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Abstract 
Regulation of gene expression in macrophage immune response 

Kaur Alasoo 
Gene expression quantitative trait loci (eQTL) mapping studies can provide mechanistic insights 

into the functions of disease-associated variants. However, many eQTLs are cell type and 

context specific. This is particularly relevant for immune cells, whose cellular function and 

behaviour can be substantially altered by external cues. Furthermore, understanding 

mechanisms behind eQTLs is hindered by the difficulty of identifying causal variants. We 

differentiated macrophages from induced pluripotent stem cells from 86 unrelated, healthy 

individuals derived as part of the Human Induced Pluripotent Stem Cells Initiative. We 

generated RNA-seq data from these cells in four experimental conditions: naïve, interferon-

gamma (IFNɣ) treatment (18h), Salmonella infection (5h), and IFNγ treatment followed by 

Salmonella infection. We also measured chromatin accessibility with ATAC-seq in 31-42 

individuals in the same four conditions. We detected gene expression QTLs (eQTLs) for 4326 

genes, over 900 of which were condition-specific. We also detected a similar number of 

transcript ratio QTLs (trQTLs) that influenced mRNA processing and alternative splicing. 

Macrophage eQTLs and trQTLs were enriched for variants associated with Alzheimer’s disease, 

multiple autoimmune disorders and lipid traits. We also detected chromatin accessibility QTLs 

(caQTLs) for 14,602 accessible regions, including hundreds of long-range interactions. Joint 

analysis of eQTLs with caQTLs allowed us to greatly reduce the set of credible causal variants, 

often pinpointing to a single most likely variant. We found that caQTLs were less condition-

specific than eQTLs and ~50% of the stimulation-specific eQTLs manifested on the chromatin 

level already in the naive cells. These observations might help to explain the discrepancy 

between strong enrichment of diseases associations in regulatory elements but only modest 

overlap with current eQTL studies, suggesting that many regulatory elements are in a ‘primed’ 

state waiting for an appropriate environmental signal before regulating gene expression. 
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1 Introduction 
Virtually all cell types in the human body contain exactly the same DNA. In spite of this, human 

cells exhibit extraordinary functional, morphological and molecular diversity. This diversity is 

particularly evident in the human immune system: B-cells specialise in producing antibodies 

while macrophages in different tissues are able to phagocytose and kill invading bacteria, to just 

illustrate two of the many cell types. In addition to each cell type exhibiting specific phenotype 

and function, they must also be plastic enough to respond to various changes in their 

environment. This is particularly important for immune cells that must repel invading viruses and 

bacteria while minimising damage to the host. For example, tissue macrophages must produce 

inflammatory cytokines and reactive oxygen species only when they detect bacteria but 

intestinal macrophages have to limit these responses to avoid reacting to commensal bacteria 

with excessive inflammation (Krause et al., 2015). Underlying these cell type specific functional 

differences are unique gene expression profiles that are precisely regulated in response to 

changes in the environment. 

 

Most human traits and complex diseases have a heritable component (Visscher et al., 2008) 

and genome-wide association studies (GWAS) have identified thousands of genetic loci 

associated with those traits. Since over 90% of these loci are in the non-coding regions of the 

genome and highly enriched for chromatin marks specific to gene regulatory elements (Maurano 

et al., 2012), an emerging consensus is that they likely influence disease risk by regulating gene 

expression levels in one or more cell types and conditions. This observation in turn has led to a 

surge in studies to identify genetic variants that are associated with gene expression levels. 

While gene expression quantitative trait loci (eQTL) mapping experiments have identified 

thousands of regulatory variants, they have, to date, explained only a small fraction of GWAS 

associations and have also highlighted that considerable proportion of eQTLs are cell type and 

context specific. Thus, to create a complete catalogue of gene regulatory variation in humans, 

we need to measure gene expression levels in larger numbers of individuals, cell types and 

conditions.  

 

However, constructing a comprehensive catalogue of human regulatory variation has been 

limited by the relative inaccessibility of most cell types and the large number of environmental 

stimuli potentially relevant for each cell type (Xue et al., 2014). However, scalable cell culture 
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systems based on human induced pluripotent stem cells (iPSCs) have the potential to overcome 

these limitations and identify functional regulatory variants in many more cell types and cell 

states. In this thesis, I will establish an iPSC-derived macrophage model to study the genetics of 

context specific gene expression and apply it to understand how genetics shapes gene 

expression in human macrophages in response to interferon-gamma stimulation and Salmonella 

infection. 

 

In this introductory chapter, I will give an overview of our current understanding of the principles 

and mechanisms that regulate cell type and context specific gene expression by focussing on 

key studies performed in macrophages and B-cells. I will describe how macrophages sense and 

respond to changes in their environment and introduce experimental and computational 

techniques that are widely used to measure gene expression and chromatin state. Next, I will 

introduce iPSC-derived macrophages as a scalable system to study context specific gene 

expression. Finally, I will give an overview of how genetic variation influences gene regulation 

and how these studies can be used to interpret disease associations. 

1.1 Regulation of cell type and condition specific gene 

expression 

One of the first examples of gene expression controlled by environmental signals is the lac 

operon in Escherichia coli that contains three genes required for lactose import and metabolism 

(Jacob and Monod, 1961). The lac operon has two regulatory mechanisms. First, in the absence 

of lactose, lactose repressor protein strongly binds to a short DNA sequence downstream of the 

promoter and prevents the transcription of the operon. The second control mechanism is the 

catabolite activator protein that, in the absence of glucose, binds to a specific 16 base pair (bp) 

sequence upstream of the lac promoter and assists RNA polymerase binding to the DNA. Thus, 

the expression of the lac operon is highest when lactose is present in the environment and there 

is no glucose. This seminal study highlighted how sequence specific factors regulated by 

external signals can regulate gene expression. 

 

The basic principle of sequence specific transcription factors (TFs) binding to DNA and thereby 

activating or repressing gene expression is also conserved in eukaryotes and many of the 

sequence motifs have already been identified (Weirauch et al., 2014). However, an extra layer 

of complexity is that, in contrast to prokaryotes, eukaryotic DNA is located in the nucleus and 
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tightly packed around the nucleosomes. This adds two additional levels of regulation. First, 

since protein synthesis happens in the cytoplasm, the localisation of TFs can be regulated as 

well. For example, the NF-κΒ complex is normally sequestered to the cytoplasm and is only 

localised to the nucleus after the repressor proteins have been degraded (Verma et al., 1995). 

Secondly, because nucleosomes have much stronger affinity for DNA than single TFs do, a 

single instance of a TF motif is usually not sufficient for a TF to bind (Polach and Widom, 1996). 

Recent studies have highlighted the importance of collaborative interactions between TFs in 

competing with nucleosomes and establishing active regulatory elements (Deplancke et al., 

2016; Heinz et al., 2010). 

1.1.1 Principles of cell type specific TF binding 

Since gene expression is regulated by TFs, to understand cell type specific gene expression we 

first need to understand the principles of cell type specific TF binding. Genome-wide profiling of 

TF binding has led to three key observations: (1) different factors in the same cell type often 

bind to the same locations (MacArthur et al., 2009), (2) the same factor in different cell types 

can often have different binding sites (Odom et al., 2004) and (3) the same biological processes 

(such as self-renewal) can be regulated by distinct set of regulatory elements in different cell 

types (Soucie et al., 2016). To illustrate possible mechanisms behind these observations, I will 

now focus on PU.1 - a key TF required for both B-cell and macrophage differentiation in vivo, 

that shares approximately half of its binding sites between the two cell types (Heinz et al., 

2010). 

 

(Heinz et al., 2010) sought to identify what underlies the cell-type specific binding pattern of 

PU.1. They found that macrophage specific PU.1 binding sites were co-enriched for AP-1 and 

C/EBPβ motifs, two additional factors that are required for macrophage development and 

function (Friedman, 2007). Conversely, B-cell specific PU.1 binding sites were enriched for 

motifs of E2A, EBF1 and OCT2 - three factors that are known to play important roles in B-cell 

development and function (Medina and Singh, 2005). Furthermore, they showed that knock-out 

of E2A leads to loss of PU.1 in B-cells at sites where the E2A motif is present and that can be 

rescued by inducible expression of E2A in knock-out cells. Similarly, PU.1 knock-out in 

macrophages led to reduced binding of C/EBPβ at loci where both of the binding sites were 

present. Together, this evidence indicates that cell type specific enhancers are established by 

collaborative binding of a small number of cell type specific pioneer TFs that are able to 

compete with the nucleosomes. 
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The second line of evidence to support this model of collaborative binding of cell type specific 

pioneer TFs comes from a follow-up study of macrophage enhancers in two genetically distinct 

inbred mouse strains (Heinz et al., 2013). They found that PU.1 motif mutations in one strain 

resulting in strain-specific loss of PU.1 binding were frequently associated with corresponding 

loss of C/EBPα binding. Conversely, they also found that mutations in the C/EBP motif leading 

to the loss of C/EBPα binding were similarly associated with the loss of PU.1 binding. 

1.1.2 Signal dependent TFs bind to established enhancers 

A second key observation is that although different cell types often respond to the same 

extracellular signal by activating the same signalling pathways and TFs, the binding sites that 

these TFs occupy are often cell type specific. One proposed mechanism that could explain this 

observation is that TFs activated by external signals may largely bind to enhancers that have 

been previously established by cell type specific pioneer TFs. Some of the evidence for this 

comes from an early study which found that 34% of the oxysterol-responsive nuclear receptor 

Liver X Receptor beta (LXRβ) binding sites colocalised with PU.1 binding sites in macrophages 

and LXRβ binding was reduced at these sites in PU.1 deficient cells (Heinz et al., 2010). On the 

other hand, PU.1 binding at these sites was not affected by LXRβ knock-out, indicating that 

LXRβ is not directly involved in establishing cell type specific enhancers.  

 

In a follow up study, Heinz et al (Heinz et al., 2013) used two genetically distinct inbred mouse 

strains to study the strain specific binding of NF-κΒ after TLR4 activation. They found that 61% 

of NF-κΒ binding sites in the activated cells were already bound by either PU.1 and/or C/EBPα 

in the naive condition. Furthermore, most strain-specific NF-κΒ binding sites were bound by 

PU.1 or C/EBPα only in the strain that showed NF-κΒ binding. Finally, they were able to 

attribute 34% of strain-specific NF-κΒ binding events to mutations in AP-1, PU.1 or C/EBPα 

binding motifs and only 9% to mutations in NF-κΒ binding motifs. These observations suggest 

that the landscape of NF-κΒ binding sites after TLR4 activation are largely predetermined by 

enhancers occupied by PU.1, AP-1 or C/EBPα TFs in the naive state where no active NF-κΒ is 

present in the nucleus.  

 

In summary, these studies highlight a hierarchy between cell type specific pioneer factors that 

establish enhancers in closed chromatin regions and TFs activated by external signals that 



 17 

predominantly bind to pre-established enhancers. Similar results have also been described for 

TGFβ (Mullen et al., 2011), BMP and Wnt pathways (Trompouki et al., 2011). 

1.1.3 Role of signal dependent TFs in establishing new enhancers 

While most signal-dependent TF binding occurs at pre-established enhancers, Ostuni et al 

showed that up to 15% of the enhancers activated by LPS were undetected in the unstimulated 

cells (no PU.1 binding or H3K4me1 histone modification signal) (Ostuni et al., 2013). They 

referred to these elements as latent enhancers and they found that different stimuli each 

activated a distinct set of latent enhancers. To mechanistically study the latent enhancers they 

focussed on IFNɣ stimulation. They found that, although STAT1 was phosphorylated within 10 

minutes after IFNɣ stimulation, latent enhancers were only established hours after stimulation, 

suggesting that nucleosomes might act as a barrier inhibiting TF binding. They observed that 

although many latent enhancers contained PU.1 binding motifs and displayed PU.1 binding after 

stimulation, there was no PU.1 binding in the naive state. Furthermore, they found that PU.1 

motifs in the latent enhancers had considerably lower binding affinities than motifs in constitutive 

enhancers, indicating that PU.1 binding at these sites depended on stimulus-specific cofactors. 

Thus, while the hierarchical enhancer activation model is conceptually useful, signal dependent 

TFs can also facilitate the eviction of nucleosomes and the binding of cell type specific TFs. One 

apparent distinction between these different modes of regulation, as illustrated by the IFNɣ 

example, is that pre-existing enhancers can facilitate cellular responses on the order of minutes 

while remodelling nucleosomes can take hours. 

1.1.4 Long range interactions between cell type specific and signal 

dependent TFs 

The evidence presented so far has relied on two different types of experimental approaches. 

The first relied either on deleting or ectopically expressing specific TFs and looking at the effects 

of these changes on the binding profiles of other TFs. The second approach relied on subtler 

perturbations caused by segregating variants disrupting TF binding sites between different 

mouse strains. However, because both of these approaches resulted in changes to thousands 

of TF binding events, they were limited to looking at average genome-wide effects on 

overlapping regulatory elements and were not able to reliably identify if TF binding at any one 

specific locus affected TF binding at other regulatory elements further away. Detecting these 
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individual effects can be achieved by QTL mapping approaches or directly disrupting single TF 

binding sites by precise genome editing. 

 

Evidence that cell type specific TFs can influence the binding of signal-induced TFs at 

neighbouring enhancers comes from an elegant study of an enhancer cluster upstream of the 

WAP gene in mouse mammary tissue (Shin et al., 2016). The enhancer cluster consists of three 

elements E1, E2 and E3 and the 1000-fold induction of the WAP gene during mouse pregnancy 

depends on all of them. The E1 enhancer has binding sites for three TFs: ELF1, NFIB and 

STAT5A. STAT5A binding can be observed at E1 during early pregnancy prior to transcriptional 

activation of the WAP gene. However, WAP transcription is induced only after STAT5A is also 

bound at the E2 and E3 enhancers. Intriguingly, the authors found that jointly disrupting ELF1, 

NFIB and STAT5A binding sites in the E1 enhancer not only abolishes the enhancer, but also 

prevents the E2 and E3 enhancers from being established later during pregnancy and, in turn, 

the gene from being transcriptionally activated. Thus, the E1 enhancer contains binding sites for 

tissue-specific TFs ELF1 and NFIB and acts as a ‘seed’ enhancer for the neighbouring E2 and 

E3 enhancers that only contain binding sites for STAT5A. 

 

In summary, the DNA in eukaryotic cells is tightly wrapped around the nucleosomes and 

collaborative interactions between multiple TFs are often needed to evict nucleosomes and 

establish accessible chromatin. Overlapping sets of TFs are often expressed in multiple cell 

types (such as PU.1 in B-cells and macrophages) and cell type specific binding is achieved by 

regulating the expression level of individual TFs as well as the pool of available cofactors. 

Transcription factors activated by multiple signalling pathways (IFNɣ, TLR4, TGFβ, Wnt, etc.) 

predominantly bind to regulatory elements pre-established by cell type specific factors, although 

over prolonged periods of time they might also contribute to establishing new enhancers. The 

extent of this is likely to depend on the exact TFs being activated and their intrinsic ability to 

compete with nucleosomes (Romanoski et al., 2015). Finally, as the example of the WAP gene 

suggests, TF binding at one locus can also facilitate the binding of TFs at other regulatory 

elements multiple kilobases (kb) away. The mechanisms by which this happens have not yet 

been elucidated. 
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1.2 Macrophage biology in the context of immune response 

Macrophages are key phagocytic cells associated with innate immunity, pathogen containment 

and modulation of the immune response (Murray and Wynn, 2011; Wynn et al., 2013). 

Macrophages have multiple receptors to recognise pathogen-associated molecular patterns 

such as toll-like receptors (TLRs), nod-like receptors (NLRs) and RIG-i like receptors 

(Mogensen, 2009). Macrophages also respond to regulatory signals produced by other cells 

such as interferon-gamma (IFNɣ), interferon-beta (IFNβ), interleukin-4 (IL-4), interleukin-10 (IL-

10), tumour necrosis factor (TNF) and many others (Xue et al., 2014). In the following section I 

will give a more thorough overview of macrophage response to bacterial lipopolysaccharide, 

IFNɣ and Salmonella infection, because these three stimuli are the main focus of the rest of the 

thesis. 

1.2.1 Signalling pathways activated by lipopolysaccharide and interferon-

gamma 

Lipopolysaccharides (LPS) are a component of the outer membrane of gram-negative bacteria. 

Macrophages recognise LPS via the TLR4 receptor on their cell surface (Medzhitov and Horng, 

2009). Ligand binding to TLR4 leads to the activation of the Myd88 dependent pathway that 

culminates with the activation of NF-κB and AP-1 transcription factors that recognise specific 

sequence motifs in the nucleus (Takeuchi and Akira, 2010) (Figure 1.1). This pathway is also 

shared with other toll-like receptors such as TLR2, TLR3 and TLR9. In addition, TLR3/4 

activation also leads to the activation of Myd88-independent pathway culminating with the 

activation of interferon response factors 3 and 7 (IRF3/7) transcription factors that recognise the 

canonical interferon-response element (ISRE) motif (Doyle et al., 2002).  

 

One of the genes activated by IRF3/7 is IFNB1 that codes for IFNβ protein (Doyle et al., 2002). 

IFNβ is secreted by the cells where it is then recognised by interferon-alpha receptor (IFNAR). 

Activation of IFNAR predominantly leads to activation of the ISGF3 complex composing of 

STAT1, STAT2 and IRF9 that recognises the same ISRE motif (Ivashkiv and Donlin, 2014).  

 

Interferon-gamma (IFNɣ) is an inflammatory cytokine produced by T-cells and natural killer (NK) 

cells (Schroder et al., 2004). IFNɣ binding to the IFNɣ receptor leads to the phosphorylation of 

STAT1 and formation of STAT1 homodimers that bind to the gamma-activated sequence (GAS) 

motif (Platanias, 2005). One of the immediate targets of STAT1 is IRF1 transcription factor that 
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is involved in the cooperative regulation of gene expression of many target genes (Ramsauer et 

al., 2007) including the master regulator of major histocompatibility complex (MHC) class II 

genes CIITA (Reith et al., 2005).  

 

 
Figure 1.1: Main signalling pathways activated in macrophages after Salmonella infection 
and IFNɣ stimulation. Macrophages recognise LPS on the Salmonella cell wall via the TLR4 

receptor (Medzhitov and Horng, 2009). Ligand binding to multiple TLRs such as TLR2, TLR3, 

TLR4 and TLR9 leads to downstream activation of NF-κB and AP-1 transcription factors 

(Takeuchi and Akira, 2010). However, TLR3/4 activation also leads to specific activation of the 

IRF3 transcription factor and downstream antiviral response genes (Doyle et al., 2002). IFNɣ, on 

the other hand, activates signal transducer and activator of transcription 1 (STAT1) and IRF1 

TFs. 

 

Thus, different environmental signals lead to the activation of distinct signalling pathways and 

downstream TFs that are responsible for specific changes in gene expression (Xue et al., 2014). 

Furthermore, simultaneous activation of multiple signalling pathways can have synergistic 

effects on gene expression, leading to activation of genes that are not activated by either of the 

stimuli alone (Qiao et al., 2013). 
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1.2.2 Macrophage response to Salmonella infection 

Macrophages recognise many different components of Salmonella including LPS (TLR4), 

flagella (TLR5), fimbrae/pili, peptidoglycan (TLR1/2, NOD2), bacterial DNA (TLR9) and type III 

secretion systems (T3SS) (NLRC4) (de Jong et al., 2012). In addition, Salmonella can also 

directly modulate macrophage immune response by releasing effector molecules encoded via 

the type III secretion systems that can promote bacterial uptake and intracellular survival 

(Haraga et al., 2008).  

 

Salmonella infection and LPS stimulation induce similar transcriptional response in mouse 

macrophages (Rosenberger et al., 2000), suggesting that LPS plays an important role in early 

response to bacterial infection (4 hours). Similarities between Salmonella and LPS response 

have also been observed in human macrophages where the core transcriptional response was 

conserved between many different species of bacteria and bacterial components (such as LPS) 

and this response was predominantly mediated by TLR4 and TLR2 signalling (Nau et al., 2002). 

This is not to say that differences in response between live bacterial infections and LPS 

stimulation do not exist. For example, Mycobacterium tuberculosis is able to actively suppress 

interleukin-12 (IL12) production (Nau et al., 2002). Rather, it suggests that in common 

experimental designs of bulk infections (resulting in only 20-30% of macrophages being 

infected) early response (the first few hours) is dominated by TLR signalling and other signalling 

mechanisms have either weaker effects or influence smaller proportion of cells. Single cell RNA-

seq is a promising approach to address this question. 

1.3 Tissue culture models of macrophage biology 

Commonly used model systems to study macrophage biology have included macrophage-like 

leukemic cell lines such as THP-1 (Tsuchiya et al., 1982), primary macrophages derived from 

model organisms and primary human macrophages differentiated from blood monocytes. 

Although these cells have provided important insights into macrophage-associated biology, they 

have some limitations. Immortalised cell lines often have accumulated multiple genetic 

aberrations and can exhibit functional defects compared to primary cells such as impaired 

cytokine production upon LPS stimulation (Adati et al., 2009; Schildberger et al., 2013), while 

multiple functional differences exist between macrophages from different species (Schroder et 

al., 2012). Additionally, human monocyte derived macrophages (MDMs) can be difficult to 
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obtain in sufficient numbers for repeated experimental assays and it is currently challenging to 

introduce targeted mutations into their genomes, limiting their utility in genetic studies. 

1.3.1 Differentiating macrophages from human induced pluripotent stem 

cells 

A promising alternative approach is to differentiate macrophages directly from human induced 

pluripotent stems cells (iPSCs). The key advantage of the iPSC-based system is that it is 

possible to produce large numbers of cells from almost any genetic background (both natural 

and engineered), provided that the genetic background does not interfere with macrophage 

differentiation itself. The simpler protocol that we have used throughout this thesis relies on 

spontaneous formation of embryoid bodies (EBs) followed by directed differentiation in the 

presence of interleukin-3 (IL-3) and macrophage colony stimulating factor (M-CSF) (Karlsson et 

al., 2008; Lachmann et al., 2015; van Wilgenburg et al., 2013). Alternative approaches avoid the 

EB formation step and directly differentiate macrophages from pluripotent stem cells using a 

combination of multiple factors (BMP4, VEGF, SCF, TPO, Flt3, bFGF, M-CSF) (Yanagimachi et 

al., 2013; Zhang et al., 2015).  

