUATIONS AND THE
MATRIX EXPONENTIAL

Given the transition-rate matrix Q for a continuous-
time Markov chain X with n states, the task is to
calculate the n3n transition-probability matrix
P tð Þ, whose elements are pij tð Þ5P X tð Þ5j j X 0ð Þ5ið Þ.
P tð Þ is the solution to Kolmogorov’s forward and
backward equations, P0 tð Þ5P tð ÞQ and P0 tð Þ5QP tð Þ,
with the initial condition that P 0ð Þ is the identity
matrix I .6,7 Here P0 tð Þ is the matrix whose i,jð Þth
element is p0ij tð Þ5 d

dt pij tð Þ, so either of these matrix
equations could alternatively be written as a set of
n2 scalar equations, one for each p0ij tð Þ.

In this paper we assume that n is finite, Q is con-
stant, and in P tð Þ the row-sums are all 1 and in Q

they are all 0 (that is,
Pn
j51

pij tð Þ51 and
Pn
j51

qij50 for

i 5 1, . . . ,n). With these assumptions, the forward
and backward equations both have a unique
solution:

P tð Þ5Exp Qtð Þ5
X‘

r50

Qr tr

r!
:

Here, Exp is the matrix exponential, which is
defined by the infinite sum. This infinite sum is
known to converge (see section 4.5(iii) of Cox and
Miller6). In a strict mathematical sense, our assump-
tions about n, Q, and P tð Þ are more restrictive than
they need to be—even if they were slightly relaxed,
the matrix exponential would still be the unique
solution to Kolmogorov’s equations—but the exact
necessary and sufficient conditions are formidably
complicated. Other publications provide full expla-
nations8,9 and shorter accounts.6,7

If Q has an eigen-decomposition, then the matrix
exponential can be expressed in a simple form. Let
D be a diagonal matrix of eigenvalues of Q and let U
be a corresponding matrix of eigenvectors, so that
Q5UDU�1 and Qt5U Dt U�1. It follows that

Exp Qtð Þ5U Exp Dtð ÞU�1:

This is much simpler, since Exp Dtð Þ is a diagonal
matrix whose i,ið Þth element is simply ediit.

Our formulas for the transition probabilities are
based on this second formula for Exp Qtð Þ and
assume that Q has an eigen-decomposition, which
is usually the case. What happens when Q does not
have an eigen-decomposition is discussed in the
section after next.

There are several alternative terms and notations.
Eigen-decomposition is sometimes known as spec-
tral decomposition. If a matrix has an eigen-
decomposition then it is said to be diagonalizable.
Q is sometimes called the generator matrix and
written as G. It can be convenient to write qi instead
of �qii, so that qi5

P
i 6¼j

qij � 0.8

A PROCEDURE FOR DERIVING THE FORMULAS
WHEN n IS SMALL

For a given multi-state Markov model, the formu-
las for pij tð Þ in terms of qij can be derived by carry-
ing out the following steps:

Step 1. Write down Q, with algebraic symbols like q12

for transitions that are allowed and zeroes for transi-

tions that are not allowed.

Step 2. Derive formulas for the elements of D by solving the

characteristic equation det Q � lIð Þ50 (the diagonal ele-

ments of D are the values of l that solve this equation).

Step 3. Derive formulas for the elements of U by solving

Qx5lx, where x is an n31 vector (the columns of U

are the values of x that solve this equation).

Step 4. Derive formulas for the elements of U�1 by any

of several standard methods (for example, using the

matrix of cofactors).

Step 5. Derive formulas for the elements of P tð Þ5U Exp

Dtð ÞU�1 by using the rules of matrix multiplication.

Our presentation of this procedure is novel but
mathematically these steps are closely based on the
results in the previous section.

In Steps 2 and 3, the diagonal elements of D and
the columns of U do not have to be in any particular
order, but they must match each other so that the
eigenvalue dii corresponds to the ith column of U.

At each step, the formulas should be simplified
using the standard rules of algebra. There are also
several other ways of simplifying the formulas.
Firstly, if the only possible transition from i is from
i to j, then qii can be replaced by �qij in Step 1. (If
more than one transition from i is possible then qii

can be replaced by with �
P
j 6¼i

qij, though this often

makes the formulas more complicated.) Secondly, if
x is an eigenvector of Q with eigenvalue l then the
same is true of ax, for any a 2 R, so in Step 3 the for-
mulas can be simplified by multiplying the columns
of U by scalars. Thirdly, each row of P tð Þ must sum
to 1, so in Step 5 pij tð Þ can be replaced by
1�

P
k 6¼j

pik tð Þ. This will mean that the formula for
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pij tð Þ is not in terms of elements of Q directly but in
terms of other elements of P tð Þ—obviously this can
only be done for one element in each row of P tð Þ.

If there are only forward transitions, then Step 2
is simple, because Q is an upper-triangular matrix
and the values of l are just the diagonal elements
of Q. If there are backward transitions then the
characteristic equation can often be solved by noti-
cing that the left-hand side has certain factors or
using the well-known formula for the solutions of
a quadratic equation. Otherwise it may be neces-
sary to use the formulas for the solutions of cubic
or quartic equations,10–12 though these are compli-
cated and usually written in terms of intermediate
variables themselves. If it is impractical or impos-
sible to solve the characteristic equation, then the
procedure will not work, as discussed in the next
section.

The following is an illustration of the procedure.

Model 1. Three-state Model with Forward
Transitions Only (See Figure 1)

Step 1: Q5

q11 q12 q13

0 �q23 q23

0 0 0

0
B@

1
CA, where q115� q12 � q13

Step 2: D5

q11 0 0

0 �q23 0

0 0 0

0
B@

1
CA

Step 3: U5

1 q12 1

0 �q11 � q23 1

0 0 1

0
B@

1
CA

Step 4: U�15

1 q12

q111q23

q13�q23

q111q23

0 � 1
q111q23

1
q111q23

0 0 1

0
B@

1
CA

Step 5:

P tð Þ5
1 q12 1

0 �q11 � q23 1

0 0 1

0
B@

1
CA

eq11t 0 0

0 e�q23t 0

0 0 1

0
BB@

1
CCA

1 q12

q111q23

q13�q23

q111q23

0 � 1
q111q23

1
q111q23

0 0 1

0
BBBB@

1
CCCCA

5

eq11t q12 eq11 t�e�q23 tð Þ
q111q23

q13�q23ð Þeq11 t1q12e�q23 t

q111q23
11

0 e�q23t 1� e�q23t

0 0 1

0
BB@

1
CCA

5

eq11t q12 eq11 t�e�q23 tð Þ
q111q23

1� p11 tð Þ � p12 tð Þ

0 e�q23t 1� e�q23t

0 0 1

0
BB@

1
CCA

The final matrix here is equivalent to the final
matrix in Figure 3 of Welton and Ades.3 Formulas
for the three-state model with all forward transi-
tions and the backward transition from state 2 to
state 1 have also been published.4

SITUATIONS WHERE THE PROCEDURE FAILS

For some models with five or more states, espe-
cially ones with several backward transitions, it is
impossible to find an algebraic solution of the char-
acteristic equation (this follows from the Abel–
Ruffini theorem13). Step 2 therefore fails. If this hap-
pens, it will be necessary to use the numerical
methods mentioned in the introduction or calculate
the matrix exponential Exp Qtð Þ by other means.
Calculating the matrix exponential in a reliable way
is fundamentally difficult,14,15 but improved meth-
ods have appeared in recent years.16,17 Functions
are available in Matlab, R, and Python. For R, see
the expm package,18 the MatrixExp function in the
msm package,19 or the msm vignette.5 The matrix
exponential can even be calculated in Excel,20 but
this requires purchasing an extra software library to
run in the background.

If the characteristic equation has an algebraic
solution, then our method will usually work. But if
two eigenvalues turn out to be exactly equal when
numbers are put into the formulas, then it will fail.
This is rare, because the rates are numbers on the

1 2

3

Figure 1 The states and transitions for Model 1, a three-state

model with forward transitions only.
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continuous real line and it is unlikely that, for
example, two of them will be exactly equal. But if it
happens, then attempting to use the formulas will
result in division by zero and the software will raise
an error or give an output of infinity. This can hap-
pen either in Step 3, if the formulas for the eigen-
vectors involve division, or in Step 4, when the
matrix is inverted.