 

Early studies established that macrophages differentiated from induced pluripotent stem cells 

(IPSDMs) recapitulated many aspects of primary macrophage biology. They exhibited a 

transcriptomic signature specific to myeloid cells and expressed many macrophage specific cell 

surface markers including CD14, CD16, CD206 and CD68 (Karlsson et al., 2008; van 

Wilgenburg et al., 2013). In addition, IPSDMs were able to endocytose low-density lipoprotein 

(LDL), phagocytose opsonised yeast particles, produce specific cytokines in response to LPS 

stimulation and respond differentially to IFNɣ and IL-4 stimulation (Karlsson et al., 2008; van 

Wilgenburg et al., 2013). Patient-derived IPSDMs have successfully been used to model many 

monogenic disorders such as chronic granulomatous disease (Jiang et al., 2012) and Tangier 

disease (Zhang et al., 2015). However, at the outset of this work it was not yet clear how similar 

were IPSDMs to MDMs on the transcriptome level. 
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1.4 Genome-wide profiling of gene expression and chromatin 

accessibility 

1.4.1 RNA sequencing  

RNA sequencing (RNA-seq) is a widely used method to measure genome-wide gene 

expression profiles (Marioni et al., 2008). Since the majority of the RNA in most cells is 

ribosomal, either ribosomal RNA (rRNA) depletion or poly-A pulldown is often used to enrich for 

messenger RNA, after which the RNA is fragmented, reverse transcribed, PCR-amplified and 

sequenced using short read technologies. Each step in the workflow can introduce its own set of 

biases, some of which have been quite well characterised. For example, rRNA depletion can 

lead to large variation in read coverage across gene bodies while poly-A pulldown tends to 

introduce 3’ bias (Lahens et al., 2014). On the other hand, PCR often preferentially amplifies 

sequences with higher GC content in a manner that varies from sample to sample (Benjamini 

and Speed, 2012). Finally, RNA fragmentation process can lead to preferential sequencing of 

fragments with specific start and end positions (Roberts et al., 2011a) i.e. fragment start and 

end positions are not uniformly distributed across exons. While 3’ bias can often be minimised 

experimentally by ensuring that the RNA is intact before sequencing, multiple computational 

approaches have been developed to estimate and correct for GC-content and fragment biases 

(Benjamini and Speed, 2012; Hansen et al., 2012; Roberts et al., 2011a). 

Quantifying gene expression levels 

The first step in RNA-seq analysis is the quantification of gene expression levels. This has 

traditionally been done by first aligning reads to the reference genome using a splice-aware 

short read aligner that is able to also align reads across known and novel splice junctions. One 

of the first splice-aware aligners was TopHat (Trapnell et al., 2009), but it has since been 

surpassed both in speed and accuracy by newer aligners such as STAR (Dobin et al., 2013) 

and HISAT (Kim et al., 2015). After alignment, reads overlapping known gene annotations from 

databases such as GENCODE (Harrow et al., 2012) can be counted using multiple available 

tools such as featureCounts (Liao et al., 2014) or HTSeq (Anders et al., 2015). Reference 

genome alignments are also useful for visualising read coverage across the gene body. 
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Quantifying alternative transcription 

Many human genes express multiple alternative transcripts that can differ from each other in 

terms of function, stability or subcellular localisation of the protein product (Carpenter et al., 

2014; Wang et al., 2008). Considering expression only at a whole gene level can hide some of 

these important differences. Alternative transcription includes alternative promoter usage, 

alternative splicing, where middle exons are selectively included or excluded, and alternative 

polyadenylation. Two complementary approaches are often used to quantify changes in 

alternative transcription. One approach is to estimate the relative expression levels of all known 

transcripts of the gene that can best explain the observed RNA-seq read patterns across the 

gene body. The first methods that adopted this strategy were Flux Capacitor (Montgomery et al., 

2010), MISO (Katz et al., 2010) and cufflinks (Roberts et al., 2011b; Trapnell et al., 2013). 

These were later improved upon by more accurate methods such as mmseq (Turro et al., 2011) 

and BitSeq (Glaus et al., 2012) that outperformed their predecessor on independent benchmark 

datasets (Kanitz et al., 2015). A major limitation of these methods has been their computational 

complexity that can prevent them from being applied to studies with large numbers of samples. 

Newer quantification methods such as Sailfish (Patro et al., 2014), kallisto (Bray et al., 2016) 

and Salmon (Patro et al., 2016) omit the explicit reference genome alignment step and quantify 

gene expression levels directly using transcriptome sequences. This has been shown to 

dramatically reduce the time required for quantification.  

 

Even though the computational requirements have largely been resolved, important biological 

challenges still remain. First, genes often have multiple annotated transcripts that only differ 

from each other by a small amount of sequence, making it challenging to accurately estimate 

their expression from short read sequencing data. Secondly, many transcript annotations in the 

most comprehensive Ensembl database (Yates et al., 2016) are still incomplete and have either 

their 3’ or 5’ ends missing. Finally, many genes still have missing transcripts that have not been 

annotated. For example, a long gene might have three alternative promoters, two alternatively 

spliced exons and four alternative 3’ ends. If we make the assumption that most of these events 

are regulated independently, then this gene should have 2*3*4 = 24 alternative transcripts, but 

usually only a subset of these are present in the database. The assumption of independence is 

not completely unrealistic, because for example promoter selection and alternative splicing are 

regulated by independent molecular mechanisms (Barash et al., 2010). 
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A commonly used alternative analysis is to ignore the full transcript annotations and try to 

identify individual alternative transcription events independently. Two of the pioneers of this 

approach were DEXSeq (Anders et al., 2012) and MISO (Katz et al., 2010). DEXSeq aims to 

identify individual exons that are differentially expressed within a gene and as a result does not 

require the alternative exons to be previously annotated. MISO estimates the relative 

expression of alternative transcription events consisting of annotated alternative exons and their 

neighbouring exons. As a result, it is limited to annotated alternative exons but it can also take 

advantage of informative reads mapping to exon-exon junctions that are ignored by DEXSeq. 

Finally, LeafCutter (Li et al., 2016b) detects and quantifies clusters of alternatively excised 

introns directly from the read alignments by focussing on reads mapping to exon-exon junctions. 

In principle, this can be done without using reference transcript annotations, although in practice 

reference transcripts are usually still used during the read alignment phase to aid the detection 

of exon-exon junctions. 

Quantifying allele-specific expression 

In addition to total gene expression level, RNA-seq data can also provide information about the 

relative expression of the gene from the maternal and paternal chromosomes. This is possible 

when an individual is heterozygous at sites within the gene body, making it possible to count the 

number of RNA-seq reads that come from each allele. Allele-specific expression has been 

shown to increase the power to detect gene expression quantitative trait loci (eQTLs) (van de 

Geijn et al., 2015; Kumasaka et al., 2016). However, a major challenge is reference mapping 

bias - reads containing the non-reference allele can be less likely to be mapped than reads 

containing the reference allele. This is because read alignment algorithms penalise mismatches 

and reads containing the alternative allele will have at least one mismatch by definition. The 

simplest approach is to use a set of ad hoc rules to filter out variants that are likely to exhibit 

strong reference bias (Castel et al., 2015). A second approach is to deal with the issue at the 

time of read alignment either by using personalised reference genomes (Rozowsky et al., 2011) 

or editing the reads (van de Geijn et al., 2015). Finally, it is possible to use computational 

methods such as RASQUAL (Kumasaka et al., 2016) that explicitly model reference mapping 

bias. 

1.4.2 Chromatin state profiling 

As highlighted above, gene expression is predominantly regulated by the binding of transcription 

factors (TFs) to the promoters and distal regulatory elements. TF binding to a specific site often 
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leads to increased chromatin accessibility at the site as well as to covalent modification of 

nearby histones (Henikoff and Shilatifard, 2011). Hence, TF binding can be measured either 

directly using ChIP-seq or indirectly by measuring the levels of histone modifications (ChIP-seq) 

or chromatin accessibility (DNAse-seq (Furey, 2012), ATAC-seq (Buenrostro et al., 2013)) at the 

locus. 

ChIP-seq 

Chromatin immunoprecipitation followed by sequencing is a technique to identify the binding 

locations of specific proteins on the DNA (Furey, 2012). It is commonly used to detect the DNA 

binding locations of either TFs or modified histones. In ChIP-seq, proteins are first crosslinked to 

the DNA using formaldehyde, the DNA is then sheared and antibodies against a specific protein 

are used to selectively enrich for fragments that are bound by the protein of interest. Finally, the 

fragments are constructed into a library and sequenced. 

Chromatin accessibility 

The classical method to locate accessible chromatin regions has been DNAse I digestion 

followed by sequencing (DNAse-seq) (Bell et al., 2011). However, a major limitation of DNAse-

seq has been its requirement for large numbers of cells and laborious and complicated 

experimental protocols. Consequently, most existing DNAse data has been generated by large-

scale projects such as ENCODE (Neph et al., 2012) and Roadmap Epigenomics (Roadmap 

Epigenomics Consortium et al., 2015) in a small number of labs. This has changed recently with 

the introduction of ATAC-seq technique, which can be reliably performed even at the single cell 

level, and takes only a single day to complete (Buenrostro et al., 2013, 2015). ATAC-seq relies 

on Tn5 transposase that is used to insert Illumina sequencing adaptors into native chromatin. 

When Tn5 is used on intact nuclei this results in sequencing adaptors being preferentially 

integrated into regions of accessible chromatin. 

Data analysis 

After the reads have been aligned to the reference genome, the first steps is identifying regions 

(‘peaks’) that show either more protein binding or chromatin accessibility than the genome-wide 

background. Many different peak calling algorithms exist, but one commonly used method is 

MACS2 (Zhang et al., 2008b). Once the regions have been identified, we can quantify total and 

allele-specific signal using the same approaches that are used for RNA-seq data. 
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1.5 Genetics of molecular traits 

Genome wide association studies (GWAS) have identified thousands of genetic variants 

associated with various human traits and diseases. For example, as of 12 June 2016 the 

NHGRI-EBI GWAS catalog contains 21,941 unique variant-trait associations from 2457 studies 

(Welter et al., 2014). These variants lie predominantly in non-coding regions of the genome, 

making it difficult to identify the gene that is being affected as well as the relevant tissue and cell 

type for the disease (Maurano et al., 2012). However, GWAS variants are also enriched in gene 

regulatory elements (Farh et al., 2014; Maurano et al., 2012; Trynka et al., 2013) with different 

traits often showing enrichments in specific cell types and tissues, suggesting that many of the 

GWAS variants act by regulating the expression level of some nearby genes.  

 

Moreover, emerging evidence suggests that the gene closest to the GWAS variant is not 

necessarily regulated by it. For example, a variant in the first intron of the FTO gene that has 

been associated with body mass index was only recently found to regulate the expression of 

IRX3 and IRX5 genes that are up to 1 Mb away from the variant (Claussnitzer et al., 2015). 

These long-range interactions can be quite common, as illustrated by a recent joint analysis of 

GWAS summary statistics for multiple traits and blood eQTL data from 5,311 individuals (Zhu et 

al., 2016). They identified 126 genes where the GWAS signal and eQTL signal where consistent 

with a shared causal variant, and found that in ~60% of the cases the regulated gene was not 

the one closest to the lead GWAS variant. Hence, for variants that are further away from genes, 

distance might not be reliable, and additional information is necessary to identify the most likely 

target genes. One promising approach for linking GWAS hits to their target genes has been 

eQTL mapping studies. Intuitively, if the same genetic variant is associated with both the 

expression level of gene A and the risk of disease B then this can provide a hypothesis that the 

genetic variant might influence disease B via gene A. 

1.5.1 Genetics of gene expression 

Large-scale eQTL mapping studies have revealed that common variants regulating gene 

expression are ubiquitous. One of the largest human studies involving whole blood RNA-seq 

data 922 individuals identified at least one eQTL for 79% of the genes with quantifiable 

expression level (Battle et al., 2014). However, it remains unclear why most of these variants do 

not seem to have deleterious effects on organismal fitness. One possibility is that many of the 

eQTLs are buffered at the protein level. In support of this theory, shared eQTLs and protein 
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QTLs (pQTLs) identified in human lymphoblastoid cell lines (LCLs) tend to have smaller effect 

sizes on the protein level (Battle et al., 2015). Similar buffering effects have also been observed 

for pQTLs identified in Arabidopsis (Fu et al., 2009) and mouse (Chick et al., 2016; Ghazalpour 

et al., 2011). Alternatively, high variability in the expression levels of some genes might be 

tolerated without significant effect on the organismal fitness (Keren et al., 2016).  

 

Early on, it was identified that genetic variation influences gene expression in a cell type specific 

manner. Gene expression QTL mapping in three human tissues (adipose tissue, skin and LCLs) 

showed that on average 29% of the local eQTL were tissue-specific with substantial variation of 

sharing between different tissues (Nica et al., 2011). This has led to multiple individual eQTL 

mapping studies in various human cell types (monocytes (Fairfax et al., 2012), neutrophils 

(Naranbhai et al., 2015), B-cells (Fairfax et al., 2012), T-cells, to name a few) as well as large-

scale consortium efforts such as the Genotype-Tissue Expression (GTEx) (The GTEx 

Consortium, 2015) project that aims to perform RNA and genome sequencing on 44 tissues 

collected from up to 500 post-mortem donors. The relatively high cell type specificity of eQTLs is 

perhaps unsurprising given that patterns of TF binding that regulate gene expressions are highly 

cell type specific as highlighted above and even the same biological processes can be regulated 

by distinct sets of regulatory elements in different cell types (Soucie et al., 2016). 

 

However, an aspect that has gotten relatively less attention is that genetic effects can also be 

modulated by the environment that the cells are in. Early on, Smith and Kruglyak showed that 

many eQTLs in yeast were specific to the environment that the cells were grown in (ethanol 

versus glucose) (Smith and Kruglyak, 2008). Similar condition-specific genetic effects were later 

observed in mouse macrophages stimulated with either LPS or oxidized phospholipids (Orozco 

et al., 2012). The first human studies were performed on LCLs stimulated with glucocorticoids 

(N=114) (Maranville et al., 2011) and primary dendritic cells (N=65) infected with Mycobacterium 

tuberculosis (Barreiro et al., 2012). These have been followed by several studies involving 

different immune cells and additional stimuli (Table 1). 

 

Table 1: Selection of eQTL studies looking at gene-environment interactions in 
stimulated human cells. 

Study Cell type Stimulations Sample size 
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(Maranville et al., 

2011) 

Lymphoblastoid cell 

lines (LCLs) 

Glucocorticoids 114 individuals 

(Barreiro et al., 

2012) 

Dendritic cells Mycobacterium 

tuberculosis 

65 individuals 

(Fairfax et al., 

2014) 

Monocytes LPS (2h), LPS (24h), 

IFNɣ (24h) 

261-414 individuals 

(Lee et al., 2014) Dendritic cells LPS (5h), influenza 

(10h), IFNβ (6.5h) 

534 individuals 

(Kim et al., 2014) monocytes LPS (1.5h) 137 individuals 

(Çalışkan et al., 

2015) 

Peripheral blood 

mononuclear cells 

(PBMCs) 

Rhinovirus infection 98 individuals 

 

 

This area is still relatively underexplored given that for each human cell type there could be tens 

of relevant individual stimuli or combinations of stimuli that can modulate the effects of genetic 

variants on gene expression. Furthermore, the effect of a single stimulus can depend on the 

time when it was measured (Fairfax et al., 2014), thus increasing the number of relevant 

experimental conditions even further. With that many experimental conditions, obtaining enough 

cells from controlled genetic backgrounds becomes a major challenge. However, if efficient 

differentiation protocols are available, then iPSCs can be used to produce large numbers of 

differentiated cells from any cell type. 

1.5.2 Genetics of chromatin states 

A major limitation of eQTL mapping studies is that due to linkage disequilibrium we are mostly 

unable to identify the single most likely causal variant. This can severely hamper our ability to 

understand the principles of gene regulation and, as a consequence, means that even if we 

have a strong evidence of co-localisation between GWAS hit and an eQTL we might still not 

understand the molecular mechanism that gives rise to both of the traits.  
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A promising approach is to use the same QTL mapping approach to search for genetic variants 

that are associated with the activity of regulatory elements (i.e. regulatory QTLs). An advantage 

of regulatory QTLs is that they often reside within the same regulatory element, making it easier 

to predict the most likely causal variant (Degner et al., 2012; Ding et al., 2014). The activity of 

regulatory elements can be characterised by either measuring the levels transcription factor 

(TF) binding, histone modifications (both measured by ChIP-seq) or chromatin accessibility 

(measured by DNase-seq or ATAC-seq). Until recently, all of these approaches were limited by 

either complicated experimental protocols and/or the requirement of large number of cells, 

making it feasible to perform regulatory QTL mapping experiments only in LCL and in relatively 

small number of individuals. This has changed with the introduction of ATAC-seq technique that 

can be reliably performed on as few as 5,000 cells and takes only a single day to complete 

(Buenrostro et al., 2013). 

 

TF binding as measured by ChIP-seq is the most specific measurement, but this also means a 

separate experiment needs to be performed for each TF of interest. In addition, not all TFs have 

reliable ChIP-seq antibodies available and generally a large number of cells are required for a 

successful experiment (>10 million). Profiling the levels of histone modifications hides the 

identity of specific TFs, but can still reveal if the regulatory element is in a repressed, poised or 

active state. Finally, DNase-seq or ATAC-seq only reveal which regions of the chromatin are 

open or closed, but require only a single experiment, and in the case of ATAC-seq work on a 

very small number of cells and generally have higher resolution than histone ChIP-seq 

experiments. A selection of recent chromatin QTL studies is presented in Table 1.2. 
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Table 1.2: summary of recent chromatin QTL mapping studies. 

Study Cell type Phenotype Sample size 

(Kasowski et al., 2010) LCL NF-κB ChIP-seq 

RBP2 (Pol II) ChIP-seq 

10 individuals 

(Degner et al., 2012) YRI LCL DNAse-seq 70 individuals 

(Kasowski et al., 2013) LCL H3K27ac, H3K4me1, 

H3K4me3, H3K36me3, and 

H3K27me3 

CTCF 

SA1 (cohesin subunit) 

19 individuals 

(Kilpinen et al., 2013) LCL Histones: H3K4me1, 

H3K4me3, H3K27ac, 

H3K27me3 

TFs: TFIIB, PU.1, and MYC 

RPB2 (Pol II) 

2 trios + 8 individuals 

(subset of assays) 

(McVicker et al., 2013) YRI LCL H3K4me1, H3K4me3, 

H3K27ac, and H3K27me3 

Pol II 

10 individuals 

(Ding et al., 2014) CEU LCL CTCF ChIP-seq 51 individuals 

(Kumasaka et al., 2016) CEU LCL ATAC-seq 24 individuals 

(Grubert et al., 2015) YRI LCL H3K4me1, H3K4me3, 

H3K27ac 

75 individuals 

(Waszak et al., 2015) CEU LCL PU.1, RBP2 (Pol II)  

H3K4me1, H3K4me3, 

H3K27ac 

47 individuals 
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1.5.3 Using eQTLs to interpret GWAS associations 

If the same genetic variant is associated both with expression level of gene A and increased risk 

of disease B then this can provide a mechanistic hypothesis that the expression level of gene A 

influences the risk of disease B. However as highlighted above, eQTLs are extremely common 

and because of strong LD between variants there is often a large number of variants that are 

significantly associated with either gene expression level and/or disease risk. As a result, it is 

easy to get random overlaps between eQTLs and GWAS hits where the two associations are 

driven by different causal variants.  

 

To overcome this limitation, different approaches have been developed that compare the 

association patterns of two traits across many variants and try to identify if they are likely to be 

driven by the same causal variant. Although the amount of molecular QTL studies has been 

steadily increasing, the number GWAS hits that can be readily explained by eQTLs has still 

remained relatively small. A study of 49 type 1 diabetes loci and monocyte eQTLs from 1,370 

individuals identified 21 cases where the data was consistent with a shared causal variant 

driving both traits (Wallace et al., 2012). However, when a newer Bayesian colocalisation test 

(Giambartolomei et al., 2014) was applied to ten immune-mediated diseases and gene 

expression data from multiple immune cell types, it was able to identify only six confident 

colocalised associations (Guo et al., 2015). This is an active area of research and newer 

methods are continuously being developed and applied to ever larger data sets (Chun et al., 

2016; Hormozdiari et al., 2016; Zhu et al., 2016). 

 

Multiple factors might be responsible for the limited success of using eQTLs to interpret GWAS 

hits. One possible reason is that the disease relevant eQTLs might be active in very specific cell 

types and conditions and the limited eQTL studies that have been performed thus far have been 

unable to uncover them. Another reason is that if there are many variants that are in high LD 

with the causal variant, then even if the two traits have almost identical association profiles it is 

statistically impossible to distinguish if they are likely to be driven by the same causal variant or 

two different causal variants (Zhu et al., 2016). Finally, the disease-associated variants might 

affect other aspects of gene expression such as splicing, that are not captured by current eQTL 

mapping studies (Li et al., 2016c). 
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1.6 Outline of the thesis 

The second chapter of the thesis focusses on establishing human iPSC-derived macrophages 

as a model system to study innate immune responses. To this end, I compared the 

transcriptomes of human monocyte-derived and iPSC-derived macrophages (IPSDMs) before 

and after stimulation with LPS. I showed that IPSDMs are broadly similar to MDMs and exhibit a 

conserved response to LPS. I also analysed alternative promoter usage and 3’UTR shortening 

in LPS response both in MDMs and IPSDMs. 

 

The aim of the third chapter was to establish IPSDMs as a suitable model to study and discover 

the functions of common genetic variants. I first characterised the reliability and reproducibility of 

our macrophage differentiation protocol by analysing results from 138 macrophage 

differentiations from 123 different iPSC lines. Secondly, I characterised the sources of variation 

that have a strong effect on macrophage gene expression level so that they could be controlled 

for more effectively in future genomic studies. Finally, because flow cytometry is often used as a 

quality control step in cellular differentiation assays, I focussed on the factors that are 

responsible for variability in the expression of cell surface markers in IPSC-derived 

macrophages. 

  

In the fourth chapter, I used IPSDMs to study the genetics of gene expression in macrophage 

immune response. We performed RNA-seq on macrophage differentiated from 84 donors in four 

experimental conditions: naive, IFNɣ stimulation (18 hours), Salmonella infection (5 hours) and 

IFNɣ stimulation followed by Salmonella infection. I used this data to answer three main 

questions: How condition-specific are the genetic effects on gene expression in the four 

conditions and what proportion of associations remain undetected when studying the naïve cells 

alone? How does common genetic variation affect other aspects of transcription such as 

alternative promoter usage, alternative splicing and alternative polyadenylation? What are the 

complex traits whose genetic risk variants are most enriched among macrophage eQTLs and 

alternative transcription QTLs? 