Problems can also arise if two of the eigenvalues
are very close to each other, or if certain other num-
bers are very close; if the difference of two such
numbers appears in a denominator, then the result
can be inaccurate (which other numbers this applies
to depends on the model and how the formulas are
written; for example, in Model 3 v5bf � ag and the
problem arises if this is close to zero). There is no
clear-cut rule for whether two numbers are too close,
but most software stores non-integer numbers in
double-precision floating point format,21,22 which
means about 16 significant figures, so roughly speak-
ing there might be a problem if the numbers are the
same to more than 8 or 10 significant figures. The
problem of two eigenvalues being very close is more
likely to arise in a PSA, so in a PSA it might be worth
making scatter plots of the intermediate variables to
see if any have extreme values, and possibly discard-
ing those if there are only a few of them.

Lastly, if the model is beyond a certain size, then
solving the characteristic equation algebraically
may be possible in theory but too complicated in
practice. These issues mean that output from the
formulas should always be treated with caution. If
the probabilities seem implausible then it will be
necessary to calculate the matrix exponential by
other methods as described above. For PSA it may
also be worth making scatter plots of the final prob-
abilities to check that they look plausible.

In some models the eigenvalues might be com-
plex that is, one or more of them involves the square
root of a negative number. If this happens in Excel
then there will be a #NUM! error, and the formulas
will need to be rewritten using functions such as
IMSQRT and IMSUM, but the procedure should
still work. In our five example models, the eigen-
vectors are all always real.

A PROCEDURE FOR LARGER n, USING
INTERMEDIATE VARIABLES

In theory, the procedure described above works
for any n, so long as formulas can be found for the

eigenvalues in Step 2. But if n is greater than 4 or so
then the final formulas for the elements of P tð Þ are
extremely long and complicated, even after they
are simplified. So instead it is preferable to use
three sets of intermediate variables. The first set of
intermediate variables corresponds to the elements
of D, the second to the elements of U, and the third
to the elements of U�1. The procedure is best
explained by examples, and three examples are
given below.

Model 2. Four-state Model with Forward
Transitions Only (See Figure 2)

Our work on this procedure arose from an
empirical application for which this four-state
model can be used. The four states are ‘‘healthy,’’
‘‘had minor cardiovascular event,’’ ‘‘had major car-
diovascular event,’’ and ‘‘dead.’’ The reason for hav-
ing two cardiovascular disease states is that when a
person has had a minor event they are more likely
to go on to have a major event, and the mortality
rate after a major event is greater than the mortality
rate after a minor event.

Single roman letters like a are used, since these
are easier to read.

1 2

3 4

Figure 2 The states and transitions for Model 2, a four-state

model with forward transitions only.
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Step 1: Q5

a b c d
0 f g h
0 0 �i i
0 0 0 0

0
BB@

1
CCA, where a 5� b� c

�d, and f 5� g � h.
Step 2: Q is upper-triangular and so D just uses

the values from the diagonal of Q.

D5

a 0 0 0
0 f 0 0
0 0 �i 0
0 0 0 0

0
BB@

1
CCA

For this model, there is no need to introduce
intermediate variables at this step.

Step 3: In this step, U is worked out and then
each element of U is written as a new intermediate
variable, unless it is already a fixed number (such
as 0 or 1) or a single letter (such as b in this
example).

As an illustration, the second column of U can
be worked out as follows. Call this column b. This
satisfies Qb5f b, or Q � fIð Þb50, so its elements can
be found by writing either of these out as four simul-
taneous scalar equations (for example a� fð Þb11

bb21cb31db450, gb31hb450, �i � fð Þb31ib450,
and �f b450), solving these, and multiplying by a
factor to make the formulas simpler. There are any
number of solutions but they all satisfy b25b1

f � að Þ=b and b35b450.