 

Finally, in the fifth chapter we used ATAC-seq to measure chromatin accessibility in up to 42 

individuals in the same four experimental conditions used in chapter 4. I then identified 

chromatin accessibility QTLs (caQTLs) and compared them to eQTLs from chapter 4 to explore, 

how condition-specific are genetic effect on chromatin accessibility compared to gene 
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expression. I also studied, how genetic effects propagate from chromatin accessibility to gene 

expression between experimental stimulations. Finally, I tested if caQTLs could be used to fine 

map causal variants underlying eQTLs and GWAS associations.   
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2 Comparison of monocyte-derived and 

iPSC-derived macrophages 
 

Collaboration note 

The work described in this chapter has been published as “Transcriptional profiling of 

macrophages derived from monocytes and iPS cells identifies a conserved response to LPS 

and novel alternative transcription” (Alasoo et al., 2015). I performed the iPSC-derived 

macrophage experiments and analysed the data. Fernando O. Martinez from the University of 

Oxford performed the monocyte-derived macrophage experiments. Subhankar Mukhopadhyay 

and Gordon Dougan were involved in designing and optimising the experiments and interpreting 

the results. RNA-seq library construction and sequencing was done by DNA Pipelines core 

facility at Sanger. I thank Kosuke Yusa and Mariya Chhatriwala for fruitful discussions on 

troubleshooting iPSC culture. 

2.1 Introduction 

Macrophages are key cells associated with innate immunity, pathogen containment and 

modulation of the immune response (Murray and Wynn, 2011; Wynn et al., 2013). Commonly 

used model systems for studying macrophage biology have included macrophage-like leukemic 

cell lines, primary macrophages derived from model organisms and primary human 

macrophages differentiated from blood monocytes. Although these cells have provided 

important insights into macrophage-associated biology, they have some limitations. 

Immortalised cell lines often have accumulated multiple genetic aberrations and can exhibit 

functional defects compared to primary cells such as impaired cytokine production upon 

inflammatory stimulation (Adati et al., 2009; Schildberger et al., 2013), while multiple functional 

differences exist between macrophages from different species (Schroder et al., 2012). 

Additionally, human monocyte derived macrophages (MDMs) can be difficult to obtain in 

sufficient numbers for repeated experimental assays and it is currently challenging to introduce 

targeted mutations into their genomes, limiting their utility in genetic studies. For example, 

introduction of foreign nucleic acid into the cytosol induces a robust antiviral response that may 

make it difficult to interpret experimental data (Muruve et al., 2008). 
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Recently, methods have been developed to differentiate macrophage-like cells from human 

induced pluripotent stem cells (IPSCs) that have the potential to complement current 

approaches and overcome some of their limitations (Karlsson et al., 2008; van Wilgenburg et 

al., 2013). This approach is scalable and large numbers of highly pure iPSC-derived 

macrophages (IPSDMs) can be routinely obtained from any human donor following 

establishment of an iPSC line. IPSDMs also share striking phenotypic and functional similarities 

with primary human macrophages (Karlsson et al., 2008; van Wilgenburg et al., 2013). Since 

human iPSCs are amenable to genetic manipulation, this approach can provide large numbers 

of genetically modified human macrophages (van Wilgenburg et al., 2013). Previous studies 

have successfully used IPSDMs to model rare monogenic defects that severely impact 

macrophage function (Jiang et al., 2012). However, it remains unclear how closely IPSDMs 

resemble primary human monocyte-derived macrophages (MDMs) at the transcriptome level 

and to what extent they can be used as an alternative model for functional assays.  

 

Here, we provide an in-depth comparison of the global transcriptional profiles of naïve and 

lipopolysaccharide (LPS) stimulated IPSDMs with MDMs using RNA-seq. We found that their 

transcriptional profiles were broadly similar in both naïve and LPS-stimulated conditions. 

However, certain chemokine genes as well as genes involved in antigen presentation and tissue 

remodelling were differentially regulated between MDMs and IPSDMs. Additionally, we 

identified novel changes in alternative transcript usage following LPS stimulation suggesting that 

alternative transcription may represent an important component of the macrophage immune 

response. 

2.2 Methods 

2.2.1 Samples 

Human blood for monocyte-derived macrophages was obtained from NHS Blood and 

Transplant, UK and all experiments were performed according to guidelines of the University of 

Oxford ethics review committee. All IPSDMs were differentiated from four iPSC lines: CRL1, 

S7RE, FSPS10C and FSPS11B. CRL1 iPSC line was originally derived from a commercially 

available human fibroblast cell line and has been described before (Vallier et al., 2009). S7RE 

iPSC line was derived as part of an earlier study from our lab (Rouhani et al., 2014). FSPS10C 
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and FSPS11B iPSC lines were derived as part of the Human Induced Pluripotent Stem Cell 

Initiative (Kilpinen et al., 2016). All iPSC work was carried out in accordance to UK research 

ethics committee approvals (REC No. 09/H306/73 & REC No. 09/H0304/77). 

2.2.2 Cell culture and reagents 

IPSCs were grown on Mitomycin C-inactivated mouse embryonic fibroblast (MEF) feeder cells 

in Advanced DMEM F12 (Gibco) supplemented with 20% KnockOut Serum Replacement 

(Gibco, cat no 10828-028), 2mM L-glutamine, 50 IU/ml penicillin, 50 IU/ml streptomycin and 50 

µM 2-mercaptoethanol (Sigma M6250) on 10 cm tissue-culture treated dishes (Corning). The 

medium was supplemented with 4 ng/ml rhFGF basic (R&D) and changed daily (10 ml per dish). 

Prior to passage, the cells were detached from the dish with 1:1 solution of 1 mg/ml collagenase 

and 1mg/ml dispase (both Gibco). Human macrophage colony stimulating factor (M-CSF) 

producing cell line CRL-10154 was obtained from ATCC. The cells were grown in T150 tissue 

culture flasks containing 40 ml of medium (90% alpha minimum essential medium (Sigma), 10% 

FBS, 2mM L-glutamine, 50 IU/ml penicillin, 50 IU/ml streptomycin). On day 9 the supernatant 

was sterile-filtered and stored at -80°C. 
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Figure 2.1. Biological reproducibility of IPSDM differentiation. Two biological replicates of 

FSPS10C-derived IPSDMs differentiated with either supernatant (SUP_1 and SUP_2) or 

recombinant M-CSF (MCSF_1 and MCSF_2). Above diagonal: pairwise scatterplots of 

expressed genes (transcripts per million (TPM) > 1) between all four samples. Below diagonal: 

pairwise Spearman’s correlation of gene expression between all four samples. 

 

IPSCs were differentiated into macrophages following a previously published protocol consisting 

of three steps: i) embryoid body (EB) formation, ii) production of myeloid progenitors from the 

EBs and iii) terminal differentiation of myeloid progenitors into mature macrophages (van 
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Wilgenburg et al., 2013). For EB formation, intact iPSC colonies were separated from MEFs 

using collagenase-dispase solution, transferred to 10 cm low-adherence bacteriological dishes 

(Sterilin) and cultured in 25 ml iPSC medium without rhFGF for 3 days. Mature EBs were 

resuspended in myeloid progenitor differentiation medium (90% X-VIVO 15 (Lonza), 10% FBS, 

2mM L-glutamine, 50 IU/ml penicillin, 50 IU/ml streptomycin and 50 μM 2-mercaptoethanol 

(Sigma M6250), 50 ng/ml hM-CSF (R&D), 25 ng/ml hIL-3 (R&D)) and plated on 10 cm 

gelatinised tissue-culture treated dishes. Medium was changed every 4-7 days. After 3-4 weeks, 

floating progenitor cells were isolated from the adherent EBs, filtered using a 40 µm cell strainer 

(Falcon) and resuspended in macrophage differentiation medium (90 % RPMI 1640, 10% FBS, 

50 IU/ml penicillin and 50 IU/ml streptomycin) supplemented with 20% supernatant from CRL-

10154 cell line. Approximately 7×105 cells in 15 ml of media were plated on a 10 cm tissue-

culture treated dish and cultured for 7 days until final differentiation. We observed that using 

supernatant instead of 100 ng/ml M-CSF as specified in the original protocol (van Wilgenburg et 

al., 2013) did not alter macrophage gene expression profile. The variation between cells 

differentiated with supernatant or M-CSF was comparable to the variation between two 

biological replicates of macrophages differentiated with M-CSF (Figure 2.1). 

 

Human monocytes (90-95% purity) were obtained from healthy donor leukocyte cones 

(corresponding to 450 ml of total blood) by 2-step gradient centrifugation (Martinez, 2012; 

Martinez et al., 2006). The monocyte fraction in this type of preparation is on average 98% 

CD14+, 13% CD16+ by single staining. The isolated monocytes were cultured for 7 days in the 

same macrophage differentiation medium as IPSDMs. The same seeding density and tissue-

culture treated plastic was used as for IPSDMs. Non-adherent contaminating cells were 

removed by vigorous washing before cell lysis at day 7. 

 

On day 7 of macrophage differentiation, medium was replaced with either 10 ml of fresh 

macrophage medium (without M-CSF) or medium supplemented with 2.5 ng/ml LPS (E. coli). 

After 6 hours, cells were lifted from the plate using lidocaine solution (6 mg/ml lidocaine, PBS, 

0.0002% EDTA), counted with haemocytometer (C-Chip) and lysed in 600 µl RLT buffer 

(Qiagen). All cells from a dish were used for lysis and subsequent RNA extraction.  

2.2.3 Flow cytometry 

Flow cytometry was used to characterise the IPSDM cell populations used in the experiments. 

Approximately 1×106 cells were resuspended in flow cytometry buffer (D-PBS, 2% BSA, 0.001% 
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EDTA) supplemented with Human TruStain FcX (Biolegend) and incubated for 45 minutes on 

ice to block the Fc receptors. Next, cells were washed once and resuspended in buffer 

containing one of the antibodies or isotype control. After 1 hour, cells were washed three times 

with flow cytometry buffer and immediately measured on BD LSRFortessa cell analyser. The 

following antibodies (BD) were used (cat no): CD14-Pacific Blue (558121), CD32-FITC 

(552883), CD163-PE (556018), CD4-PE (561844), CD206-APC (550889) and PE isotype 

control (555749). The data were analysed using FlowJo. The raw data are available on figshare 

(doi: 10.6084/m9.figshare.1119735). 

2.2.4 RNA extraction and sequencing 

RNA was extracted with RNeasy Mini Kit (Qiagen) according to the manufacturer’s protocol. 

After extraction, the sample was incubated with Turbo DNase at 37°C for 30 minutes and 

subsequently re-purified using RNeasy clean-up protocol. Standard Illumina unstranded poly-A 

enriched libraries were prepared and then sequenced 5-plex on Illumina HiSeq 2500 generating 

20-50 million 75bp paired-end reads per sample. RNA-seq data from six iPSC samples was 

taken from a previous study (Rouhani et al., 2014). Sample information together with the total 

number of aligned fragments are detailed in Table 2.1.  

 

Table 2.1: General information about the RNA-seq samples. Library size column contains 

the total number of aligned fragments per sample. 

Sample Donor Cell	type Treatment Library	size 

S7_RE15 S7RE IPSC control 83280070 

S7_RE11 S7RE IPSC control 72411619 

S4_SF5 S4SF IPSC control 72167859 

S4_SF3 S4SF IPSC control 72427265 

S5_SF1 S5SF IPSC control 90998616 

S5_SF3 S5SF IPSC control 83746320 

CRL1_ctrl CRL1 IPSDM control 47052432 

S7RE_ctrl S7RE IPSDM control 25322078 

FSPS10C_ctrl FSPS10C IPSDM control 23443481 

FSPS11B_ctrl FSPS11B IPSDM control 19933949 

CRL1_LPS CRL1 IPSDM LPS 33985920 



 41 

S7RE_LPS S7RE IPSDM LPS 24349911 

FSPS10C_LPS FSPS10C IPSDM LPS 24570506 

FSPS11B_LPS FSPS11B IPSDM LPS 24394255 

B1_ctrl B1 MDM control 23381545 

B4_ctrl B4 MDM control 47790764 

B5_ctrl B5 MDM control 26056124 

B2_ctrl B2 MDM control 20901894 

B3_ctrl B3 MDM control 26059134 

B1_LPS B1 MDM LPS 20748290 

B4_LPS B4 MDM LPS 25538994 

B5_LPS B5 MDM LPS 56227352 

B2_LPS B2 MDM LPS 24456569 

B3_LPS B3 MDM LPS 24075743 

 

2.2.5 RNA-seq data analysis  

Differential expression 

Sequencing reads were aligned to GRCh37 reference genome with Ensembl 74 annotations 

using TopHat v2.0.8b (Kim et al., 2013). Reads overlapping gene annotations were counted 

using featureCounts (Liao et al., 2014) and DESeq2 (Love et al., 2014) was used to identify 

differentially expressed genes. Genes with FDR < 0.01 and fold-change > 2 were identified as 

differentially expressed. We used g:Profiler to perform Gene Ontology and pathway enrichment 

analysis (Reimand et al., 2011). For conditional enrichment analysis of the genes differentially 

regulated in LPS response we used all LPS-responsive genes as the background set. All 

analysis was performed on genes classified as expressed in at least one condition (TPM > 2) 

except where noted otherwise. The bedtools (Quinlan and Hall, 2010) suite was used to 

construct BigWig files with genome-wide read coverage. All downstream analysis was carried 

out in R and ggplot2 was used for figures.  

Effect of genetic differences on differential expression analysis 

To estimate the contribution that genetic differences between IPSDMs and MDMs might have 

on the differential expression analysis, I obtained gene level RNA-seq read counts from 
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lymphoblastoid cell lines (LCLs) from 84 British individuals from a previously published study 

(Lappalainen et al., 2013). To mimic our experimental design, I repeatedly (100 times) sampled 

9 individuals from the pool of 84, assigned them randomly into two groups (four and five 

individuals) and used DESeq2 to estimate the number of differentially expressed genes 

between the groups that satisfied the same thresholds that I used in the main analysis (FDR < 

0.01, fold change > 2). 

Alternative transcript usage 

To quantify alternative transcript usage, reads were aligned to Ensembl 74 transcriptome using 

bowtie v1.0.0 (Langmead et al., 2009). Next, I used mmseq and mmdiff to quantify transcript 

expression and identify transcripts whose proportions had significantly changed (Turro et al., 

2011, 2014). For each transcript I estimated the posterior probability of five models (i) no 

difference in isoform proportion (null model), (ii) difference between LPS treatment and control 

(LPS effect), (iii) difference between IPSDMs and MDMs (macrophage type effect), (iv) 

independent treatment and cell type effects (both effects), (v) LPS response different between 

MDMs and IPSDMs (interaction effect). I specified the prior probabilities as (0.6, 0.1, 0.1, 0.1, 

0.1) reflecting the prior belief that most transcripts were not likely to be differentially expressed. 

Transcripts with posterior probability of the null model < 0.05 were considered significantly 

changed. 
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Figure 2.2. Constructing alternative transcription events from annotated transcripts. (A) 
Hypothetical RNA-seq read coverage over a gene indicating that there is switch from proximal 

to distal promoter between conditions 1 and 2. (B) True transcript annotations generating the 

read coverage observed on panel A. (C) Hypothetical reference transcripts detected to be 

differentially expressed between conditions 1 and 2. Note that the true transcript 2A from which 

the reads were generated was not present in the annotated transcripts. Consequently, different 

transcript 2B was detected to be differentially expressed that also had a skipped exon 4 and 

shorter 3′ UTR. Comparing transcript 1 to transcript 2B gives the wrong impression that exon 4 

and the 3′ UTR are also differentially expressed although their read coverage has not changed 

between the conditions. (D) Three alternative transcription events constructed from transcripts 1 
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and 2B using the reviseAnnotations package. Estimating the differential expression of these 

alternative events separately correctly identifies that only the promoter usage changes between 

conditions. 

 

Next, I used a two-step process to identify the exact alternative transcription events (alternative 

promoter usage, alternative splicing or alternative 3′ end usage) that were responsible for the 

observed changes in transcript proportions. First, to identify all potential alternative transcription 

events in each gene, I compared the transcript whose proportion changed the most between the 

two conditions to the most highly expressed transcript of the gene (Figure 2.2). This analysis 

revealed that for 93% of the genes the two selected transcripts differed from each other in more 

than one location, for example both the promoters and alternative 3′ ends were different 

between the two transcripts. However, visual inspection of the read coverage plots suggested 

that in majority of these cases there was only one change between the two transcripts and the 

other changes were false positives caused by missing or incomplete transcript annotations. To 

identify which one of the changes was responsible for the alternative transcription signal, I 

developed the reviseAnnotations R package (https://github.com/kauralasoo/reviseAnnotations) 

to split the two identified transcripts into individual alternative transcription events (Figure 2.2). 

Next, I reanalysed the RNA-seq data using exactly the same strategy as described above 

(bowtie + mmseq + mmdiff) but substituted Ensembl 74 annotations with the identified 

transcription events. Finally, I required events to change at least 10% in proportion between the 

two conditions to be considered for downstream analysis. This analysis revealed that instead of 

the 93% suggested by the transcript level analysis, only 4% of the genes had more than one 

event whose proportion changed at least 10%, indicating that transcript level analysis leads to a 

large number of false positives. Our event-based approach is similar to the one used by the 

Mixture of Isoforms (MISO) model (Katz et al., 2010).  

Visualising alternative transcript usage 

I developed the wiggleplotr R package (https://github.com/kauralasoo/wiggleplotr) to aid the 

visualisation of RNA-seq read coverage across alternative transcription events. A key feature of 

the software is that it allows introns to be shortened to constant width thus making it easier to 

see differences in read coverage between neighbouring exons in genes with long introns. 
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2.3 Gene expression variation between iPSCs, IPSDMs and 

MDMs 

2.3.1 Global patterns of gene expression 

RNA-seq was used to profile the transcriptomes of MDMs derived from five and IPSDMs 

derived from four different individuals (Methods). Identical preparation, sequencing and 

analytical methodologies were used for all samples. Initially, I used Principal Component 

Analysis (PCA) to generate a genome-wide overview of the similarities and differences between 

naïve and LPS-stimulated IPSDMs and MDMs as well as undifferentiated iPSCs. The first 

principal component (PC1) explained 50% of the variance and clearly separated iPSCs from all 

macrophage samples (Figure 2.3A) illustrating that IPSDMs are transcriptionally much more 

similar to MDMs compared to undifferentiated iPSCs. This was further confirmed by high 

expression of macrophage specific markers and low expression of pluripotency factors in 

IPSDMs (Figure 2.3B). The second PC separated naïve cells from LPS-stimulated cells and 

explained 16% of the variance, while the third PC, explaining 8% of the variance, separated 

IPSDMs from MDMs. The principal component that separated IPSDMs from MDMs (PC3) was 

different from that separating macrophages from iPSCs (PC1). Since principal components are 

orthogonal to one another, this suggests that the differences between MDMs and IPSDMs are 

beyond the simple explanation of incomplete gene activation or silencing compared to iPSCs.  
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Figure 2.3. Gene expression variation between iPSCs, IPSDMs and MDMs. (A) Principal 

Component Analysis of expressed genes (TPM > 2) in iPSCs, IPSDMs and MDMs. (B) 
Heatmap showing the gene expression of selected iPSC-specific transcription factors (TFs), 

macrophage specific TFs, pattern recognition receptors (PRRs) and canonical macrophage cell 

surface markers. Rectangles correspond to measurements from independent biological 

replicates. 
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2.3.2 Differential expression analysis of IPSDMs vs MDMs 

Table 2.2. Selection of enriched Gene Ontology terms and KEGG pathways for different 
groups of differentially expressed genes. 

 
 

Although PCA provides a clear picture of global patterns and sources of transcriptional variation 

across all genes in the genome, important signals at individual genes might be missed. To 

better understand transcriptional changes at the gene level I used a two factor linear model 

implemented in the DESeq2 package (Love et al., 2014). The model included an LPS effect, 

capturing differences between unstimulated and stimulated macrophages and a macrophage 
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type effect capturing differences between MDMs and IPSDMs. Our model also included an 

interaction term that identified genes whose response to LPS differed between MDMs and 

IPSDMs. I defined significantly differentially expressed genes as having a fold-change of >2 

between two conditions using a p-value threshold set to control our false discovery rate (FDR) 

to 0.01.  

 

Using these thresholds, I identified 2977 genes that were differentially expressed between 

unstimulated IPSDMs and MDMs. Among these genes, 2080 were more highly expressed in 

IPSDMs and 897 were more highly expressed in MDMs (Figure 2.4A). Genes that were more 

highly expressed in MDMs such as HLA-B, LYZ, MARCO and HLA-DRB1 (Figure 2.4C), were 

significantly enriched for antigen binding, phagosome and lysosome pathways (Table 2.2). This 

result is consistent with a previous report that MDMs have higher cell surface expression of 

MHC-II compared to IPSDMs (Karlsson et al., 2008; van Wilgenburg et al., 2013). Genes that 

were more highly expressed in IPSDMs, such as MMP2, VEGFC and TGFB2 (Figure 2.4C) 

were significantly enriched for cell adhesion, extracellular matrix, angiogenesis, and multiple 

developmental processes (Table 2).  

 

In the LPS response I identified 2638 genes that were differentially expressed in both MDMs 

and IPSDMs, of which 1525 genes were upregulated while 1113 were downregulated. As might 

be expected, Gene Ontology and KEGG pathway analysis revealed large enrichment for terms 

associated with innate immune and LPS response, NF-κB and TNF signalling (Table 2.2). I also 

identified 569 genes whose response to LPS was significantly different between IPSDMs and 

MDMs. The majority of these genes (365) responded in the same direction in both IPSDMs and 

MDMs, but the magnitude of change was significantly different. The remaining 229 genes 

showed a change in the opposite direction (8.7% of the LPS-responsive genes) (Figure 2.4B). 

This set of 229 were much weaker responders to LPS overall (2.3-fold compared to 4.7-fold). 

Additionally, I could not find convincing pathway or Gene Ontology enrichment signals in either 

gene set (229 and 569 genes) compared to all LPS-responsive genes. Overall, I found that the 

fold change of the genes that responded to LPS was highly correlated between MDMs and 

IPSDMs (r = 0.82, Figure 2.4B) indicating that the LPS response in these two macrophage 

types was broadly conserved. Interestingly, I also found that mean fold change was marginally 

(10%) higher in MDMs (4.95) compared to IPSDMs (4.43). The behaviour of some canonical 

LPS response genes is illustrated in Figure 2.4D. 
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Figure 2.4. Differential expression analysis of IPSDMs vs MDMs. (A) Scatter plot of gene 

expression levels between MDMs and IPSDMs. Genes that are significantly more highly 

expressed in IPSDMs are shown in red and genes that are significantly more highly expressed 

in MDMs are shown in blue. (B) Scatter plot of fold change in response to LPS between MDMs 
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(x-axis) and IPSDMs (y-axis). Only genes with significant LPS or interaction term in the linear 

model are shown. Genes with LPS response fold change in the opposite direction between 

MDMs and IPSDMs are highlighted in purple. (C) Heatmap of genes differentially expressed 

between MDMs and IPSDMs. Representative genes from significantly overrepresented Gene 

Ontology terms (Table 1) include antigen presentation (HLA genes), lysosome formation (LYZ), 

angiogenesis (VEGFC, TGFB2), and extracellular matrix (SERPINE2, MMP2 COL4A5). The 

same genes are also marked in panel A. (D) Heatmap of example genes upregulated in LPS 

response.  