U5

1 b ci � bg1cf bg1bh� cf � df
0 f � a ag1gi �ag � ah
0 0 �i2 � ai � af � fi af
0 0 0 af

0
BB@

1
CCA

5

1 b j k
0 l m n
0 0 o p
0 0 0 p

0
BB@

1
CCA

The intermediate variables are j, k, l, and so on.
The formulas for the intermediate variables can be read
off: j5ci � bg1cf , k5bg1bh� cf � df , and so on.

Step 4: In this step, U�1 is worked out, and then
each element of U�1 is written as a new intermediate
variable, unless it is already a fixed number or a sin-
gle letter.

As an illustration, the 1,2ð Þ element of U�1 can
be worked out as follows. If C is the cofactor matrix
of U, then c21 is �1ð Þ211bop5� bop, and det U is
simply lop (this is most easily found by expanding
along the first column of U). So u�1

12 5c21=
det U5� b=l.

U�15

1 � b
l

bm
lo �

j
o

bn
lp � k

p� bm
lo 1

j
o

0 1
l �m

lo
m
lo � n

lp

0 0 1
o � 1

o
0 0 0 1

p

0
BBB@

1
CCCA

5

1 q r s
0 u v w
0 0 x y
0 0 0 z

0
BB@

1
CCA

The formulas for the new intermediate variables
are q5� b

l , r5 bm
lo �

j
o, and so on.

Step 5:
P tð Þ5Exp Qtð Þ5U Exp Dtð ÞU�1

5

eat bueft1qeat jxe�it1bveft1reat kz1jye�it1bweft1seat

0 lueft mxe�it1lveft nz1mye�it1lweft

0 0 oxe�it pz1oye�it

0 0 0 pz

0
BBB@

1
CCCA:

The formulas for the transition probabilities are
p11 tð Þ5eat, p12 tð Þ5bueft1qeat, and so on. In general,
if i is a death state (that is, an absorbing state) then
pii tð Þ51. So, for this model,p44 tð Þ is actually 1, and
the pz in the formula for p34 tð Þ can also be replaced
by 1. For comparison, a single set of formulas for
this model, with no intermediate variables, is given
in section 3.3 of Welton.4 Because this model is rea-
sonably simple, the single set of formulas is proba-
bly easier to use, but the formulas with intermediate
variables are probably easier to derive.

Model 3. Four-state Model with Forward
Transitions and One Backward Transition (See
Figure 3)

Step 1: Q5

a b c d
f g h i
0 0 �j j
0 0 0 0

0
BB@

1
CCA

Step 2: The characteristic equation is

det Q � lIð Þ50, a� lð Þ g � lð Þ �j � lð Þ �lð Þ
�bf �j � lð Þ �lð Þ50:

The solutions l5� j and l50 can be found by noti-
cing that �j � l and �l are factors of the left-hand
side. The other solutions can then be found by
using the formula for the solutions of quadratic
equations, and they can then be slightly simplified

to a1g6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� gð Þ214bf

q� �
=2.
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D5

a1g1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�gð Þ214bf

p
2 0 0 0

0
a1g�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�gð Þ214bf

p
2 0 0

0 0 �j 0

0 0 0 0

0
BBBBB@

1
CCCCCA

5

k 0 0 0

0 l 0 0

0 0 �j 0

0 0 0 0

0
BBB@

1
CCCA

The intermediate variables here are k and l, and the formulas for them can be read off from the previous
line. It would also be possible to replace �j with an intermediate variable.

Step 3:

U5

2b 2b cg1cj � bh cg1dg � bh� bi

�a1g1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� gð Þ214bf

q
�a1g �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� gð Þ214bf

q
ah� cf 1hj ah1ai � cf � df

0 0 bf � ag � aj � gj � j2 bf � ag

0 0 0 bf � ag

0
BBBB@

1
CCCCA

5

m m n o

p q r s

0 0 u v

0 0 0 v

0
BBB@

1
CCCA

This time u11 and u12 are the same, and so they can both be written as the same intermediate variable, m.
The intermediate variables are m52b, n5cg1cj � bh, and so on.