 

Although genes with significantly different response to LPS between MDMs and IPSDMs were 

not enriched for particular Gene Ontology terms or pathways, IL8 and CCL7 mRNAs were more 

strongly upregulated in IPSDMs compared to MDMs (Figure 2.4B). Consequently, I looked at 

the response of all canonical chemokines in an unbiased manner. I observed relatively higher 

induction of further CXC subfamily monocyte and neutrophil attracting chemokines in IPSDMs 

(Figure 2.3). Moreover, five out of seven CXCR2 ligands (Zlotnik and Yoshie, 2012) were more 

strongly induced in IPSDMs (FDR < 0.1, fold-change difference between MDMs and IPSDMs > 

2) which is significantly more than is expected by chance (Fisher’s exact test p = 4.5×10-6) 

(Figure 2.5). These genes were also expressed at substantial levels (TPM > 100), with IL8 

being one of the most highly expressed gene in IPSDMs after LPS stimulation. On the other 

hand, MDMs displayed relatively higher induction of three chemokines involved in attracting B-

cells, T-cells and dendritic cells (CCL18, CCL19, CXCL13) (Figure 2.5). 
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Figure 2.5. Chemokine genes that were particularly upregulated in either IPSDMs or 
MDMs in LPS response. Their annotated receptors and target cell types were taken from the 

literature (Soehnlein and Lindbom, 2010; Zlotnik and Yoshie, 2012). 

2.3.3 Mechanisms underlying differences between MDMs and IPSDMs 

To understand the mechanisms that might underlie the gene expression differences between 

MDMs and IPSDMs, I focussed on three hypotheses: (1) a minority contaminating cell 

population in IPSDM samples that is absent in MDMs, (2) genetic differences between donors 

from which the IPSDMs and MDMs were derived, and (3) incomplete differentiation from iPSCs 

resulting in developmentally immature macrophages that might exhibit some properties of the 

iPSCs. The high purity of our IPSDM samples (92-98%) (Table 2.3) and MDM samples 

(routinely 90-95% pure) suggested that there was no obvious contaminating cell type present 

that did not express the canonical macrophage markers. Furthermore, even the 99% pure 

IPSDM samples retained most of the differential expression with MDMs (Figure 2.6A) 

suggesting contamination is not a major source of IPSDM-MDM differences.  

 

Table 2.3. Purity of iPSC-derived macrophages. We used flow cytometry to estimate the 

percentage of cells expressing five cell surface markers in IPSDMs differentiated from three 

IPSC lines.       



 52 

Marker / Cell line FSPS10C FSPS11B S7RE 

CD14 98.6 90.4 91.2 

CD206 99.5 85.1  

CD4 99.5 92.8 92.9 

CD32 94.8  87.6 

CD163 74.1 92 85.6 

 

Alternatively, IPSDMs could be incompletely differentiated from iPSCs. Under this model, genes 

that are expressed in iPSCs but repressed in mature macrophages would be more highly 

expressed in IPSDMs compared to MDMs. Consistent with this hypothesis, genes that were 

more highly expressed in IPSDMs were often also expressed in iPSCs (Figure 2.4C, Figure 

2.6A). Furthermore, while the majority of the genes that were more highly expressed in MDMs 

had mean expression > 2 TPM in both cell types, a large proportion of the genes that were more 

highly expressed in IPSDMs had mean expression < 1 TPM across both cell types (Figure 

2.6B), suggesting that their expression level in IPSDMs might be too low to be functional. 

Moreover, the promoters of the upregulated genes were highly enriched for repressive 

H3K27me3 histone marks in CD14+ monocytes (The ENCODE Project Consortium, 2012) 

(Figure 2.6C), suggesting that these genes normally become silenced prior to monocyte-

macrophage differentiation in vivo and may not have been completely silenced in IPSDMs.  

 

Finally, it is possible that some of the differences between IPSDMs and MDMs could be 

confounded with genetic differences between the donors. For example, by chance, the different 

individuals from which the IPSDMs and MDMs were derived could be fixed for alternate alleles 

of a cis-regulatory variant that changes the expression of a given gene, which would appear to 

be differentially expressed between the two cell types. However, since all our IPSDM and MDM 

donors were randomly sampled from the same population, strong clustering of IPSDM and 

MDM samples in the PCA analysis (Figure 2.3A) suggests that genetics is not a major source of 

differences between these cell types. To address this quantitatively, I reanalysed an 

independent RNA-seq data from 84 British individuals (Lappalainen et al., 2013). I found only a 

median of three differentially expressed genes between any two random samples of 4 and 5 
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individuals (Figure 2.6D). This suggests that only a small fraction of the differences between 

MDMs and IPSDMs are likely to be due to genetics. 

 

 
Figure 2.6: Mechanisms underlying differential expression between MDMs and IPSDMs. 
(A) Expression levels of genes that were more highly expressed in IPSDMs compared to MDMs 

(TPM > 2). Purple violin plots show the mean expression of these genes in MDMs and orange in 

IPS cells. Red asterisks mark IPSDM samples (FSPS10C) that stained > 99% positive for 

CD14, CD206 and CD4 while S7RE and FSPS11B samples were ~91% positive. (B) MA-plot of 

differentially expressed genes between MDMs and IPSDMs (without TPM cut-off). On the y-axis 

is the DESeq2 estimate of fold-change between MDMs and IPSDMs. Red line denotes the 2 

TPM cut-off used in most analyses. (C) Fraction of gene promoters overlapping H3K27Me3 

peaks in ENCODE CD14+ monocyte samples stratified by the percentile of gene expression 
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level. Up - genes upregulated in IPSDMs; Down - downregulated in IPSDMs; None - not 

differentially expressed between MDMs and IPSDMs. (D) Histogram of the number of 

differentially expressed genes between two groups of randomly selected individuals. 

2.4 Global variation in alternative transcript usage 

Many human genes express multiple transcripts that can differ from each other in terms of 

function, stability or subcellular localisation of the protein product (Carpenter et al., 2014; Wang 

et al., 2008). Considering expression only at a whole gene level can hide some of these 

important differences. Therefore, we sought to quantify how similar were naïve and stimulated 

IPSDMs and MDMs at the individual transcript expression level. Here, we first used mmseq 

(Turro et al., 2011) to estimate the most likely expression level of each annotated transcript that 

would best fit the observed pattern of RNA-seq reads across the gene. Next, we calculated the 

proportion of total expression accounted for by each transcript by dividing transcript expression 

by the overall expression level of the gene, only including genes that were expressed over two 

transcripts per million (TPM) (Wagner et al., 2012) in all experimental conditions (8284 genes). 

Since the proportions of all transcripts of a gene sum to one and most genes express one 

dominant transcript (Gonzàlez-Porta et al., 2013), I used the proportion of the most highly 

expressed transcript as a proxy to capture variation in transcript proportions within a gene. In 

this context and similarly to gene level analysis, the first PC explained 31% of the variance and 

clearly separated IPSCs from macrophages (Figure 2.7A). However, the second PC (11% of 

variance) not only separated unstimulated cells from stimulated cells but also IPSDMs from 

MDMs. One interpretation of this result is that the changes in transcript proportions between 

IPSDMs and MDMs, to some extent, also resemble those induced in the LPS response. Further 

analysis (below) highlighted that much of this variation can be explained by changes in 3′ 

untranslated region (UTR) usage. 
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Figure 2.7. Alternative transcription in IPSDMs and MDMs. (A) PCA of relative transcript 

proportions in iPSCs, IPSDMs and MDMs. Only genes with mean TPM > 2 in all conditions were 
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included. (B) Alternative transcription events detected in LPS response. Each point corresponds 

to an alternative transcription event and shows the absolute change in the proportion of the 

most highly expressed transcript (across all samples) in LPS response in MDMs (x-axis) and 

IPSDMs (y-axis). (C) All detected alternative transcription events were divided into three groups 

based on whether they affected alternative promoter, alternative splicing or alternative 3′ end of 

the transcript. For each event, we plotted its change in proportion in LPS response (x-axis) 

against its change between macrophage types (y-axis). The events are coloured by the most 

parsimonious model of change selected by mmseq: LPS effect (difference between naïve and 

LPS-stimulated cells only); macrophage (MF) type (difference between IPSDMs and MDMs 

only); both (data support both MF type and LPS effects). (D) Number of alternative transcription 

events form panel C grouped by position in the gene (alternative promoter, alternative splicing, 

alternative 3′ end) and most parsimonious model selected by mmseq. (e) Relative expression of 

long alternative 3′ UTRs in genes showing a change between IPSDM and MDMs (MF type), 

between naïve and LPS-stimulated cells (LPS effect) and for genes showing both types of 

change. 

2.4.1 Identification and characterisation of alternative transcription events 

Alternative transcription can manifest in many forms, including alternative promoter usage, 

alternative splicing and alternative 3′ end choice, each likely to be regulated by independent 

biological pathways. Thus, I sought to characterise and quantify how these different classes of 

alternative transcription events were regulated in the LPS response, and between MDMs and 

IPSDMs. Using a linear model implemented in the mmdiff (Turro et al., 2014) package followed 

by a series of downstream filtering steps (Methods) we identified 504 alternative transcription 

events (ATEs) in 485 genes. Out of those, 145 events changed between unstimulated IPSDMs 

and MDMs (macrophage (MF) type effect) while 156 events changed between naive and LPS 

stimulated cells across macrophage types (LPS effect). Further 197 events had different 

baseline expression between macrophage types, but also changed in the same direction after 

LPS stimulation (Both effects). Finally, only 6 events change in the opposite direction after LPS 

stimulation between MDMs and IPSDMs (Figure 2.7B). Next, I focussed on the 359 events that 

changed in the LPS response in at least one macrophage type (156 + 197 events with LPS 

response in the same direction and 6 events with LPS response in the opposite direction). I 

found that the LPS-induced change in the proportion of the most highly expressed transcript 

was highly correlated between MDMs and IPSDMs (Pearson r = 0.83) (Figure 2.7B), further 

confirming that the LPS response in both macrophage types is conserved. 
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Perhaps surprisingly, although the transcriptional response to LPS at the whole gene level is 

relatively well understood, the effect of LPS on transcript usage has remained largely 

unexplored. Therefore, I decided to investigate the types of alternative transcription events 

identified in LPS response as well as between MDMs and IPSDMs (See Methods for details). 

Most protein coding changes in LPS response were generated by alternative promoter usage 

(Figure 2.7C-D). In total, I identified 180 alternative promoter events, 51 of which changed the 

coding sequence by more than 100 bp in LPS response. Strikingly, alternative promoter events 

displayed larger change in proportion than other events so that often the most highly expressed 

transcript of the gene changed between cell types and conditions (Figure 2.7C). Alternative 

promoter usage for three example genes is illustrated on Figure 2.8. 
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Figure 2.8. Examples of alternative promoter usage in LPS response. Each plot shows 

normalised read depth across the gene body in IPSDMs (green) and MDMs (purple) with gene 

structure in the panel beneath each plot. Introns have been compressed relative to exons to 

facilitate visualisation. (A-C) Alternative promoter usage in NCOA7, OSBPL9 and OSBPL1A 

genes. 

 

I also observed widespread alternative 3′ end usage both in the LPS response as well as 

between MDMs and IPSDMs (Figure 2.7C-D). In contrast to alternative promoters, most of the 

3′ end events only changed the length of the 3′ UTR and not the coding sequence (Figure 2.7D). 

Changes in 3′ UTR usage were strongly asymmetric, with longer 3’ UTRs being more highly 
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expressed in IPSDMs relative to MDMs, and in unstimulated cells relative to stimulated cells 

(Figure 2.7E, Figure 2.9A). Notably, I also observed that the decrease in 3′ UTR length 

correlated with the second principal component of relative transcript expression (Figure 2.7A). 

Consistent with this observation, I found that genes with 3′ UTR events were enriched for high 

absolute weights in PC2 (p < 2.2×10-16, chi-square goodness-of-fit test), (Figure 2.9B) indicating 

that part of the transcriptional variation captured by PC2 manifests as changes in 3′ UTR usage. 

I found no convincing pathway or Gene Ontology enrichment signal in genes with alternative 3′ 

UTR events.  

 

 
Figure 2.9. 3′ UTR shortening in LPS response. (A) Examples of 3′ UTR shortening in LPS 

response. The plot shows normalised read depth across the gene body in IPSDMs (green) and 

MDMs (purple) with gene structure in the panel beneath the plot. Introns have been compressed 

relative to exons to facilitate visualisation. (B) All genes were ranked based on their weights in 

PC2 (Figure 2.7A) and the relative ranks of the 162 genes with 3’UTR events are displayed on 

the histogram. The ranks of a randomly sampled set of genes should be uniformly distributed 

whereas genes that contribute strongly to the PC should be enriched for high and low relative 

ranks (corresponding to large positive and negative weights on the PC). 

 

Finally, I detected only a small number of alternative splicing events influencing middle exons, 

most of which occurred between MDMs and IPSDMs rather than in the LPS response (Figure 

2.7C-D). Three of the events with largest changes in proportion affected cassette exons in 

UAP1, CTTN and CLSTN1 genes (Figure 2.10A-C). The inclusion of these exons has previously 
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been shown to be regulated by RNA-binding protein RBFOX2 that was also significantly more 

highly expressed in IPSDMs (Figure 2.10D) (Lambert et al., 2014; Venables et al., 2013). 

 

 

 
Figure 2.10. Alternative splicing between IPSDMs and MDMs. (A-C) Examples of alternative 

splicing between MDMs and IPSDMs. The alternatively spliced exon is marked with the red 

rectangle. (D) Expression of RBFOX2 gene in iPSCs, IPSDMs and MDMs.  
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2.5 Discussion 

In this study, we used high-depth RNA-seq to investigate transcriptional similarities and 

differences between human monocyte and iPSC-derived macrophages. Our principal findings 

are that, relative to differences between MDMs and iPSCs, the transcriptomes of naïve and LPS 

stimulated MDMs and IPSDMs are broadly similar both at the whole gene and individual 

transcript levels. Concurrently with our study, another paper using a different macrophages 

differentiation protocol came to the same broad conclusion (Zhang et al., 2015). Although we 

have only examined steady-state mRNA levels, conservation of transcriptional response to LPS 

implies that the major components of regulatory network that coordinate LPS response on the 

protein level are likely to also be similarly conserved. We did, however, also observe intriguing 

differences in expression in specific sets of genes, including those involved in tissue 

remodelling, antigen presentation and neutrophil recruitment, suggesting that IPSDMs might 

possess some phenotypic differences from MDMs. Our analysis also revealed a rich diversity of 

alternative transcription changes suggesting widespread fine-tuning of regulation in macrophage 

LPS response. 

 

We also looked at the mechanisms that might be underlying the observed differences between 

MDMs and IPSDMs. We were able to rule out genetic differences between MDMs and IPSDMs 

or contamination by some other cell type not expressing macrophage specific cell surface 

markers as a major source of these differences. However, we did find some evidence that 

IPSDMs might be developmentally less mature than MDMs. This was illustrated by the fact that 

IPSDMs expressed residual amounts of genes what were substantially more highly expressed 

in iPSCs and almost completely silenced in MDMs. Furthermore, we found that promoters of 

these genes were usually actively silenced by H3K27Me3 histone modifications in CD14+ 

monocytes suggesting that this silencing might be incomplete in IPSDMs. 

 

Alternatively, IPSDMs might share some features with tissue resident macrophages that are 

developmentally and phenotypically distinct from MDMs (Gautier et al., 2012; Ginhoux et al., 

2010; Gosselin et al., 2014; Lavin et al., 2014). In support of that, higher expression of tissue 

remodelling and neutrophil recruitment genes has previously been associated with tissue and 

tumour associated macrophages (Cailhier et al., 2005; Mantovani et al., 2013; Schmieder et al., 

2012; Soehnlein and Lindbom, 2010). On the other hand, higher expression of antigen 

presentation genes in MDMs is consistent with the specialised role of monocyte-derived cells in 
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immune regulation and antigen presentation (Gundra et al., 2014; Jakubzick et al., 2013; 

Soehnlein and Lindbom, 2010). This is consistent with a previous study suggesting a shared 

developmental pathway between IPSDMs and foetal macrophages (Klimchenko et al., 2011). 

Nevertheless, it is likely that the exact characteristics of IPSDMs can be shaped by the addition 

of cytokines and other factors during differentiation and this could be an important area for 

further exploration. 

 

In addition to showing that LPS response was broadly conserved between MDMs and IPSDMs 

both on gene and transcript level, we also identified hundreds of individual alternative 

transcription events, highlighting an important, but potentially overlooked, regulatory mechanism 

in innate immune response. A small number of the events have known functional 

consequences. For example, the LPS-induced short isoform of the NCOA7 (Figure 2.8A) gene 

is known to be regulated by Interferon β-1b and it is suggested to protect against inflammation-

mediated oxidative stress (Yu et al., 2014) whereas the long isoform is a constitutively 

expressed coactivator of oestrogen receptor (Shao et al., 2002). Similarly, the two isoforms of 

the OSBPL1A gene (Figure 2.8C) have distinct intracellular localisation and function (Johansson 

et al., 2003) while the LPS-induced short transcript of the OSBPL9 gene (Figure 2.8B) codes for 

an inhibitory isoform of the protein (Ngo and Ridgway, 2009). Thus, alternative promoter usage 

has the potential to significantly alter gene function in LPS response and these changes can be 

missed in gene level analysis. 

 

Widespread shortening of 3′ UTRs has previously been observed in proliferating cells and 

cancer as well as activated T-cells and monocytes (Mayr and Bartel, 2009; Sandberg et al., 

2008). The functional consequences of 3′ UTR shortening are unclear, but extended 3′ UTRs 

are often enriched for binding sites for miRNAs or RNA-binding proteins that can regulate 

mRNA stability and translation efficiency (Gupta et al., 2014; Sandberg et al., 2008). The role of 

miRNAs in fine-tuning immune response is well established (O’Neill et al., 2011). Furthermore, 

interactions between alternative 3′ UTRs and miRNAs have recently been implicated in the brain 

(Miura et al., 2013; Wehrspaun et al., 2014). Therefore, it might be interesting to explore how 3′ 

UTR shortening affects miRNA-dependent regulation in LPS response. 

 

In summary, we have performed an in depth comparison of an iPSC-derived immune cell with 

its primary counterpart. Our study suggests that iPSC-derived macrophages are potentially 

valuable alternative models for the study of innate immune stimuli in a genetically manipulable, 



 63 

stable cell culture system. The ability to readily derive and store iPSCs potentially enables in-

depth future studies of the innate immune response in both healthy and diseased individuals. A 

key advantage of this model will be the ability to study the impact of human genetic variation, 

both natural and engineered, in innate immunity. 
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3 Large-scale differentiation of 

macrophages from human iPSCs 
 

Collaboration note 

The macrophage differentiation work in this chapter was performed in collaboration with Julia 

Rodrigues who was a research assistant in Daniel Gaffney’s lab at the time. I designed the 

experiments, performed Salmonella infection and IFNɣ stimulation assays, took care of sample 

logistics and performed all of the data analysis. Julia was mainly responsible for tissue culture 

required for macrophage differentiation and preparing cells for stimulation experiments. Julia 

also prepared and stained the cells for flow cytometry experiments. Subhankar Mukhopadhyay 

and Gordon Dougan provided valuable feedback in designing and optimising Salmonella 

infection and IFNɣ stimulation conditions. RNA-seq library construction and sequencing was 

done by DNA Pipelines core facility at Sanger. 

3.1 Introduction 

Human induced pluripotent cells (iPSCs) can be derived from almost any individual with many 

differentiation protocols available for different cell lineages, including macrophages (van 

Wilgenburg et al., 2013), neurons (Rigamonti et al., 2016) and cardiomyocytes (Kempf et al., 

2015). However, typical published differentiation protocols have been developed and used on a 

few iPSC lines. Hence, the expected range of normal variability between iPSC lines regarding 

many aspects of these protocols including success rate, duration of differentiation, yield, and 

purity of the differentiated cells is generally not well understood. If iPSCs are to be used for 

studying the functions of common genetic variation in differentiated cell types, differentiation 

protocols need to be robust enough to facilitate large-scale studies in tens or hundreds of lines. 

However, for most differentiation protocols systematic studies of critical iPSC differentiation 

parameters are not available. 

 

The factors that influences iPSC differentiation success and yield are not well understood. In 

one of the largest studies to date, (Koyanagi-Aoi et al., 2013) performed neural differentiation 

from 10 human embryonic stem cell lines (ESCs) and 40 human iPSC lines. They observed that 
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7/40 iPSC lines showed aberrant gene expression profiles that correlated with defects in neural 

differentiation. A smaller study looking at five human ESC lines and 12 iPSC lines observed that 

iPSCs showed higher variability in their potency to differentiate into neurons compared to ESCs, 

but was unable uncover a specific cause (Hu et al., 2010). A study of 28 iPSC lines found that 

variations in hepatic differentiation could largely be attributed to differences between donors 

(Kajiwara et al., 2012) and other work has found that the method used to form embryoid bodies 

can have a large effect on differentiation propensity (Paull et al., 2015). Finally, a study in 

mouse iPSCs showed that the cell type of origin might influence differentiation propensity in 

early passage iPSCs, but these effects disappeared after 10-16 passages (Polo et al., 2010). 

Thus, there are many factors influencing differentiation success and their relative importance is 

likely to vary between protocols.  

 

Additionally, when we differentiate iPSCs into a cell type of interest, we typically have a specific 

phenotype of interest, such as difference in gene expression level between two conditions, that 

we want to measure. Ideal experimental design should control for all other sources of variability 

in differentiation to maximise the chance of detecting the signal of interest. However, controlling 

all potential sources of variability is often impractical or even unfeasible. Hence, there is great 

interest in knowing which sources of variability have a strong effect on the phenotype (and 

should be controlled for) and which are so weak that they can be ignored. Variance component 

analysis is an effective approach to understand the relative contribution of both technical and 

biological factors on a phenotype of interest such as gene expression levels (’t Hoen et al., 

2013; Rouhani et al., 2014). For example, two recent studies have used this approach to 

highlight the importance of genetic differences between donors as a major factor underlying 

gene expression variation in human iPSCs (Kilpinen et al., 2016; Rouhani et al., 2014). 