Step 4:

U�15

p
mq�mp 1 1

m � 1
q�p � np

mqu�mpu 1 r
qu�pu� n

mu � op
mqv�mpv 1 s

qv�pv � o
mv 1

np
mqu�mpu� r

qu�pu 1 n
mu

� p
mq�mp

1
q�p

np
mqu�mpu� r

qu�pu
op

mqv�mpv � s
qv�pv �

np
mqu�mpu 1 r

qu�pu

0 0 1
u � 1

u

0 0 0 1
v

0
BBBBB@

1
CCCCCA

5

a0 b0 c0 d0

f 0 g0 h0 i0

0 0 j0 k0

0 0 0 l0

0
BBBB@

1
CCCCA

Step 5:

P tð Þ5U Exp Dtð ÞU�15

mf 0elt1ma0ekt mg0elt1mb0ekt nj0e�jt1mh0elt1mc0ekt ol01nk 0e�jt1mi0elt1md0ekt

qf 0elt1pa0ekt qg0elt1pb0ekt rj0e�jt1qh0elt1pc0ekt sl01rk0e�jt1qi0elt1pd0ekt

0 0 uj0e�jt 11uk0e�jt

0 0 0 1

0
BB@

1
CCA

Model 4. Five-state Model with Forward Transitions Only and Two Death States (See Figure 4)

Step 1: Q5

a b c d f
0 g h i j
0 0 k l m
0 0 0 0 0
0 0 0 0 0

0
BBBB@

1
CCCCA

Step 2: D5

a 0 0 0 0
0 g 0 0 0
0 0 k 0 0
0 0 0 0 0
0 0 0 0 0

0
BBBB@

1
CCCCA
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Step 3:

U5

1 b bh1ck � cg cgl � dgk � bhl1bik cgm� fgk � bhm1bjk

0 g � a hk � ah ahl � aik ahm� ajk

0 0 k2 � gk � ak1ag �agl �agm

0 0 0 agk 0

0 0 0 0 agk

0
BBBBBB@

1
CCCCCCA

5

1 b n o p

0 q r s u

0 0 v w x

0 0 0 y 0

0 0 0 0 y

0
BBBBBB@

1
CCCCCCA

The formulas for the intermediate variables in U are n5bh1ck � cg, o5cgl � dgk � bhl1bik, and so on.

Step 4:

U�15

1 � b
q

br
qv � n

v � brw
qvy 1 nw

vy 1 bs
qy � o

y � brx
qvy 1 nx

vy 1 bu
qy �

p
y

0 1
q � r

qv
rw
qvy � s

qy
rx

qvy � u
qy

0 0 1
v � w

vy � x
vy

0 0 0 1
y 0

0 0 0 0 1
y

0
BBBBBBBB@

1
CCCCCCCCA

5

1 a0 b0 c0 d0

0 f 0 g0 h0 i0

0 0 j0 k0 l0

0 0 0 m0 0

0 0 0 0 m0

0
BBBBBB@

1
CCCCCCA

The formulas for the intermediate variables in U�1 are a05� b
q, b

0
5 br

qv � n
v, and so on.

Step 5:

P tð Þ5U Exp Dtð ÞU�15

eat bf 0egt1a0eat nj0ekt1bg0egt1b0eat om01nk0ekt1bh0egt1c0eat pm01nl0ekt1bi0egt1d0eat

0 qf 0egt rj0ekt1qg0egt sm01rk0ekt1qh0egt um01rl0ekt1qi0egt

0 0 vj0ekt wm01vk0ekt xm01vl0ekt

0 0 0 1 0

0 0 0 0 1

0
BBBBBB@

1
CCCCCCA
:

1 2

3 4

Figure 3 The states and transitions for Model 3, a four-state

model with forward transitions and one backward transition.

Figure 4 The states and transitions for Model 4, a five-state

model with forward transitions only and two death states.
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The formulas created by this procedure are suitable
for working in Excel with one cell at a time. Each
set of numbers or formulas can be arranged in the
form of a matrix, and these matrices can be placed
next to each other, for example in the order Q, D, U,
U�1, Exp Dtð Þ, P tð Þ. Alternatively, all the formulas
can be put in a single row. The second way is proba-
bly more familiar and practical for a model that has
different transition rates for each cycle or age group.
The supplementary material consists of Excel files
that show how to lay out the formulas in both these
ways, for the four example models. The files con-
tain example numbers for the transition rates so that
it is easy to see how the calculations are made.