 

We performed 138 macrophage differentiation attempts from 123 IPSC lines selected randomly 

from the HipSci project (Kilpinen et al., 2016), making it one of the largest directed differentiation 

study from human iPSCs. However, some of the differentiated lines did not produce enough 

macrophages to perform all of the experimental assays or the cells were not pure enough to be 

used in stimulation experiments. In total, we sequenced the RNA from 84 of these lines in four 

experimental conditions. We focussed on three questions: (i) how reliable and reproducible was 

the macrophage differentiation protocol (ii) which sources of variation had a strong effect on 

macrophage gene expression levels (iii) because flow cytometry is often used as a quality 
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control step in cellular differentiation assays, what factors are responsible for variability in the 

expression of cell surface markers in iPSC-derived macrophages. 

 

We were able to successfully differentiate macrophages from 101/123 iPSC cell lines, with an 

overall success rate of 82%. Combining gene expression data with extensive sample metadata, 

we were able to estimate the relative proportion of gene expression variance explained by 

different experimental factors. Our results highlight the importance of maintaining high purity 

and constant cell density of the differentiated cells. We also showed that using live bacteria can 

lead to larger stimulation-specific batch effects than using well-defined molecular stimuli such as 

IFNɣ. Finally, we have shown that expression of CD14 and CD16 cell surface markers can be 

highly variable between genetically distinct cell lines and in the case of CD14, most of this 

variation can be attributed to a genetic variant upstream of the CD14 gene. This highlights the 

importance of accounting for genetic differences when comparing primary and iPSC-derived 

cells from different individuals. 

3.2 Methods 

3.2.1 Cell culture and reagents 

Donors and cell lines 

Human induced pluripotent stem cells (iPSCs) from 123 healthy donors (72 females and 51 

males) were obtained from the HipSci project (Kilpinen et al., 2016). Of these lines, 57 were 

initially grown in feeder-dependent medium and 66 were grown in feeder-free E8 medium.  

Feeder-free iPSC culture 

Feeder-free iPSCs were grown on tissue culture treated plates coated with vitronectin (VTN-N) 

(Gibco, cat. no. A14700) in Essential 8 (E8) medium (Gibco). The cells were dissociated from 

the plates using Gentle Cell Dissociation Buffer (Stemcell Technologies, cat. no. 07174) and 

passaged every 3-5 days. Prior to macrophage differentiation, the feeder-free iPSCs were first 

transferred to feeder-dependent media and propagated for at least two passages. This step was 

necessary because multiple attempts to differentiate macrophage directly from feeder-free 

iPSCs with our protocol failed. 
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Feeder-dependent iPSC culture   

Feeder-dependent iPSCs were grown on irradiated CF-1 mouse embryonic fibroblast (MEF) 

feeder cells (AMS Biotechnology) in Advanced DMEM-F12 (Gibco) supplemented with 20% 

KnockOut Serum Replacement (KSR) (Gibco), 2mM L-glutamine (Sigma), 50 IU/ml penicillin 

(Sigma), 50 IU/ml Streptomycin (Sigma) and 50µM β-Mercaptoethanol (Sigma M6250). The 

media was supplemented with 4 ng/ml recombinant human fibroblast growth factor (rhFGF) 

basic (R&D, 233-FB-025) to maintain pluripotency and was changed daily. MEFs were seeded 

on 0.1% gelatine-coated tissue-culture treated plates (Corning 6-well or 10 cm plates) 24 hours 

prior to passaging iPSCs at a cell density of 2 million cells per 6-well or 10-cm plate in 

Advanced DMEM-F12 supplemented with 10% FBS (Labtech), 2mM L-glutamine (Sigma), 

50IU/ml Penicillin & 50IU/ml Streptomycin (Sigma). Prior to passaging or embryoid body 

formation, iPSCs were dissociated from the plates using 1:1 mixture of collagenase (1 mg/ml) 

and dispase (1 mg/ml) (both Gibco). 

Macrophage differentiation 

iPSCs were differentiated into macrophages using a previously published protocol (van 

Wilgenburg et al., 2013) involving 3 stages: i) embryoid body (EB) formation, ii) generation of 

monocyte-like myeloid progenitors from the EBs and iii) terminal differentiation of the 

progenitors into macrophages. For EB formation, iPSC colonies were treated with 1:1 mixture of 

collagenase (1 mg/ml) and dispase (1 mg/ml) and intact colonies were transferred to low-

adherence plates (Sterilin). The colonies were cultured in feeder-dependent iPSC medium 

without rhFGF for 3 days. On day 3, the EBs were harvested and transferred to gelatinised 

tissue-culture treated 10 cm plates in serum-free haematopoietic medium (Lonza X-VIVO 15), 

supplemented with 2 mM L-glutamine (Sigma), 50 IU/ml penicillin, 50 IU/ml streptomycin 

(Sigma), 50 µM β-Mercaptoethanol (Sigma M6250), 50 ng/ml macrophage colony stimulating 

factor (M-CSF) (R&D) and 25 ng/ml interleukin-3 (IL-3) (R&D). EBs were maintained in these 

plates with media changes every 3-5 days for 4-6 weeks until the progenitor cells appeared in 

the supernatant. Progenitor cells were harvested from the supernatant, filtered through a 40µm 

cell strainer (BD 352340), centrifuged at 1200 rpm for 5 minutes, counted, and plated in RPMI 

1640 (Gibco) supplemented with 10% FBS (Labtech), 2mM L-glutamine (Sigma) and 100 ng/ml 

hM-CSF (R&D) at a cell density of 150,000 cells per 6-well plate or 1,000,000 cells per 10 cm 

plate and differentiated for another 7 days. 
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3.2.2 Macrophage stimulation assays 

After harvesting, macrophage progenitors were seeded on 6-well plates at 150,000 cells/well. 

Two wells were used per condition to ensure sufficient amount of RNA. On day 6 of 

macrophage differentiation, medium was changed for all wells with half of the wells receiving 

macrophage differentiation media (with M-CSF) and half of the cells receiving macrophage 

differentiation media supplemented with 20 ng/ml IFNɣ (R&D) and M-CSF. After 18 hours, cells 

from two wells of the naive and IFNɣ conditions were harvested for RNA extraction. The 

remaining two wells from each condition were additionally infected with Salmonella 

Typhimurium SL1344 (hereafter ‘SL1344’) for 5 hours. For RNA extraction, cells were washed 

once with PBS and lysed in 300 μl of RLT buffer (Qiagen) per one well of a 6-well plate. Lysates 

from two wells were immediately pooled and stored at -80°C. RNA was extracted using RNA 

Mini Kit (Qiagen) following manufacturer’s instructions and eluted in 35 µl nuclease-free water. 

RNA concentration was measured using NanoDrop and RNA integrity was measured on Agilent 

2100 Bioanalyzer using RNA 6000 Nano total RNA kit. 

 

Two days before infection, Salmonella Typhimurium SL1344 culture was inoculated in 10 ml low 

salt LB broth and incubated overnight in a shaking incubator (200 rpm) at 37°C. Next morning, 

the culture was diluted 1:100 into 10 ml of fresh LB broth and incubated again in a shaking 

incubator. In the afternoon the culture was diluted once more 1:100 into 45 ml of LB broth and 

kept overnight in a static incubator. In the morning before infection, the culture was centrifuged 

at 4000 rpm for 10 minutes, washed once with 4°C PBS and re-suspended in 30 ml of PBS. 

Subsequently, optical density at 600 nm was measured and Salmonella was diluted in 

macrophage differentiation media (without M-CSF) at multiplicity of infection (MOI) 10 assuming 

300,000 cells per well. To infect the cells, old media was removed and replaced with 1 ml of 

media containing Salmonella for 45 minutes. Subsequently, the cells were washed twice with 

PBS and replaced in fresh medium with 50 ng/ml gentamicin (Sigma) to kill extracellular 

bacteria. After 45 minutes, the medium was changed once again to fresh medium containing 10 

ng/ml gentamicin. 

3.2.3 RNA sequencing 

All of the RNA-seq libraries were constructed using poly-A selection. The first 120 RNA-seq 

libraries from 30 donors were constructed manually using the Illumina TruSeq stranded library 

preparation kit. The TruSeq libraries were quantified using Bioanalyzer and manually pooled for 
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sequencing. For the remaining 216 samples, we used an automated library construction 

protocol that was based on the KAPA stranded mRNA-seq kit. The KAPA libraries were 

quantified using Quant-iT plate reader and pooled automatically using the Beckman Coulter NX-

8. The first 16 samples were sequenced on Illumina HiSeq 2500 using V3 chemistry and 

multiplexed at 4 samples/lane. All of the other samples were sequenced on Illumina HiSeq 2000 

using V4 chemistry and multiplexed at 6 samples/lane.  

RNA-seq pre-processing and quality control 

I aligned RNA-seq data to the GRCh38 reference genome and Ensembl 79 transcript 

annotations using STAR v2.4.0j (Dobin et al., 2013). I then used VerifyBamID v1.1.2 (Jun et al., 

2012) to detect and correct any potential sample swaps and cross-contamination between 

donors. I did not detect any cross-contamination, but I did identify one sample swap between 

two donors. I used featureCounts v1.5.0 (Liao et al., 2014) to count the number of uniquely 

mapping fragments overlapping GENCODE (Harrow et al., 2012) basic annotation from 

Ensembl 79. I excluded short RNAs and pseudogenes from the analysis leaving 35,033 unique 

genes of which 19,796 were protein coding. I only used 15,797 genes with mean expression in 

at least one of the conditions greater than 0.5 transcripts per million (TPM) (Wagner et al., 2012) 

in all downstream analyses. I also quantile-normalised the data and corrected for sample-

specific GC content bias using the conditional quantile normalisation (cqn) (Hansen et al., 2012) 

R package as recommended previously (Ellis et al., 2013). To detect hidden confounders in 

gene expression, I applied PEER (Stegle et al., 2012) on each condition separately allowing for 

at most 10 hidden factors. I found that the first 3-5 factors explained the most variation in the 

data and the others remained close to zero. 

Variance component analysis 

I used a linear mixed model implemented in the lme4 (Bates et al., 2015) package to estimate 

the proportion of variance explained by various biological and technical factors in the expression 

levels of 15,797 genes across 336 samples. The 14 factors that I included in the model are 

listed below. Continuous variables were binned into a small number of categories as described. 

1. Salmonella - Salmonella infection status (yes or no) (binary) 

2. IFNɣ - IFNɣ stimulation status (yes or no) (binary) 

3. IFNɣ:Salmonella - interaction term between Salmonella and IFNɣ stimulations (binary) 

4. Line - the iPSC cell line from which the macrophages were derived. All lines used in the 

analysis were from 84 unique donors. This component should capture genetic 
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differences between donors, but can also capture line and differentiation specific effects. 

(84 categories) 

5. Cell density - I used mean RNA concentration across the four conditions as proxy of the 

total number of cells on a plate, because counting the cells prior to lysis and RNA 

extraction was not feasible. (categorical: 0-100 ng/ul, 100-200 ng/ul, 200-300 ng/ul, 300-

500 ng/ul) 

6. Library type - type of the RNA library construction method used (manual or automatic) 

(binary) 

7. Sex - sex of the donor (binary) 

8. Purity - purity of the differentiated macrophages as quantified by flow cytometry. This is 

a noisy measurement, because RNA-seq and flow cytometry were not performed from 

the same plate of cells and they were often performed on different days (up to 2 weeks 

apart) due to logistical reasons (categorical: 90-95%, 95-97.5%, 97.5-100%).  

9. Chemistry - chemistry of the Illumina RNA-seq protocol (V3 or V4). 

10. Stimulation date - date of the stimulation assays and cell lysis (categorical: 32 levels)  

11. Library pool - RNA-seq library construction batch (categorical: 10 levels) 

12. RNA extraction - RNA extraction batch (categorical: 31 levels) 

13. Differentiation duration - Number of days from the start of the differentiation until cell 

lysis (5 categories: 20-30 days, 31-40 days, 41-50 days, 51-60 days, 61+ days). 

14. Passage - passage of the IPSC line at the start of the differentiation (4 categories: 0-25, 

26-35, 36-45, 46-60)  

 

First, I analysed all 15,797 expressed genes from all of the 336 samples across the four 

conditions together using a single linear mixed model with all of the 14 factors included as 

random effects. The following model was fit to each gene independently, using lme4:  

 

expression ~ (1|Salmonella) + (1|IFNɣ) + (1|IFNɣ:Salmonella) + (1| Line) +  

(1| Cell_density) + (1| Library_type) + (1| Stimulation_date) +  

(1| Sex) + (1| Chemistry) + (1| Purity) + (1| Passage) +  

(1| Diff_duration) + (1| Library_pool) + (1| RNA_extraction) 

 

To better understand the relative contribution of weaker technical factors and how their effects 

might vary between conditions, I also performed variance component analysis in each condition 

separately by only including the ten technical factors in the model as random effects: 
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expression ~ (1| Cell_density) + (1| Library_type) + (1| Stimulation_date) +  

(1| Sex) + (1| Chemistry) + (1| Purity) + (1| Passage) +  

(1| Diff_duration) + (1| Library_pool) + (1| RNA_extraction) 

 

Next, I used the VarCorr function from the lme4 package to calculate the amount of variance 

attributed to each of the factors. I then estimated the proportion of variance explained by each 

factor by dividing the variance attributed to each factor by the total variance of the gene. As a 

result, for each factor I obtained a distribution of the proportion of variance explained estimates 

across 15,797 genes.  

3.2.4 Flow cytometry 

Measuring macrophage cell surface marker expression using flow cytometry 

We used flow cytometry to measure the cell surface expression of three canonical macrophage 

markers: CD14, CD16 (FCGR3A/FCGR3B) and CD206 (MRC1). Macrophages were cultured in 

10 cm tissue-culture treated plates and detached from the plates by incubation in 6 mg/ml 

lidocaine-PBS solution (Sigma L5647) for 30 minutes followed by gentle scraping. From each 

cell line we harvested between 300,000-500,000 cells. Detached cells were washed in media, 

centrifuged at 1200 rpm for 5 minutes and resuspended in flow cytometry buffer (2% BSA, 

0.001% EDTA in D-PBS) and split into two wells of a 96-well plate. Nonspecific antibody binding 

sites were blocked by incubating cells with Human TruStain FcX (Biolegend) for 45 minutes and 

washing with flow cytometry buffer. Half of the cells were stained for 1 hour with the PE-isotype 

control (BD 555749) antibody. The other half of the cells were co-stained for 1 hour with 

following three antibodies: CD14-Pacific Blue (BD 558121), CD16-PE (BD 555407), CD206-

APC (BD 550889). After staining, the cells were washed three times. Resuspended cells were 

filtered through cell strainer cap tubes (BD 352235) and measured on the BD LSRFortessa Cell 

Analyzer. 

Flow cytometry data analysis 

I used the flow cytometry data for two purposes: to estimate the proportion of cells expressing 

macrophage surface markers CD14, CD16 and CD206 and to quantify the relative intensity of 

these markers compared to unstained cells. I imported the raw FCS files into R using the 

OpenCyto (Finak et al., 2014) package. First, I logicle-transformed (Herzenberg et al., 2006) the 
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intensity values for all three channels in both stained and isotype control samples using the 

estimateLogicle function. I then performed two automated gating steps to exclude debris and 

identify the main cell population using the mindensity (max = 150,000) and flowCust (K=2, 

target=c(1e5,5e4), level=0.9) functions. For pure macrophage samples the distribution of 

intensity values for all three cell surface markers looked bimodal with stained and unstained 

cells in two separate peaks (Figure 3.1). Samples with moderate contamination had an 

additional low intensity peak both in stained and unstained cells (Figure 3.1) corresponding to 

the contaminating cells. Since all of the peaks were approximately normally distributed, I 

decided to model the data for each mark as a mixture of Gaussian distributions and used the 

mclust (Fraley and Raftery, 1999) R package to estimate the optimal number of components (2 

or 3) as well as the mean and standard deviation of each component. I used the Bayesian 

Information Criterion to choose between two or three components. I then compared the mean of 

the highest intensity peak (μstained) to the mean of the second highest intensity peak (μunstained) to 

estimate the relative fluorescent intensity of each cell surface marker (Figure 3.1). I also 

measured sample purity by estimating the proportion of cells whose intensity was greater than 

the threshold t = μstained - 3×σstained (Figure 3.1), where σstained is the standard deviation of the 

stained population. 
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Figure 3.1: Quantifying cell purity and relative fluorescent intensity of macrophage 
CD206, CD16 and CD14 markers from the flow cytometry data. The rows correspond to 

three different iPSC lines and the columns represent three macrophage markers. X-axis shows 

the logicle-transformed absolute intensity values from the flow cytometer and values on the y-

axis correspond the density of the cells with that intensity value. Red designates cells stained 

with antibodies against the three markers, blue indicates cells stained with isotype control 

(unstained). Marker relative fluorescent intensity is defined as the difference in mean intensity 

between the stained and unstained cell populations (middle panel). Purity is measure by 

estimating the proportion of stained cells (red) whose intensity is greater than the purity 

threshold (purple) t = μstained - 3×σstained. 

Variance component analysis and QTL mapping 

I used linear mixed model implemented in lme4 (Bates et al., 2015) package in R to 

characterise the observed variation in the relative fluorescent intensity measurements of the 

three macrophage markers. For each marker, I estimated the proportion of variance explained 

by differences between the iPSC lines (hereafter ‘line effect’) as well as the batch effect 

represented by the date when the cells were harvested, stained and measured on the flow 
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cytometer (‘date effect’). I used the following lme4 model specification: intensity ~ (1|date) 

+ (1|line).  

 

I used FastQTL (Ongen et al., 2016) to test for association between relative fluorescent intensity 

and common genetic variants (minor allele frequency > 0.05, IMP2 > 0.7) in the +/- 200kb 

region around the corresponding genes: CD14, FCGR3A and FCGR3B for CD16, and MRC1 for 

CD206. I used measurements from 95 unique lines (donors) for QTL mapping. If a particular line 

had multiple measurements, then I picked one randomly. After permutation testing (n=10,000), I 

identified significant cis QTLs for CD14 and CD16 markers. Subsequently, I redid the variance 

component analysis for each marker and included the lead QTL variants into the model: 

‘intensity ~ (1|date) + (1|line) + (1|rs2569177) + (1|rs4657019)’. 

3.3 Large-scale differentiation of macrophages for genomics 

assays 

We aimed to develop a robust and standardised differentiation pipeline that would allow us to 

produce at least 3 million macrophages from each donor for four different experimental assays: 

(1) Flow cytometry (this chapter), Salmonella RNA-seq (Chapter 4), Salmonella ATAC-seq 

(Chapter 5) and acLDL RNA-seq (not described here). We relied on a previously published 

macrophage differentiation protocol (van Wilgenburg et al., 2013) that I compared to monocyte-

derived macrophages in Chapter 2. The timeline of the differentiation protocol is illustrated in 

Figure 3.2 and the full details of the protocol are given in the Methods. Briefly, the main steps of 

the differentiation are (1) expansion of iPSCs in feeder-dependent medium (median 19 days), 

(2) embryoid body (EB) formation (3 days), (3) differentiating EBs into macrophage progenitors 

(median 27 days) and (4) harvesting and final differentiation of progenitors into macrophage (7 

days). One attractive feature of this system is that differentiated EBs can be kept in culture for 

prolonged period of time and progenitors can be harvested in every 4-5 days making it possible 

to perform additional assays on the cells without increasing the amount of tissue culture needed 

for the initial steps of the differentiation (van Wilgenburg et al., 2013).  

 

Although other protocols exist that can be used to differentiate macrophages in a shorter period 

of time (Zhang et al., 2015), a major advantage of our protocol is that the bulk of the 

differentiation and maintenance is performed in single medium containing only two cytokines 

(interleukin-3 (IL-3) and macrophage colony stimulating factor (M-CSF)) and the exact timing 
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between medium changes can be varied without significantly influencing differentiation success. 

This property made the protocol scalable to differentiating many iPSC lines in parallel without a 

large increase in complexity, because all of the dishes receive the same media and medium 

changes could be conveniently scheduled.   

 

 
Figure 3.2: Timeline of macrophage differentiation from iPSCs. The protocol starts with the 

expansion of IPSCs followed by embryoid body formation. The bulk of the differentiation is 

performed in X-VIVO 15 media supplemented with IL-3 and M-CSF cytokines. The 

differentiation takes usually 4-5 weeks (median 27 days) until macrophages progenitors appear. 

During this time the medium has to be changed in every 4-5 days. Once the macrophage 

progenitors appear, they are harvested at every medium change and differentiated in the 

presence of M-CSF for another 7 days until the cells are ready for experimental assays. 

 

We differentiated macrophages from batches of multiple iPSC lines in parallel. In addition to 

logistical convenience, this approach enabled us to estimate and control for batch-to-batch 

variation in gene expression and differentiation success measurements. 

3.3.1 Variability in success rate 

We performed 138 macrophage differentiation attempts from 123 different HipSci iPSC lines.  

We were able to successfully differentiate macrophages from 101/123 (82%) of the iPSC lines. 

Here successful differentiation is defined as obtaining at least some proportion of cells that 

exhibited characteristic spindle-like macrophage morphology. For 97/101 lines, we further 
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confirmed the expression of CD14, CD16 and CD206 macrophage cell surface markers with 

flow cytometry.  

 

To understand what was responsible for the failed differentiation, we tried to re-differentiate 8 

iPSC lines that had failed on the first attempt. Surprisingly, 7/8 failed also at the second attempt. 

This was over 6 times higher than the global 18% failure rate observed across all lines (Fisher’s 

exact test p = 0.002), suggesting that there might be a line specific bias against macrophage 

differentiation. However, six of these lines (all of which failed) were all re-differentiated in the 

same month (January 2015), meaning that this observation might have also arisen from a 

shared batch effect. We note though, that 3/4 lines cultured concurrently with the 6 failed lines 

differentiated successfully into macrophages. Hence, this suggests that there might be a line-

specific (or donor-specific) bias against macrophage differentiation but further experiments on 

more iPSC lines are needed to confirm this. 

3.3.2 Variability in the duration of the differentiation 

Throughout our experiments we observed considerable variation in the time from initial iPSC 

culture to the production of mature macrophages. This variation was influenced by a variety of 

experimental factors, most importantly whether the differentiation was started from live or frozen 

cells. Initially, we received live cells in feeder dependent media from Wellcome Trust Sanger 

Institute core facilities. These live cell cultures required only a single passage before EB 

formation could be initiated (Figure 3.3A). Subsequently, however, for operational reasons we 

switched to cryopreserved cells cultured either on feeder-dependent or feeder-free E8 medium. 

Since our attempts to differentiate macrophages directly from feeder-free iPSCs were not 

successful, we had to transfer feeder-free cells to feeder-dependent medium for at least two 

passages. This added approximately 7-10 days to the time required for initial iPSC culture and 

expansion. However, the total time needed for iPSC expansion was comparable for feeder-free 

and feeder-dependent cryopreserved cells, because thawing feeder-dependent iPSCs generally 

took much longer than thawing feeder-free iPSCs (Figure 3.3A). We did not observe any 

discrepancy in the differentiation success rate between IPSCs initially grown either on feeder-

dependent or feeder-free media. 

 

The median time from the start of the differentiation (3 days after EB formation) until the 

appearance of first macrophage progenitors was 27 days (Figure 3.3B), and 96% of the lines 

that successfully differentiated into macrophages did so within 40 days. Thus, for this protocol, a 
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40-day threshold provided a useful guideline for deciding when a differentiation attempt had 

failed and should be aborted. Final macrophage differentiation added another 7 days to the 

protocol and for logistical reasons we were not always able to perform the stimulation assays on 

the first batch of cells that we harvested. This increased the median time from differentiation 

start to cell lysis to 38 days (Figure 3.3C). We recorded this information for each cell line to 

assess retrospectively if the time spent in culture had an effect on the macrophage 

transcriptome. 

 

 
Figure 3.3: Variation in the duration of macrophage differentiation. (A) Duration of iPSC 

culture prior to the start of the differentiation. The two panels correspond to iPSC lines that were 

initially either on feeder-dependent medium or feeder-free medium. The colour represents 

whether the cell lines were received as live culture or cryopreserved stock. (B) Number of days 
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from the start of the differentiation until the harvest of first macrophages. Red line corresponds 

to the median of the distribution (27 days). (C) Histogram of the number of days from the start of 

the differentiation until the Salmonella infection experiment and cell lysis (median 38 days). (D) 
Histogram of the number of passages iPSCs had been propagated prior to the start of the 

differentiation. 

3.3.3 Variability in cell numbers 

Although we differentiated all lines in the same number of tissue culture plates, we observed an 

order of magnitude variation between lines in the mean number of macrophage progenitors 

produced per harvest (min 3×105, median 3×106, max 15×106) (Figure 3.4A). Most of the 

variation was likely caused by differences in the size and number of EBs per line, which was 

challenging to control during differentiations. Our approach to deal with this variation was to use 

more than minimally required cells for EB formation, thus ensuring that even differentiation with 

lower yield would produce enough cells for all of the planned experimental assays.  

 

For the final macrophage differentiation, we always seeded 150,000 progenitors into a single 

well of a 6-well plate. However, due to variation in the fraction of adherent cells and their 

proliferation rate between iPSC lines, we observed substantial variation in the numbers of cells 

on the plate at the time of the stimulation assays. Since this variation was hard to control for 

experimentally (macrophages are strongly adherent cell type making them difficult to replate), 

we decided to measure the mean RNA concentration for each line as a proxy of the cell count 

(Figure 3.4B). 

3.3.4 Variability in macrophage purity 

Finally, we examined the purity of the differentiated macrophages. Despite not using cell sorting 

or other methods to experimentally enrich for macrophages, we found that 88% of the 

differentiations produced macrophages that were >90% pure based on the cell surface 

expression of CD14, CD16 and CD206 markers (Figure 3.4C). Although we did not use flow 

cytometry to directly select samples for RNA sequencing (flow cytometry was often performed 

after RNA had been collected), we found that only 4/84 of the selected samples had purity 

below 90% (Figure 3.4C).  

 

 



 80 

 

 

 

 

 
Figure 3.4: Distributions of some the key experimental variables the could influence the 
transcriptomes of differentiated macrophages. (A) Histogram of the mean number of cells 

obtained per harvest for all of the iPSC lines that successfully differentiated into macrophages. 

Red line corresponds to the median (3.16 million). (B) Histogram of the mean RNA 

concentration values for all of the cell lines across four experimental conditions. (C) 
Differentiated cells were stained with antibodies for CD14, CD16 and CD206 and the proportion 
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of cells staining positive for each of the three marks was estimated. The mean of the three 

marks was used as the purity score for each cell line. The figure shows the histogram of the 

purity scores across iPSC lines. Samples represented in green were used for RNA-seq 

experiments. 

3.4 Variability in gene expression data 

While many aspects of the differentiation might be variable between iPSCs lines, not all of them 

will have a significant effect on downstream macrophage gene expression levels. Thus, I 

decided to use variance component analysis to estimate the relative contribution of various 

biological and technical factors on macrophage gene expression levels.  

3.4.1 Technical variability between RNA-seq samples 

In addition to biological variability in the differentiation protocol described above, macrophage 

gene expression levels could also be influenced by technical variability in the way RNA samples 

were processed. The potential sources of variability that we identified were RNA extraction 

batch, RNA integrity, library construction batch, method of library construction used (manual or 

automatic) and sequencing chemistry used.  

 

 
Figure 3.5: Distribution of RNA integrity (RIN) values for a subset of the RNA-seq 
samples.  
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Fortunately, I observed very little variation in RNA integrity between samples and for the vast 

majority of the samples the RNA integrity number (RIN) was greater than 9 out of 10 (Figure 

3.5). However, I did observe some differences between automatic and manual library 

construction methods. First, the variability in total read coverage between samples was greatly 

reduced when the automatic protocol was used (Figure 3.6A). I also found that the automated 

protocol had lower GC content bias than the manual protocol which showed slight preference 

for low GC content fragments over high GC content fragments (Figure 3.6B).  

 
Figure 3.6: Comparison of manual and automated RNA-seq library construction 
protocols. (A) Histogram of total library size distribution for samples prepared either with 

manual or automatic protocol. (B) Mean GC content bias for the two library construction 

protocols. GC content bias was estimated from the raw read counts using the cqn (Hansen et 

al., 2012) package in R. 

3.4.2 Variance component analysis of the RNA-seq data 

Variance component analysis is a powerful approach to estimate the relative importance of 

various known experimental factors in an unbalanced experimental design (Rouhani et al. 2014; 

Kilpinen et al. 2016). When applied to our dataset, variance component analysis revealed that 

most of the variance in gene expression was explained by the three experimental stimuli: 

Salmonella infection (32.9%), IFNɣ stimulation (15.5%) and interaction between the two (11.4%) 

(Figure 3.7), highlighting the plasticity of the macrophage transcriptome in response to strong 

immunological stimuli. The second largest amount of variance explained (7.7%) was attributed 
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to differences between cell lines (hereafter ‘line effect’) while all of technical factors explained 

significantly less variance  

 

 

Figure 3.7: Variance component analysis of all four conditions in a joint model. We used a 

linear mixed model to estimate the proportion of variance explained by 14 different factors in the 

expression levels of 15,797 expressed genes (see Methods). For each factor on the x-axis, the 

violin plot shows the distribution of variance explained by that factor across all expressed genes. 

Factors are ordered by the mean variance explained across all genes. 

 

To see how the relative contribution of the weaker technical factors varied between conditions, I 

performed variance component analysis in each of the four conditions separately. Now that the 

differences between stimulations were controlled for, most of variance was explained by RNA-

seq library type (automatic vs manual), cell density, sex and purity of the macrophage 

population (Figure 3.8A) and the estimates for most of the factors were similar in all four 

conditions. The large contribution of library type is likely to be at least partially explained by 

differences between GC bias reported above (Figure 3.6B). The date when macrophages were 
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stimulated with IFNɣ and infected with Salmonella (‘stimulation date’) explained almost double 

the variance in Salmonella and IFNɣ + Salmonella conditions than in naive and IFNɣ conditions 

(Figure 3.8B). This is probably because live Salmonella culture was prepared fresh for each day 

of infections whereas IFNɣ originated from single-use frozen aliquots. Indeed, both of the 

Salmonella conditions had an excess of highly variable genes compared to naive and IFNɣ 

conditions (Figure 3.8C), indicating that Salmonella batch introduced additional variability into 

the data. Finally, the passage number of the iPSCs prior to differentiation (Figure 3.3D) and the 

total duration of the differentiation (Figure 3.3C) (after accounting for differences in purity) 

explained less than 3% of the variance, suggesting that controlling for these factors during 

differentiation is less important. 
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Figure 3.8: Variance component analysis of each of the four conditions separately. (A) 
Variance explained by ten technical factors in each of the four conditions. Points correspond to 

mean across all genes and horizontal lines represent standard deviation. Note that the lines are 

not true confidence intervals, because variance explained cannot be negative. (B) Proportion of 

variance explained by the date when the macrophages were stimulated with IFNɣ and infected 

with Salmonella (‘stimulation date’ effect). The violin plots show the distributions of the variance 

explained estimates across all genes in four experimental conditions. (C) Distribution of 

coefficient of variation (standard deviation / mean) for 10,000 most highly expressed genes in 

each condition.  

3.4.3 Detecting hidden sources of variation 

A complementary approach to dissect sources of variability in a large gene expression dataset 

are latent variable models (Leek and Storey, 2007; Stegle et al., 2010). Latent variable models 

are especially useful when the relevant covariates are not known beforehand or when they have 

not been measured accurately (Parts et al., 2011; Stegle et al., 2010). I applied PEER (Stegle et 

al., 2010) to the RNA-seq data from each condition to detect hidden sources of variation that 

affect many genes at the same time. I then calculated the proportion of variance explained by 

each hidden factor in each of the four experimental conditions (Figure 3.9). Note that PEER 

does not report residual variance and as a result these estimates are not directly comparable to 

the estimates from variance component analysis above. I found that in the naive cells 90% of 

the variance captured by PEER was explained by the first factor. Although macrophage purity 

and cell density (mean RNA concentration) were both correlated with the first factor (Figure 

3.10A-B), in a joint linear model these two known covariates could explain only 42% of the 

variance captured by the first factor. This illustrates that PEER is able to capture additional 

variability beyond what can be explained by known covariates.  

 

The second PEER factor explained an additional 3.1% of the variance and was correlated with 

the RNA-seq library type (Figure 3.10C) (r = 0.79, p < 2.2×10-16). However, as shown on Figure 

3.6B, one of the differences between automatic and manual RNA-seq protocol was difference in 

GC bias. The quantile normalised gene expression values that we used as input to PEER were 

already corrected for sample-specific differences in GC bias. Therefore, the amount of variance 

explained by the second PEER factor might be higher in uncorrected samples.  
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I noticed that in stimulated conditions factors 2-5 explained much more variance than they did in 

the naive condition (Figure 3.9). This was especially prominent after Salmonella infection where 

~40% of variance was explained by factors 2-5 (7.5% in naive). One possible interpretation is 

that stimulating cells introduces additional independent sources of variability (‘batch effects’) 

that are then captured by PEER as additional factors. This is consistent with the excess of 

highly variable genes observed after Salmonella infection (Figure 3.8C) and more variance 

explained by stimulation date (Figure 3.8B) reported above.  

 

 
Figure 3.9: Proportion of variance explained by the first 10 PEER factors in each 
experimental condition. PEER was run on each condition separately, which mean that the 

factor names do not necessarily correspond to the same sources of variation in each condition.  
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Figure 3.10: Correlation between first two PEER factors and experimental variables. (A) 
Correlation between mean purity and PEER factor 1 (B) Correlation between RNA 

concentration and PEER factor 1 (C) Correlation between RNA-seq library construction protocol 

(automatic vs manual) and PEER factor 2. 

 

3.4.4 Reproducibility of differentiation 

To assess how reproducible gene expression profiles were between differentiations, I analysed 

RNA-seq data from multiple independent differentiations from three different donors (three 

differentiations from donor ffdj and two from donors fpdl and ougl). We performed the same 
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stimulation experiments and RNA-seq on all of the samples. Although the differentiations were 

performed over the course of 10 months, I found that in the naive condition the samples clearly 

clustered together by donor (Figure 3.11), indicating that donor specific effects on gene 

expression are reproducible between differentiations. The clustering was not as clear in the 

stimulated conditions, possibly because of stronger batch effects induced by stimulation. For the 

ffdj donor we know that two of the differentiations were from the same iPSC line (samples 

fpdj_A and fpdj_A_2) whereas the third (nibo_A) was from a different line. For ougl and fpdl 

donors we unfortunately do not know if the two differentiations were from the same line or 

different lines, because we received these lines twice due to accidental sample swaps upstream 

and we only discovered the duplicate samples after matching genotypes in the RNA-seq data to 

the VCF file. 

 

 
Figure 3.11: Gene expression reproducibility between independent differentiations. The 

heat map shows the Spearman correlation of gene expression profiles from 7 independent 

differentiations from 3 different donors. 
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3.5 Variability in cell surface marker expression 

In addition to gene expression data, we also wanted to understand what is responsible for the 

variance in the cell surface expression of macrophage markers. Specifically, we wanted to know 

if, on average, the fluorescent intensity measurements of the same line on different days were 

more similar to each other than the measurements of different lines on the same day.  

 

We measured cell surface expression of CD14, CD16 and CD206 macrophage markers in 97 

different cell lines. This included 19 cell lines where duplicate measurements were obtained on 

different days. We processed and measured a median of four cell lines in a single batch on the 

same day. This allowed me to use a linear mixed model to estimate the relative proportion of 

variance explained by cell line and date of the assay (batch) for each of the three markers. I 

found that 62% of the variance in CD14 surface expression and 52% of the variance in CD16 

surface expression was explained by the line effect and almost no variance was attributed to the 

date of the assay (Figure 3.12A). On the other hand, 64% of the variation in CD206 

measurement was explained by the date of the assay and there was almost no line effect, 

suggesting that this antibody might have been more susceptible to technical variation. Between 

25-50% of the variance remained unexplained for all three marks. 

 

Next, I tested whether there was a genetic basis for the observed variation in the surface 

expression of CD14, CD16 and CD206 by performing QTL mapping for each of the three 

markers in +/- 200kb cis window around the corresponding genes (CD14, FCGR3A and 

FCGR3B for CD16, and MRC1 for CD206). I detected a very strong association between CD14 

surface expression and rs2569177 variant (MAF = 0.24) located 19 kb upstream of the CD14 

gene (permutation FDR = 2.7×10-11) (Figure 3.12B). I also detected a weak association between 

CD16 expression and rs4657019 variant (MAF = 0.28) located 120 kb upstream of the FCGR3A 

gene (permutation FDR = 0.047) (Figure 3.12C). There was no significant QTL for CD206 

consistent with only a small fraction of the variance being attributed to differences between 

lines. I redid the variance component analysis with the two CD14 and CD16 QTL SNPs included 

in the model. I found that the CD14 QTL explained most of the variation in CD14 intensity that 

was previously attributed to line effect (3.12D). On the other hand, the CD16 QTL explained 

only ~⅓ of the CD16 line effect, suggesting that there might be additional cis or trans QTLs for 

this protein that we were unable to detect because of our small sample size (Figure 3.12D).  
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Figure 3.12: Variance of macrophage cell surface marker expression. (A) Variance of cell 

surface expression of CD14, CD16 and CD206 partitioned into three components: (1) iPSC line 

from which the macrophages were differentiated; (2) date of the flow cytometry assay; (3) 

residual variation. (B) Fluorescent intensity of CD14 cell surface expression stratified by the 

genotype of the lead QTL variant (FDR < 2.7×10-11). (C) Fluorescent intensity of CD16 cell 

surface expression stratified by the genotype of the lead QTL variant (FDR < 0.048). (D) 
Variance partitioning after including CD14 and CD16 lead QTL variants into the model. 

3.6 Discussion 

In this chapter, we performed 138 macrophages differentiation attempts from 123 unique iPSC 

lines and we were able to successfully differentiate 101 (82%) of them. This makes our study 
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one of the largest long term directed differentiations of human iPSCs into another cell type. 

Extensive documentation of the differentiation attempts allowed us to characterise the extent of 

normal variation in multiple aspects of the differentiation protocol such as success rate, 

duration, yield and purity of the resulting macrophage population. We have shown that this 

differentiation protocol is highly reproducible at the level of gene expression, works on most 

iPSC lines and can be scaled to differentiate large numbers of cells in parallel. 

 

An important open question is what underlies variability in iPSCs differentiation potential; are 

these genetic differences between donors, differences between clonal iPSC lines from the same 

donor or technical batch effects between independent differentiation attempts. Our experimental 

design of differentiating only one line per donor was optimised for detecting the maximal number 

of gene expression QTLs. As a result, we were not able to distinguish between donor and line 

effects. However, our observation that repeated differentiations are much more likely to fail for 

lines that failed the first differentiation than for lines that succeeded the first differentiation does 

suggest that there are some differences between iPSC lines (either genetic or epigenetic) that 

influence differentiation success.   

 

We also collected RNA-seq data from most of the differentiated lines in four experimental 

conditions. Combining gene expression data with extensive metadata from the differentiations in 

a linear mixed model allowed us to identify important factors contributing to gene expression 

variation in iPSC-derived macrophages. In particular, we highlighted the importance of 

controlling for cell density and cell purity when performing genomics assays on iPSC-derived 

cells. The large effect of macrophage purity was unexpected, because the majority of the 

samples were already over 95% pure and we had discarded all samples that were less than 

90% pure prior to RNA sequencing. On visual inspection the contaminating cells seemed larger 

than macrophages, and thus could have contributed relatively more RNA to the pool. We also 

observed that the date of stimulation explained double the variance in conditions where live 

Salmonella was used to infect cells compared to naive and IFNɣ conditions, highlighting an 

important trade-off between physiologically more accurate live infections and inherently less 

variable stimulations with well-defined molecular signals (such as IFNɣ and LPS). 

 

Finally, we showed that variation in the intensity of expression of commonly used macrophage 

markers CD14 and CD16 on the cell surface is driven by common genetic variants. This was 

especially pronounced for CD14, where we identified a common genetic variant 19 kb upstream 
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of the gene that could explain almost all of the line-to-line variation in CD14 expression. Thus, it 

is important to take into account natural genetic variation when comparing the expression of cell 

type specific markers between primary cells, iPSC-derived cells and embryonic stem cell-

derived cells. This is especially important because these different cell types can rarely be 

obtained from genetically matched donors. For example, CD14 has previously been highlighted 

as variably methylated gene in human ESCs and variably expressed in differentiated 

macrophages (Bock et al., 2011). The authors attributed this variability to defective methylation 

in some ESCs that interfered with macrophage differentiation. However, our results suggest that 

much of this variability is caused by segregation of a common genetic polymorphism. Flow 

cytometry on cell surface markers is also commonly used to quantify the relative abundance of 

different cell types in a tissue (such as blood). It is therefore important to take the natural 

variation in the expression of these markers into account when designing the experiments and 

setting threshold values so as not to mistake differences in cell surface expression of marker 

gene as differences of cell type proportion. 

 

An important area for future work will be to optimise the differentiation protocol to work directly 

on feeder-free iPSCs without transferring them to feeder cells. This has the potential to greatly 

reduce the time and work needed for iPSC expansion prior to differentiation which currently 

takes ~20 days. With newer RNA-seq and chromatin assay requiring fewer cells, there is also 

potential to miniaturise the differentiation protocol making it feasible to differentiate hundreds of 

IPSCs in parallel. Here, alternative embryoid body formation protocols can be trialled (e.g. 

AggreWell plates (van Wilgenburg et al., 2013)) that have the potential to reduce variability in 

macrophage yield between differentiations. 
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4 Genetics of gene expression in 

macrophage immune response 
 

Collaboration note 

The macrophage differentiation work in this chapter was performed in collaboration with Julia 

Rodrigues who was a research assistant in Daniel Gaffney’s lab at the time. I designed the 

experiments, performed Salmonella infection and IFNɣ stimulation assays, took care of sample 

logistics and performed all of the data analysis. Julia was mainly responsible for tissue culture 

required for macrophage differentiation and preparing cells for stimulation experiments. 

Subhankar Mukhopadhyay and Gordon Dougan provided valuable feedback in designing and 

optimising Salmonella infection and IFNɣ stimulation conditions. 

4.1 Introduction 

Genetic differences between individuals can have a major impact on how immune cells respond 

to environmental stimuli, such as the amount of cytokines they produce after infection (Li et al., 

2016a). A number of studies have looked at the impact of genetic variation on cellular 

responses to different (immunological) environmental stimuli via the regulation of gene 

expression. Most studies have used either primary monocytes purified from peripheral blood 

(Fairfax et al., 2014; Kim et al., 2014) or monocyte-derived dendritic cells (Barreiro et al., 2012; 

Lee et al., 2014). While powerful, one limitation of primary cells is that the amount of material 

that can be obtained from a single individual is limited. This in turn limits both the number of 

assays that can be performed on cells from a single individual as well as the number of stimuli 

that can be studied. This is especially important because for any given cell type there can be 

tens of different relevant stimuli or combinations of stimuli, each one potentially revealing a 

different set regulatory variants that are otherwise hidden in the unstimulated state.  

 

A major advantage of cell lines is that the number of cells is essentially unlimited meaning 

different phenotypes can be collected from the same set of individuals over time. In this respect, 
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human lymphoblastoid cell lines (LCLs) have been very powerful. For example, over the years 

LCLs from the Yoruban population have been profiled on many different levels including RNA 

sequencing (Pickrell et al., 2010), ribosome profiling (Battle et al., 2015), proteomics (Battle et 

al., 2015), DNase-seq (Degner et al., 2012) and ChIP-seq (Grubert et al., 2015; McVicker et al., 

2013) and in multiple cases integrating old data sets with new ones has provided new biological 

insight (Li et al., 2016c). However, since LCLs are immortalised by infection with Epstein-Barr 

virus they are not a suitable model to study the response to different immunological stimuli.  

 

A promising approach to overcome the limitations of LCLs are human induced pluripotent stem 

cells (iPSC) that have recently been derived from large collection of unrelated individuals 

(Kilpinen et al., 2016). In Chapter 3, we showed that iPSCs can be reliably differentiated into 

macrophages on a scale necessary for QTL mapping studies. The aim of this chapter is to first 

characterise how well iPSC-derived macrophage are able to recapitulate known aspects of 

macrophage response to Salmonella infection and IFNɣ stimulation. Subsequently, I want to 

identify common genetic variant that influence gene expression and mRNA processing 

(promoters, splicing, poly-adenylation) in each of the four conditions and assess how condition 

specific they are. 

 

We obtained RNA-seq data from 84 iPSC-derived macrophage lines in four immunological 

conditions: (1) naive, (2) 18-hour IFNɣ stimulation, (3) 5-hour Salmonella infection (4) 18-hour 

IFNɣ stimulation followed by 5-hour Salmonella infection. We chose these stimuli, because they 

are known to activate distinct downstream signalling pathways. Lipopolysaccharide (LPS) and 

other components on the surface of Salmonella cell wall are recognised by macrophage Toll-like 

receptors (TLRs) that lead to activation of NF-kB and AP-1 signalling pathways (Takeuchi and 

Akira, 2010). TLR4 activation by LPS also leads to specific activation of the interferon response 

factor 3 (IRF) transcription factor and downstream antiviral response genes (Doyle et al., 2002). 