The main reason why using intermediate vari-
ables is preferable to using a single set of direct for-
mulas is that the formulas are much simpler. They
are also easier to understand and organize because
they correspond exactly to the matrices and equa-
tions for the solution to Kolmogorov’s equations.
The disadvantage is that it involves more formulas.

The idea of using intermediate variables to sim-
plify formulas for transition probabilities has been
used in the field of applied biostatistics. See for
example section 4.2 of Chiang,23 which is about
models in which there are two alive states, with
transitions both ways between them, and an arbi-
trary number of death states. Intermediate variables
are used for the two non-zero eigenvalues.

USING A COMPUTER ALGEBRA SYSTEM

The four sets of formulas described in the previous
sections are derived by eigen-decomposition, matrix
inversion, and matrix multiplication. These deriva-
tions can all be done using pen and paper but it may
be easier and more reliable to use a computer algebra
system (CAS). The best-known CASs are Maple,
Mathematica, and Matlab. In Matlab, the functions
‘‘eig’’ and ‘‘inv’’ can be used to find D, U, and U�1.
There is even a function called ‘‘expm’’ that can find
the matrix exponential of a symbolic matrix (a matrix
containing algebraic symbols like x). A single set of
formulas for the transition probabilities could be read
off from the output of this function. The disadvan-
tages of this are firstly that, for models with four or
more states the formulas will be extremely compli-
cated and not practical for putting into Excel, and,
secondly, that Matlab is not free or universally
available.

There are various free CASs but not all of them
have the necessary capabilities for deriving the for-
mulas. One that does is Maxima.24 The code below

shows what a user might type in Maxima to work
out the formulas for Model 2 as shown above. The
code is not a template that can be adapted to other
models by simple changes like replacing zeroes
with letters. Instead, after each step it is necessary
to look at the output and decide what to type next.
Maxima does not necessarily give the formulas in
their simplest possible forms, so there is a need for
judgement and trial and error in deciding how to
define Q (for example, whether to use �

P
j 6¼1

q1j

instead of q11) and how to simplify the formulas. In
Maxima, assignment is done using the colon, and
lines must end with either a semi-colon, which tells
the application to display the output, or a dollar
symbol, which tells it not to.

If Step 2 involves solving a cubic or quartic equa-
tion, then that is likely to be slow even with a CAS,
and of course if there are several backward transi-
tions and no algebraic solution, then a CAS will not
be able to get around this problem.

Model 2. Four-state Model with Forward
Transitions Only

/***** Step 1 *****/

/* Define Q. */

Q: matrix([a,b,c,d], [0,f,g,h], [0,0,-i,i],
[0,0,0,0]);

/***** Step 2 *****/

/* Get the eigen-decomposition and reorder and display
the eigenvalues. */

[evalues, evectors]: eigenvectors(Q);

evalues[1]: [evalues[1][3], evalues[1][2],
evalues[1][1], evalues[1][4]];

/***** Step 3 *****/

/* Reorder and scale the eigenvectors, combine
them to make U, and */

/* redefine U with intermediate variables. */

evectors: [evectors[3], evectors[2]*b,
evectors[1]*(c*i-b*g+c*f),
evectors[4]*(b*h+b*g+ (-d-c)*f)];

U: transpose(matrix(evectors[1][1]));

for i: 2 thru 4 do U: addcol(U, evectors [i][1]);

expand(U);

U: matrix([1,b,j,k], [0,l,m,n], [0,0,o,p],
[0,0,0,p]);

/***** Step 4 *****/

/* Invert U and redefine Uinverse with intermediate
values. */

expand(invert(U));

Uinverse: matrix([1,q,r,s], [0,u,v,w],
[0,0,x,y], [0,0,0,z]);

FORMULAS TO CONVERT RATES TO PROBABILITIES
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/***** Step 5 *****/

/* Define expDt and find P(t). */

expDt: matrix([expat,0,0,0],
[0,expft,0,0], [0,0,expminusit,0],
[0,0,0,1]);

U . expDt . Uinverse;

Probably the easiest way to use Maxima is
wxMaxima, which has a graphical interface. One
setting that may be useful is: Edit – Configure –
Enter evaluates cells. For simplifying, useful func-
tions are ‘‘expand’’ and ‘‘ratsimp’’.