IFNɣ, on the other hand, is specifically recognised by the IFNɣ receptor that leads to 

phosphorylation and activation of the STAT1 transcription factor (Platanias, 2005). Moreover, 

pre-stimulating macrophages with IFNɣ prior to bacterial infection leads to enhanced microbial 

killing and stronger activation of inflammatory response by Toll-like receptors (TLRs) (Hu and 

Ivashkiv, 2009; Qiao et al., 2013; Su et al., 2015). There are at least two potential mechanisms 

that could be responsible for the enhanced response: (1) IFNɣ pre-stimulation can prime certain 

enhancers so that they can now be bound by Salmonella-activated TFs (Qiao et al., 2013), (2) 

IFNɣ priming can change the pool of active TFs available in the cell, this can facilitate new types 
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of collaborative binding between Salmonella-activated TFs and IFNɣ-activated TFs similarly to 

PU.1 binding to latent enhancers in mouse macrophages activated by IFNɣ stimulation (Ostuni 

et al., 2013).  

 

With 84 samples, we were also highly powered to detect differential expression between the 

four conditions. By comparing the differentially expressed genes to the literature, I was able to 

show that iPSC-derived macrophages predominantly activated expected genes and pathways in 

response to the three stimuli, indicating that they are a suitable model to study human 

macrophage immune response. The main aim of the chapter was to uncover genetic variants 

that regulate gene expression on gene and transcript level. I used two complementary models 

to identify gene expression quantitative trait loci (eQTLs) and assess their condition specificity. I 

also developed a novel approach to pre-process transcript annotations prior to transcript ratio 

QTL (trQTL) mapping that increased interpretability of trQTLs and allowed me to detect more 

independent trQTLs per gene than established methods. I identified thousands of eQTLs and 

trQTLs across conditions and estimated that ~25% of them were condition specific. 

Consequently, a large proportion of the condition-specific QTLs were ‘hidden’ in the naive state, 

highlighting the importance of studying many different stimuli to uncover potential QTLs 

underlying disease associations. Although I was able to detect similar numbers of eQTLs and 

trQTLs across conditions, I found that eQTLs and trQTLs for the same genes were largely 

independent from each other, indicating that ignoring transcript-level variation can miss many 

genetic effects. Finally, I uncovered considerable heterogeneity in the QTLs discovered by 

different computational approaches. This was especially true for trQTLs because alternative 

transcripts are still poorly annotated. I was able to show that both macrophage eQTLs and 

trQTLs were enriched for GWAS hits for Alzheimer’s disease, lipid traits and multiple 

autoimmune disorders. Together, these results highlight that iPSC-derived macrophages are a 

promising cell culture-based system to study condition-specific regulatory variation. 

4.2 Methods 

4.2.1 Gene expression analysis 

Full details of the macrophage differentiation protocol, stimulation assays, RNA-seq 

experimental procedures, read alignment and gene expression quantification are presented in 

Chapter 3. I used the quantile normalised gene expression values from the cqn (Hansen et al., 
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2012) package for clustering, eQTL mapping with linear models as well as for visualisation. For 

count-based methods such as DESeq2 (Love et al., 2014) and RASQUAL (Kumasaka et al., 

2016) I used the raw read count data directly.  

Differential expression analysis 

I included 15,797 genes whose mean expression in at least one of the conditions was greater 

than 0.5 transcripts per million (TPM) into our differential expression analysis. For each gene, I 

used likelihood ratio test (test = “LRT”) implemented in DESeq2 (Love et al., 2014) v1.10.0 to 

test if a model that allowed different mean expression in each condition was a better fit to the 

data than a null model assuming the same mean expression across conditions. I used 1% 

Benjamini-Hochberg FDR threshold to identify differentially expressed genes. I further filtered 

the genes by requiring them to be at least 2-fold differentially expressed between the naive 

condition and one of the stimulated conditions resulting in 8758 differentially expressed genes. 

 

To identify differentially expressed genes with specific expression patterns, I calculated mean 

quantile-normalised expression level in each condition and standardised the mean expression 

values across conditions to have zero mean and unit variance. I then used c-means fuzzy 

clustering implemented in MFuzz v.2.28 (Kumar and E Futschik, 2007) package with 

parameters ‘c = 9, m = 1.5, iter = 1000’ to assign the genes into 9 clusters. The number of 

clusters was chosen iteratively by trialling different numbers and observing which ones led to 

stable clustering results from independent runs. I ranked the genes in each cluster by their fold 

change and used g:Profiler (Reimand et al., 2016) R packages to identify pathways and Gene 

Ontology (GO) categories enriched in each cluster. 

Detecting hidden confounders with PEER 

To detect hidden confounders in gene expression, I applied PEER (Stegle et al., 2012) on each 

condition separately allowing for at most 10 hidden factors. As discussed in Chapter 3, I found 

that the first 3-5 factors explained the most variation in the data and the others remained close 

to zero. 
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4.2.2 Gene expression QTL mapping 

Preparing genotype data 

I obtained imputed genotypes for all of the samples from the HipSci project (Kilpinen et al., 

2016). I used CrossMap (Zhao et al., 2014) v0.1.8 to convert variant coordinates from GRCh37 

reference genome to GRCh38. Subsequently, I filtered the VCF file with bcftools v.1.2 

(http://samtools.github.io/bcftools/) to contain only bi-allelic variants (both SNPs and indels) with 

IMP2 score > 0.4 and minor allele frequency (MAF) > 0.05 in our 84 samples. This VCF file was 

used for all subsequent analyses. The genotype data for 52 managed access lines is available 

from the European Genome-phenome Archive (EGA) (EGAD00010000773), the data for the 

remaining 34 open access lines is deposited in the European Nucleotide Archive (ENA) 

(PRJEB11749). The VCF file was imported into R using the SNPRelate (Zheng et al., 2012) R 

package.  

Detecting eQTLs using linear model 

I used linear regression implemented in the fastQTL (Ongen et al., 2016) software to map cis 

eQTLs in each experimental condition. I used the “--permute 100 10000” option to obtain 

permutation p-values for each gene. The size of the cis windows was set to +/-500 kb around 

the gene. I used sex and the first six PEER factors as covariates in the model. I picked single 

most significantly associated variant for each gene and used Benjamini-Hochberg correction to 

identify genes with at least one significant eQTL at 10% FDR level (‘eGenes’).  

Quantifying allele-specific expression 

I used ASEReadCounter (Castel et al., 2015) from the Genome Analysis ToolKit (GATK) to 

count the number of allele-specific fragments overlapping each variant. I used the following 

flags with ASEReadCounter: ‘-U ALLOW_N_CIGAR_READS -dt NONE --minMappingQuality 10 

-rf MateSameStrand’. I removed indels from the VCF file prior to quantifying allele-specific 

expression because they are not supported by the RASQUAL model.  

Detecting QTLs using RASQUAL 

I wrote a collection of python scripts and a rasqualTools R package to simplify running 

RASQUAL on large number of samples and work with large RASQUAL output files. This 

software is available on GitHub (https://github.com/kauralasoo/rasqual). I used the 

vcfAddASE.py script to add allele-specific counts calculated in the previous step into the VCF 
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file. I ran RASQUAL (Kumasaka et al., 2016) independently for each experimental condition 

using sex and first two PEER factors as covariates. In contrast to standard linear model, 

covariates seemed to have only a minor effect on the number of eQTLs detected by RASQUAL. 

I only included variants that were either in the gene body or within 500 kb upstream or 

downstream of the gene. I specified ‘--imputation-quality > 0.7’. As a result, variants with 

imputation quality of < 0.7 were used as feature SNPs in allele-specific analysis but were not 

considered as possible causal variants. I also used RASQUAL’s GC correction option to correct 

for sample-specific GC bias in the gene-level read count data. To correct for multiple testing, I 

picked one minimal p-value per gene, used eigenMT (Davis et al., 2016) to estimate the number 

of independent tests performed in the cis-region of each gene and then performed Bonferroni 

correction to obtain the corrected p-value. I further performed Benjamini-Hochberg FDR 

correction on the Bonferroni-corrected p-values to account for multiple testing between features 

and defined associations with FDR < 0.1 as significant. 

Comparing RASQUAL and FastQTL results 

To compare RASQUAL and FastQTL, I focussed on genes that were not filtered out by 

RASQUAL because of zero read count. Since performing thousands of genome-wide 

permutations was not feasible for RASQUAL, I only computed nominal p-values for the lead 

eQTL variant for each gene from both methods. I estimated the number of independent variants 

in the cis region of each gene with eigenMT (Davis et al., 2016) and then performed Bonferroni 

correction on gene level using the eigenMT estimates. Subsequently, I used Benjamini-

Hochberg FDR correction to account for the number of genes tested and identified the genes 

that had a significant eQTL at 10% FDR. The eigenMT based FDR threshold was more 

conservative than permutation-based FDR normally used for FastQTL as reported in the 

eigenMT paper (Davis et al., 2016).  

Detecting condition-specific QTLs with a linear model 

In each condition, I first identified all features (genes or intron clusters) and corresponding lead 

variants that displayed significant association at 10% FDR level. These were identified either 

using RASQUAL (gene expression) or linear regression (intron excision ratios). For each 

feature, I then only kept independent lead variants (R2 < 0.8). Finally, I used all independent 

pairs of features and corresponding lead variants to test if the QTL effect size was significantly 

different between conditions. This was equivalent to testing the significance of the interaction 
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term between condition and lead QTL variant for each feature. Specifically, I used ANOVA to 

compare two models for each gene-lead SNP pair: 

H0: expression ~ genotype + condition + covariates 

H1: expression ~ genotype + condition + genotype:condition + covariates 

I calculated the p-value of rejecting H0 and performed Benjamini-Hochberg FDR correction to 

identify condition-specific QTLs that were significant at 10% FDR level. For both gene 

expression and alternative transcription analysis, I used the same normalised data sets and 

covariates that were used for QTL mapping in each condition separately. 

Filtering and clustering QTLs based on effect size 

I extracted the RASQUAL eQTL effect size estimates π for each gene-variant pair in each 

condition and converted them to log2 fold changes between the two homozygotes using the 

formula log2FC = -log2(π/(1-π)). For an eQTL to be considered condition specific I required the 

difference in log2FC between naive and any one of the stimulated conditions to be greater than 

0.32 (~1.25 fold). I used k-means clustering to identify groups of eQTLs that had similar 

condition-specific patterns. For each eQTL, I divided the log2FC values in each condition by the 

maximal log2FC value observed across conditions. This scaling was necessary to make eQTLs 

with different absolute effect size comparable to each other for the k-means algorithm. 

4.2.3 Alternative transcription analysis 

I used three complementary approaches to quantify transcript expression in our samples. First, I 

quantified the expression levels of all known Ensembl transcripts. Secondly, I constructed 

alternative transcription events from known transcript annotations and quantified their relative 

expression. Finally, I used an annotation-free approach to quantify the rates of intron excision. 

All of these quantification approaches were subsequently used to identify transcript ratio QTLs 

(trQTLs). 

Quantifying the expression of annotated alternative transcripts 

I downloaded the Ensembl 85 gene annotations in FASTA format from the Ensembl website. I 

then used Salmon (Patro et al., 2016) v0.7.2 to quantify the expression levels of 178,136 

transcripts from 39,037 genes. I specified the following options: ‘--useVBOpt --seqBias --gcBias 

--libType ISR’. The ‘--seqBias’ option quantified the extent of sample specific fragment bias for 

each gene and adjusted the normalised transcript expression levels accordingly. Similarly, ‘--

gcBias’ option quantified the extent of sample specific GC content bias and corrected the 
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normalised transcript expression levels accordingly. I expected the ‘--gcBias’ option to be 

important given the difference in GC content bias between automatic and manual library 

construction methods that I identified in Chapter 3. 

Constructing alternative transcription events from known annotations 

In the second approach, I modified the reviseAnnotations 

(https://github.com/kauralasoo/reviseAnnotations) code introduced in Chapter 2 to construct 

alternative transcription events from known annotated transcripts. I downloaded the Ensembl 85 

transcript coordinates as well as transcript metadata using the biomaRt (Durinck et al., 2005) R 

package. I focussed the analysis on 71,991 protein coding and lincRNA transcripts from 16,762 

genes, only including genes that had at least two annotated transcripts. I also extracted 

transcript tags from the Ensembl 85 GTF file downloaded from the Ensembl website. 

Importantly, the tags contained information if the 3′ or 5′ end of the coding sequence (CDS) was 

incomplete for any given transcript. In total, I found that the coding sequence was incomplete for 

20,966/65,140 (32%) of the protein coding transcripts. The truncated transcripts of the IRF5 

gene are illustrated on Figure 4.1A. To overcome potential bias caused by incomplete transcript 

annotations, I first decided to extend the truncated transcripts by using exons from transcript 

with the furthermost 3′ or 5′ end (depending on which end of the transcript was incomplete). The 

extended transcripts of the IRF5 gene are illustrated on Figure 4.1B. 
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Figure 4.1: Extending truncated transcripts of the IRF5 gene. (A) Protein coding transcripts 

of the IRF5 gene from the Ensembl 85 gene set. The transcripts with annotated incomplete 3′ 

ends are marked with red asterisks. (B) Truncated transcripts have been extended using the 

exons from the transcript with the furthermost 3′ end (ENST00000249375). Transcript 

annotations have been plotted using wiggleplotr (https://github.com/kauralasoo/wiggleplotr) R 

package and introns have been rescaled to constant length to facilitate visualisation. 
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In Chapter 2 I observed that different types of alternative transcription are often regulated 

independently, but this complexity is not well represented by current transcript annotation. After 

extending the truncated transcripts, I modified the reviseAnnotations 

(https://github.com/kauralasoo/reviseAnnotations) code to split the full transcripts into alternative 

transcription events. Briefly, I first identified the set of exons that were shared by all transcripts 

of the gene. Then I went through all of the individual transcripts of the gene and identified all the 

exons of the transcript that were either upstream, between or downstream of the shared exons. 

Finally, I appended the transcript-specific exons to the shared exons to construct alternative 

transcription events corresponding to alternative promoters, alternative middle exons and 

alternative transcript ends. With this approach I was able to identify seven different alternative 

promoters, one alternative middle exon and four alternative transcript ends from the original 11 

different transcripts of the IRF5 gene (Figure 4.2). If there were no shared exons between all of 

the transcripts of the gene, I first split the transcripts into multiple groups of overlapping 

transcripts and then constructed alternative events in each group separately. The approach 

described here is best suited for disentangling changes in alternative promoters from changes in 

alternative transcript ends. Due to high complexity in transcript annotations, the alternative 

promoter and alternative transcript end events identified with this approach can still contain 

alternative middle exons (Figure 4.2).  

 

I used the rtracklayer (Lawrence et al., 2009) package to export the alternative transcript 

annotations in GFF format and used to gffread tool from cufflinks v2.2.1 (Trapnell et al., 2010) to 

extract the alternative event sequences from the GRCh38 reference genome sequence. Finally, 

I quantified the expression of each alternative transcription event with Salmon using identical 

parameters that I used for full transcript analysis. I used separate Salmon index for the three 

different types of events (alternative promoters, middle exons and transcript ends) to avoid any 

bias caused by shared exons common to all of these events. 
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Figure 4.2: Alternative transcription events constructed from the 11 annotated transcripts 
(Figure 4.1B) of the IRF5 gene. Exons shared by all alternative events are highlighted in green 

and exons specific to some events are shown in blue. 
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Quantifying rates of intron retention 

I used LeafCutter (Li et al., 2016b) to identify 38,725 clusters of intron excision events 

corresponding to a total of 142,030 alternatively excised introns. In each sample, I counted the 

number of reads supporting each intron excision event in a cluster as well as the total number of 

reads in a cluster.  

4.2.4 Transcript ratio QTL mapping 

Data normalisation 

All three quantification approach described above (Ensembl 85, reviseAnnotations, and 

LeafCutter) allowed me to calculate the relative expression of a single event (transcript, 

transcription event or intron) relative to all other events in the same cluster (gene, part of a gene 

or intron cluster). In the case of transcripts, this can be interpreted as the proportion of the total 

expression of the gene that can be attributed to a single transcript. For transcripts and 

transcription events I used the Salmon TPM estimates to calculate the relative expression 

values. For intron excision events identified by LeafCutter I used the raw read counts 

overlapping exon junctions.  

 

In some samples the relative expression of an event was not defined because the total 

expression of the group was zero. In those cases, I replaced the missing relative expression 

values with the mean value from all present samples. Finally, I quantile normalized the relative 

expression levels for each event across samples to a standard normal distribution. While 

conservative, this approach was efficient against two types of artefacts in intron excision ratios: 

(i) excess of values very close to 0 and 1 and (ii) excess of outlier excision ratios caused by very 

low estimated expression level for some events. 

Detecting transcript ratio QTLs 

I applied FastQTL to the quantile normalised transcript ratios from the three quantification 

approaches described above. I used the first six principal components of the phenotype matrix 

as covariates for the transcript ratio QTL (trQTL) mapping. I limited the cis region to +/- 100kb 

around the group of transcripts and obtained permutation p-values for each transcript. For each 

group, I took the p-value of the most significantly associated transcript and used Bonferroni 

correction to correct for the number of transcripts in a group. This approach was conservative as 
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the alternative events in a group are not independent from each other. Finally, I used Benjamin-

Hochberg FDR correction on the Bonferroni-corrected p-values to identify all trQTLs at 10% 

FDR level. 

4.2.5 Overlap analysis with the NHGRI-EBI GWAS catalogue 

I downloaded the latest version of the NHGRI-EBI GWAS catalogue v1.0.1 from the EBI website 

on 2 March 2016 (Welter et al., 2014). I only retained studies that were conducted in European 

populations and where the sample size exceeded 1,000. For each trait, I performed LD pruning 

to only keep independent associations (R2 < 0.8). After filtering, the catalogue contained 10,727 

independent associations for 807 different traits. I considered an QTL to overlap a GWAS hit if 

the distance between the lead QTL variant and the GWAS hit was less than 1 Mb and R2 

between the variants was greater than 0.8. 

4.2.6 QTL replicability between conditions 
For the Storey’s π1 analysis (Nica et al., 2011), I identified eGenes at 10% FDR in one 

condition, took their permutation-based lead variant p-values in the other condition and used the 

qvalue (Dabney et al., 2010) package to estimate the proportion of non-null p-values. For the 

lead variant concordance analysis, I identified eGenes together with their lead variants at 1% 

FDR in one condition, extracted their lead variants in the other condition and counted how often 

R2 between the two lead variants of the same gene was > 0.8. 

4.3 Quantifying gene expression and alternative transcription 

We collected a total of 336 RNA-seq samples from macrophages differentiated from 84 iPSC 

lines in four experimental conditions. After quantifying gene expression levels (See Methods), I 

used Principal Component Analysis (PCA) to assess the quality of the data. PCA revealed four 

distinct clusters with the first principal component (PC1) explaining 44% of the variance and 

roughly corresponding to Salmonella infection status and PC2 (explaining 15% of the variance) 

roughly corresponding to IFNɣ stimulation (Figure 4.3). PC5 that was most strongly correlated 

with the RNA-seq library construction method (manual or automatic) explained only 1.6% of the 

variance in the data. 
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Figure 4.3. Principal component analysis of normalised and standardised gene 
expression data. 
 

In addition to gene level analysis, I also quantified the relative expression of individual 

transcripts from the Ensembl 85 reference annotations and used the ratio between the transcript 

expression and total gene expression as the phenotype of interest. However, as highlighted in 

Chapter 2, reference annotations are still incomplete and often miss many transcripts expressed 

by the cells. To overcome this limitations, I used a modified version of the reviseAnnotations tool 

that I developed in Chapter 2 to split reference transcripts into individual alternative transcription 

events and subsequently quantified the relative expression of each event. I also used 

LeafCutter (Li et al., 2016b) to identify and quantify the relative excision ratios of 50,538 

alternative introns. These three complementary quantification approaches are referred to as 

Ensembl 85, reviseAnnotations, and LeafCutter in the following text. More details on each of 

these approaches is given in the Methods section. 

 

In the LeafCutter data, the first two PCs only explained ~9% of the variance, indicating that 

there was less structure in the intron excision measurements (Figure 4.4A) compare to the gene 

expression levels. Moreover, while PC1 (explaining 5% of the variance) still corresponded to 

Salmonella infection, the second PC was now strongly correlated with the method of RNA 

library preparation (manual vs automatic) (Figure 4.4A). Finally, PC3 (2% variance explained) 

corresponded to IFNɣ stimulation (Figure 4.4B). In Chapter 3 I showed that there was a 
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difference in GC-content bias between manual and automatic RNA-seq library construction 

protocols. This suggests that intron excision ratios that are based on a small number of reads 

from a short region are more susceptible to GC-content bias than gene expression 

measurements that are aggregated over a longer region. 

 
Figure 4.4: Principal component analysis of normalised intron excision ratios. (A) PC1 

plotted against PC2. (B) PC1 plotted against PC3. Protocol - type of RNA-seq library 

construction protocol used, either manual or automatic. 

 

4.3.1 Differential expression analysis reveals expected pathways 

First, I wanted to verify that our iPSC-derived macrophages are a suitable model to study 

genetics of gene expression in immune response. Fortunately, macrophage response to IFNɣ 

and bacterial stimuli (such as LPS) have been extensively studied and most of the pathways 

involved in the response have been identified. I therefore sought to verify that the expected 

pathways are also activated in iPSC-derived macrophages after corresponding stimuli. 
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Figure 4.5: Differential gene expression between the four experimental conditions. (A) 
Heatmap of 8758 differentially expressed genes clustered into nine distinct patterns of 

expression. (B) A selection of Gene Ontology (GO) terms specifically enriched in each cluster. 

Only enrichments with p < 1×10-8 are shown in the figure. ‘IFNɣ response’ was the only GO term 

with enrichment p-value < 1×10-8 in more than one cluster. 