DISCUSSION

For any given model, the four sets of formulas
can be worked out by hand or by using a CAS, so
long as the characteristic equation has an algebraic
solution. Because the eigenvectors can be multi-
plied by constants, there are countless different pos-
sibilities for the formulas, but when the formulas
are used on numerical transition rates, the results
should be the same.

There is a rich variety of multi-state Markov mod-
els with n54, 5, or 6, and our procedure with inter-
mediate variables works well with many of these.
For n54 or n55 it is a matter of personal preference
which methods are used to derive the formulas. For
larger n, the formulas can become extremely com-
plicated, but there are certain classes of models for
which our procedure should still work. For example,
the disease progression model (Figure 5) only allows
patients to stay in the current state i, transition to the
next state i11, or die; there are no backward transi-
tions. This type of model is relatively simple but not
trivial and is often used, for example, in models of
chronic progressive disease, or in cases where
patients may undergo a predefined sequence of treat-
ments. More generally, Markov models with n.4 are
common, but the number of transitions from each
state is often less than 4 or 5, so the algebra is not
necessarily too complicated and our procedure
should work in some of these situations.

An analyst who is familiar with R would proba-
bly prefer to develop the entire decision model in R,
using a package such as expm to calculate the
matrix exponential. However, many analysts still
prefer to develop decision models in spreadsheets,
and this paper is aimed at them. In the case where a
decision model has been developed in a spread-
sheet, the current alternative to our approach for
calculating probabilities from rates would be to cal-
culate the matrix exponential using an external

package such as R or WBDiff and copy and paste
the results into the spreadsheet.

An advantage of our algebraic formulas for the
transition probabilities over numerical methods
such as WBDiff is the speed and simplicity of run-
ning the calculations multiple times for probabilistic
sensitivity analyses. PSA enables calculation of the
overall probability that a treatment is more effective
or cost-effective than another, based on all the infor-
mation in the model, and serves also as the basis for
expected value of information (EVI) analyses.

As mentioned in the Introduction, the ‘‘simple
formula’’ is sometimes used instead to convert from
transition rates to probabilities: pij tð Þ51� e�qij t for
i 6¼ j, and pii tð Þ51�

P
j 6¼i

pij tð Þ so that the rows sum to

1.25 This ignores all the transitions except the one
from i to j, so it is correct when i is a death state or
there is only one transition from state i and that is
to a death state, but otherwise it is incorrect. For
example, in Model 1 the simple formula is correct
for i52 and j53 but incorrect for the other two tran-
sitions. If q125q135q2351 and t is also 1, then
the simple formula gives p125p1350:632 and
p1151� p12 � p135� 0:264, which is out of bounds
for a probability. The correct values are p1150:135,
p1250:233, and p2350:632. Sendi and Clemen26 pro-
posed a method to avoid probabilities outside the [0,
1] bounds by decomposing a three-way chance node
into a sequence of two conditional two-way nodes.
This is equivalent to a special case of Model 1 in
which q2350, so that states 2 and 3 are competing
risks. In this case, p125 1� eq11tð Þq12= q121q13ð Þ and
p135 1� eq11tð Þq13= q121q13ð Þ, and in the above exam-
ple, these formulas give p125p1350:432 and
p1150:135. But they are not valid if q23.0.

The question arises of when the simple formula
might be approximately correct and sufficient for

Figure 5 The disease progression model.
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practical purposes. This happens when all the rates
of transitions from i and j are small over the period
of one cycle, which is the case if the cycles are suffi-
ciently short. It also happens when there is a state j
such that qij is much bigger than qik for all k 6¼ j,
and either j is a death state or both t and all the qjl’s
are small—in other words, from state i there is only
one transition or ‘‘almost’’ only one transition, and
that transition is to a death state or an ‘‘almost-
death’’ state. (The simple formula is then approxi-
mately correct because the transitions other than
from i to j are unlikely to happen.) In any case our
procedure should make it easier to use the correct
formulas in a wide variety of models.
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