 

I identified 8758 genes that were > 2-fold differentially expressed across all four conditions and 

clustered them into nine distinct expression patterns (Figure 4.5A). I then used g:Profiler 

(Reimand et al., 2016) to perform pathway and Gene Ontology enrichment analysis on these 

clusters. Cluster 1 (genes strongly upregulated by Salmonella or IFNɣ + Salmonella) was 

enriched for TNF and NF-κB signalling pathways (IL1B, TRAF1) as well as pathways involved in 

cell death and apoptosis (Figure 4.5B). This agrees with the observation that we recovered less 

total RNA from Salmonella and especially IFNɣ + Salmonella conditions (Figure 4.6), which 
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would also result from greater cell death following Salmonella infection. Cluster 2 (upregulated 

by Salmonella) was enriched for genes involved in locomotion. Cluster 3 consisted of genes that 

responded to Salmonella infection only after the cells had been pre-treated with IFNɣ. This 

cluster was enriched for type I interferon genes (IFNA1/8, IFNL2/3, IFNW1) and JAK-STAT 

signalling, but also contained other important inflammatory genes such as NOD2 and IL12A. 

Moreover, the synergistic activation of IL12A in response to IFNɣ and LPS is well established in 

monocyte-derived macrophages (Qiao et al., 2013). Cluster 4 contained genes that were 

upregulated similarly by IFNɣ and Salmonella and it was strongly enriched for type I interferon 

response and IRF1 target genes (CXCL8, IRF1, ATF3, STAT2, IDO1/2). This is consistent with 

the production of IFNβ and activation of IFNβ signalling downstream of TLR4 activation 

(Ivashkiv and Donlin, 2014). Genes in cluster 5 were only upregulated by IFNɣ and they were 

strongly enriched for antigen processing and presentation and MHC class II protein complex 

(CIITA). Again, the role of IFNɣ in activating antigen presentation genes is well established 

(Schroder et al., 2004). 

 

 
Figure 4.6: Relative amount of RNA obtained from each condition across 84 macrophage 
lines. I quantified the total amount of RNA obtained from each sample. For all four samples 

from a single line (corresponding to four conditions) I then subtracted the mean RNA amount 

across conditions and divided by standard deviation to obtain relative RNA amount. 
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Genes downregulated in the stimulated conditions also clustered into four distinct groups 

(Figure 4.5). Here, cluster 6 (downregulated by IFNɣ) were strongly enriched for cell cycle 

genes. This is consistent with multiple reports that stimulation with IFNɣ induces cell cycle arrest 

in macrophages (Schroder et al., 2004; Xaus et al., 1999). Finally, clusters 7,8 and 9 (all 

downregulated by Salmonella) was strongly enriched for ncRNA processing, ribosome 

biogenesis and tRNA processing, perhaps representing repression of translation as a general 

stress response. 

4.4 Genetics of gene expression 

4.4.1 Gene expression QTL mapping 

Table 4.1: Number of eQTLs detected in +/-500kb window around each gene using either 
linear model (FastQTL) or allele-specific model (RASQUAL). 

condition FastQTL RASQUAL % difference 

Naive 1932 2590 34 

IFNɣ 1985 2478 25 

Salmonella 1518 1882 24 

Both 1449 1869 29 

 

I used two alternative approaches to map eQTLs in each of the four conditions. First, I used 

standard linear model implemented in the FastQTL (Ongen et al., 2016) software. Secondly, I 

also used a novel RASQUAL (Kumasaka et al., 2016) method that combines both allele-specific 

and between-individual signal to increase the power of detecting eQTLs and also improves fine 

mapping causal variants. I decided to use both models for two reasons: (1) I wanted to take 

advantage of the allele-specific information to increase eQTL detection power (2) gene-level 

permutation p-values and summary statistics from the linear model can be directly used in eQTL 

replication and colocalisation analyses whereas this is not as straightforward for the RASQUAL 

output. I found that at the same 10% FDR level RASQUAL was able to detect on average 28% 

more genes with significant eQTLs (Table 4.1). The increase in power was also evident on the 

quantile-quantile (Q-Q) plot (Figure 4.7). 
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Figure 4.7: Quantile-quantile plots for the p-values of eQTLs detected either with 
RASQUAL or FastQTL. Solid lines represent the expected distribution of p-values under the 

null model. 

4.4.2 Transcript ratio QTL mapping 

I also used FastQTL in combination with the three quantification methods described above to 

map transcript ratio QTLs (trQTLs) in a +/-100 kb cis-window around the feature in all four 

conditions. I use smaller cis-window for trQTLs compared to eQTLs (+/-500kb), because trQTLs 

are known to be strongly enriched near the exon boundaries (Li et al., 2016c). Using either raw 

reference transcripts (Salmon + Ensembl 85) or transcription events constructed from them 

(Salmon + reviseAnnotatons), I detected between 1,500 and 2,500 trQTLs per condition (Table 

4.2). Ensembl 85 results contained slightly more unique genes while reviseAnnotatons was able 

to identify multiple independent trQTLs for a subset of genes as illustrated by the IRF5 example 

below. Finally, LeafCutter detected approximately 45% less trQTLs than the annotation-based 

methods.  

 

Table 4.2: Number of transcript ratio QTLs detected by different quantification methods 
at 10% FDR. Only variants within +/- 100kb of the transcript were included in the analysis. 

Condition LeafCutter Salmon + 
Ensembl 85 

Salmon + 
reviseAnnotations 
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Naive 1953 2201 2429 

IFNɣ 1756 2095 2314 

Salmonella 1496 1743 1858 

Both 1304 1481 1547 

 

4.4.3 Concordance of QTLs detected by different methods 

Comparing different QTL mapping approaches just by the numbers of QTLs found is not very 

informative, because it completely ignores the identity of the QTLs detected. Looking at simple 

overlaps between lead QTL variants can also be misleading, because the lead SNPs can be 

randomly different between the methods and still tag the same causal variant in high LD. To 

overcome this limitation, I decided to test if the lead variants for the same sets of genes (or 

transcripts) were concordant with each other for two different QTL mapping approaches. 

Specifically, I took all lead variants at 1% FDR from one method and compared them to the lead 

variants of the same genes (or transcripts) from a different method (even if below the 1% 

threshold). I then calculated the fraction of lead variant pairs that were in high LD (R2 > 0.8) with 

each other. Note that this approach is likely to underestimate the true extent of QTL sharing 

between methods in cases where there are multiple independent QTLs per gene. 

 

First, I found that 60% of the eQTL lead variants detected by FastQTL were also found by 

RASQUAL whereas only 40% of the RASQUAL QTLs were detected by FastQTL (Figure 4.8). 

This is consistent with the smaller number of eQTLs detected by the linear model (Table 4.1). I 

found similar level of lead variant sharing (~60%) between trQTLs detected using 

reviseAnnotations and Ensembl 85 annotations whereas sharing between reviseAnnotations 

and LeafCutter trQTLs was considerably lower (30-40%). This suggests that LeafCutter might 

be more efficient in capturing unannotated alternative exons that are not present in reference 

annotations. Finally, there was only moderate (20-30%) lead variant sharing between FastQTL 

eQTLs and reviseAnnotations trQTLs and this decreased to 10-12% when comparing to 

LeafCutter. This suggests that eQTLs and trQTLs are to a large extent independent from each 

other. 
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Figure 4.8: Concordance of lead QTL variants detected by different methods. In the gene 

expression (eQTL) comparison (left panel) I used FastQTL and RASQUAL lead variants from 

+/-500kb cis-window. For the eQTL and trQTL comparison (rightmost panel) I reran FastQTL 

eQTL mapping in a 100kb around the gene to ensure that the lead variants were comparable to 

the trQTLs. 

4.4.4 Condition specificity of eQTLs and trQTLs 

Next, I used two different approaches to estimate the proportion of condition specific eQTLs and 

caQTLs. First, I used Storey’s π1 statistic to estimate the sharing of QTLs between conditions. 

Briefly, I identified eGenes at 10% FDR in each condition and then looked their minimal p-

values in the other three conditions and estimated the fraction of those that were true positives. I 

found that the fraction of shared eGenes varied between 0.75 and 0.90 with the lowest sharing 

observed between naive and IFNɣ + Salmonella conditions (Figure 4.9). This is somewhat 

higher than the 53-80% sharing observed between different tissues (Nica et al., 2011; The 

GTEx Consortium, 2015), but much lower than the sharing of eQTLs in the same tissue across 

twin pairs (Nica et al., 2011).  
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Figure 4.9: Replicability of eGenes between conditions. The heatmap shows the pairwise 

Storey’s π1 statistic for eQTLs detected between conditions. 

 

However, this type of replicability analysis has several limitations. First, it considers only the p-

value of one lead variant per gene and ignores patterns of linkage disequilibrium. Consequently, 

if the gene has two unlinked highly condition-specific eQTLs then this would be considered a 

successful replication even though both of the variants have condition-specific effects. 

Secondly, calculating the π1 statistic requires that the null p-values are uniformly distributed. 

This assumption is not satisfied by the Bonferroni corrected p-values from RASQUAL or trQTL 

analyses where most p-values are strongly skewed towards 1. As a result, π1 statistic cannot be 

used on those datasets. 

 

To overcome these limitations, I decided to use the same lead variant concordance analysis 

described above to compare QTLs from different conditions. I found that ~55% of the eQTL lead 

variants and ~65 trQTL lead variants were shared between conditions, suggesting that trQTLs 

are slightly less likely to be condition specific than eQTLs (Figure 4.10).  
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Figure 4.10: Concordance of QTL lead variants between pairs of conditions detected by 
different QTL mapping methods. Each dot represents one pairwise comparison between 

conditions (such as IFNɣ vs naive). I mapped eQTLs with FastQTL in both +/- 500kb and +/- 

100kb cis-windows to match the 100 kb window used for transcript ratio QTLs. 

Identifying condition-specific eQTLs 

Although the π1 and lead variant concordance analyses are useful to estimate the global level of 

eQTL replicability between conditions, they do not identify specific variants and analyse their 

effect sizes. To identify individual condition-specific eQTL and their target genes, I compiled all 

independent (R2 < 0.8) lead SNP-gene pairs from RASQUAL across conditions and used 

standard ANOVA model to test for interactions between genotype and condition (See methods). 

A Q-Q plot revealed that the p-values of the interaction test were well calibrated (Figure 4.11A). 

I found that 1,172/5,782 (20%) lead eQTL variants corresponding to 996/3,905 (26%) eGenes 

had significantly different effect sizes between conditions.  

 

Although statistically significant, sometimes the effect size differences were relatively small. As 

a measure of the effect size of an eQTL I used the log2 fold change (log2FC) between reference 
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and alternative alleles estimated by RASQUAL. For an eQTL to be considered condition specific 

I required the difference in log2FC between naive and any one of the stimulated conditions to be 

greater than 0.32 (~1.25 fold). In our dataset, 741/996 condition-specific eQTLs passed this 

threshold out of which 496 appeared after stimulation (i.e. log2FC was less than <= 0.59 (~1.5-

fold) in the naive condition, Figure 4.11C) and 245 disappeared after stimulation (log2FC was 

greater than 0.59 (~1.5-fold) in the naive condition, Figure 4.11B). Finally, I used k-means 

clustering of the relative effect sizes to assign eQTLs into different activity patterns (Figure 

4.11B-C). I observed that slightly more eQTLs appeared after Salmonella infection (clusters 2,3 

and 4, n = 260) than after IFNɣ stimulation (clusters 5,6, n = 156). Furthermore, 83 eQTLs only 

appeared after both of the stimuli were present (cluster 1), highlighting the importance of 

studying combinations of stimuli. 

 

Figure 4.11: Condition-specific eQTLs clustered by their effect size. (A) Quantile-quantile 

plot of the expected and observed p-values for the interaction test (B) Effect size heatmap of the 

seven clusters of eQTLs that disappeared after stimulation. (C) Effect size heatmap of the six 

clusters of eQTLs that appeared after stimulation. For each gene, the relative effect size was 

calculated by dividing the eQTL effect size in each condition by the maximal absolute effect size 
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across conditions. This ensured that the eQTLs with different absolute effect sizes were visually 

comparable on the heatmap. 

4.5 Case study: genetics of IRF5 transcription 

To illustrate the power of using complementary approaches for gene expression and transcript 

ratio QTL mapping, I focussed on the IRF5 gene. Using total read counts and the standard 

linear model (FastQTL), I was not able to detect any significant eQTLs for this gene. Transcript 

level analysis with Ensembl 85 annotations, however, identified a very strong trQTL 

(rs10954213, p < 2.9×10-32, MAF = 0.46) that on a closer inspection turned out to regulate 3′ 

UTR usage (Figure 4.12). The association between the rs10954213 variant and 3′ UTR usage 

of the IRF5 gene has been previously reported by multiple studies (Cunninghame Graham et 

al., 2007; Yoon et al., 2012; Zhernakova et al., 2013) and the lead variant is likely to be the 

causal one because it changes the canonical polyadenylation signal from AATAAA to AATGAA.   

 

Using alternative transcription events from reviseAnnotations not only detected the 3′ UTR QTL 

(Figure 4.12), but also identified an additional trQTL regulating alternative promoter usage 

(rs3778754, p < 4.7×10-16, MAF = 0.33) independently of the 3′ UTR usage (MAF = 0.43) 

(Figure 4.13). A key advantage of reviseAnnotations was that it was able to correctly identify 

that one of the trQTLs regulated 3′ UTR usage while the other one regulated alternative 

promoters, thus greatly improving the interpretability of the detected trQTLs. Although the 

promoter QTL was also detected by LeafCutter (p < 3×10-17) the 3′ UTR QTL was not, because 

alternative polyadenylation will not result in detectable changes in exon-exon junction reads. 

The lead promoter QTL variant (rs3778754) is also in high LD (R2 = 0.84) with a GWAS lead 

SNP rs4728142 for Systemic lupus erythematosus and Ulcerative colitis. Moreover, a recent 

fine mapping analysis of the GWAS locus identified rs3757387 as the most likely causal variant 

which is in even higher LD with the promoter QTL (R2 = 0.93) (Kottyan et al., 2015).  

 

Finally, RASQUAL detected a third trQTL for the same gene (rs199508964, p < 4.9×10-33, MAF 

=0.48) that seems to influence the excision of an alternative intron in the fifth coding exon of the 

gene (Figure 4.14). Although the lead variant directly overlaps the splice site of the retained 

intron, it is a 33 bp deletion that is also in moderate LD with the 3′ UTR QTL variant (R2 = 0.58). 

Therefore, some care is in order when interpreting this variant. This trQTL was missed by 

LeafCutter, because it does not detect intron retention events. 
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Figure 4.12: Example of a trQTL for the IRF5 gene that influences the proximal 
polyadenylation site usage. (A) Manhattan plot of the associated variants around the IRF5 

gene in the naive condition. The lead variant rs10954213 disrupts the proximal polyadenylation 

site motif. (B) RNA-seq read coverage stratified by the lead variant genotype. The panel below 

the coverage plot shows the union of IRF5 exons (top row) together with transcription events 

constructed by reviseAnnotations (other rows). The alternative 3′ UTR is highlighted by the 

dashed box. 
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Figure 4.13: Alternative promoter QTL for the IRF5 gene. (A) Manhattan plot of the 

associated variants upstream of the IRF5 promoter in the naive condition. (B) RNA-seq read 

coverage across the IRF5 gene stratified by the genotype of the lead promoter QTL variant 

(rs3778754). The panel below the coverage plot shows the union of IRF5 exons (top row) 

followed by alternative promoter annotations constructed by reviseAnnotations. 
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Figure 4.14: Intron excision QTL in the IRF5 gene. (A) Manhattan plot of eQTL p-values from 

RASQUAL in the naive condition. (B) Read coverage across the IRF5 gene stratified by the 

genotype of the lead QTL variant (rs199508964). The alternatively excised intron is highlighted 

by the dashed box.  
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4.6 Overlap with GWAS hits 

An important motivation for studying the genetics of gene expression is to identify molecular 

QTLs that enable GWAS hits to be linked to their target genes and thereby provide a 

mechanistic hypothesis that could potentially explain the GWAS association. I have performed a 

naive overlap analysis (R2 > 0.8) between all independent GWAS associations from the NHGRI-

EBI GWAS catalogue and all eQTLs and trQTLs identified from the macrophage RNA-seq data. 

As a result, the probability that any individual overlap represents a shared causal mechanism is 

likely to be low. However, looking at the overlaps in aggregate can inform us about the traits and 

diseases for which iPSC-derived macrophages might be a relevant cell type. 

 

First, I assessed how many potential GWAS overlaps are missed when looking at eQTLs and 

trQTLs only in the naive condition. I found using eQTLs and trQTLs from all four conditions as 

opposed to just from the unstimulated cells identified at least twice as many overlapping GWAS 

associations (Figure 4.15). Furthermore, the GWAS overlaps with eQTLs and trQTLs were 

largely independent from each other as illustrated by the fact that joint analysis with all QTLs 

identify 40% more overlaps. It is important to stress that most of these overlaps are likely to be 

spurious and careful colocalisation analyses are needed to dissect individual loci.  
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Figure 4.15: Number of RASQUAL eQTLs and Salmon trQTLs overlapping GWAS hits. 
‘Naive’ represents QTLs from the unstimulated condition only while ‘all’ stands for all 

independent (R2 < 0.8) QTLs across conditions. Lead QTL and GWAS variants were considered 

to be overlapping if the distance between the variants was less than 1 Mb and R2 between the 

variants was > 0.8. 

 

Secondly, I counted the number of overlaps for each trait in the GWAS catalogue and ranked 

the traits by fraction of associations that overlapped a macrophage QTL. I found that top 20 

traits with the largest fraction of associations overlapping macrophage QTLs contained 

Alzheimer’s disease, multiple autoimmune disorders and multiple lipid traits, suggesting that 

iPSC-derived macrophages might be a relevant cell type for studying the genetic mechanisms 

underlying these traits. As a negative control, height ranked 56th with only 10% of its 

associations overlapping macrophage eQTLs and trQTLs and most cancers had even smaller 

overlap. 

 

Table 4.3: List of top 20 traits with largest overlap between GWAS hits and macrophage 
eQTLs/trQTLs. Only traits with more than 15 independent associations were included. 

Autoimmune traits are highlighted in red, lipid traits in green and blood traits in blue. 

 Trait Overlap size Trait size Fraction 

1 Ankylosing spondylitis 5 17 0.29 

2 Primary biliary cirrhosis 8 28 0.29 

3 Testicular germ cell tumor 5 21 0.24 

4 Alzheimer's disease (late onset) 8 36 0.22 

5 Metabolic traits 8 36 0.22 

6 Fibrinogen 5 25 0.2 

7 White blood cell count 4 20 0.2 

8 Inflammatory bowel disease 21 111 0.19 

9 Menopause (age at onset) 6 32 0.19 
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10 Idiopathic membranous nephropathy 3 16 0.19 

11 Platelet count 10 58 0.17 

12 HDL cholesterol 15 90 0.17 

13 C-reactive protein levels 3 18 0.17 

14 Triglycerides 10 61 0.16 

15 Liver enzyme levels (gamma-glutamyl 

transferase) 

4 25 0.16 

16 Homocysteine levels 3 19 0.16 

17 Crohn's disease 17 109 0.16 

18 LDL cholesterol 11 71 0.15 

19 Multiple sclerosis 19 123 0.15 

20 Cholesterol, total 12 78 0.15 

 

4.7 Discussion 

In this chapter I have shown that iPSC-derived macrophages are able to well recapitulate known 

aspects of macrophage biology in immune response. In particular, I have shown that their gene 

expression response to Salmonella infection and IFNɣ stimulation matches what is known from 

the literature. I have also shown iPSC-derived macrophages are a robust cell culture based 

system that can be used to map condition-specific genetic effects on both gene and transcript 

expression level. 

 

We detected around 2,000 gene expression and transcript ratio QTLs in each experimental 

condition and found that ~25% of the QTLs were condition specific. This also included 495 

eQTLs that were completely hidden in the unstimulated cells and only appeared after 

stimulation. Many potential overlaps with disease hits were also only detected in the condition-

specific samples. Together these results highlight that the effect of some genetic variants on 
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gene expression manifests most clearly in specific environmental conditions. Hence, to 

construct a comprehensive catalogue of regulatory variation we need to profile gene expression 

in a large number of conditions. IPSC-derived cells provided an excellent opportunity for this, 

because they can be reliably obtained in large numbers from the same set of individuals. 

 

The three independent transcript ratio QTLs regulating alternative promoter usage, alternative 

intron retention and alternative 3′ UTR usage of the IRF5 gene highlight that different parts of 

the same transcript can be regulated by independent genetic mechanisms. This can be a 

challenge for transcript ratio QTL mapping, because all possible combinations of promoters, 

exons and 3′ ends are usually not represented by the set of annotated transcripts. Furthermore, 

up to 30% of the human protein coding transcripts annotations are incomplete and miss either 

their 3′ or 5′ ends. As a result, methods that focus on individual alternative transcription events 

such as MISO (Katz et al., 2010), DEXSeq (Anders et al., 2012) and LeafCutter (Li et al., 

2016b) have proven to be very successful. The first contribution of my reviseAnnotations 

approach is that it extends truncated transcripts with known exons of the gene. It then splits 

known transcripts into alternative 5′ ends, middle sections and 3′ ends. It is therefore a hybrid 

approach between full transcript and exon level analyses, that is still able to take advantage of 

the read coverage patterns over multiple exons (such as alternative promoters skipping multiple 

first exons) and at the same time identify independent effects on different parts of the gene.   

I found that eQTLs and LeafCutter trQTLs were largely independent from each other, thus 

confirming an earlier observation in LCLs (Li et al., 2016c). I also mapped trQTLs on 

transcription event level (Salmon + reviseAnnotations) and found that these QTLs were also 

largely independent from eQTLs, although to a lesser degree. Although LeafCutter and Salmon 

detected similar numbers of trQTLs, I found that only 30-40% of the lead variants were shared. 

One reason for this discrepancy is that the two approaches capture different transcription 

events. LeafCutter is able to detect QTLs for alternative exons that have not been annotated. 

Salmon, on the other hand, is able to detect QTLs for annotated alternative 3’ and 5’ ends that 

do not involve splicing (i.e. alternative polyadenylation) and are therefore missed by LeafCutter. 

Salmon might also be more powerful for lowly expressed genes and weaker effects, because it 

is not limited to exon-exon junction reads and is able to correct for fragment length and GC-

content bias during quantification. 
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5 Genetics of chromatin accessibility in 

macrophage immune response 
 

Collaboration note 

The work in this chapter was performed in collaboration with Julia Rodrigues who was a 

research assistant in Daniel Gaffney’s lab at the time. I designed the experiments, performed 

Salmonella infection and IFNɣ stimulation assays, took care of sample logistics and performed 

all of the data analysis. Julia prepared the cells for experiments and performed the experimental 

side of the ATAC-seq protocol. We shared macrophage differentiation tissue culture 

responsibilities. 

5.1 Introduction 

A major limitation of gene expression quantitative trait loci (eQTL) mapping studies is that due to 

linkage disequilibrium we are usually unable to identify causal variant(s). Although genetic 

variation can influence a gene expression through a variety of transcriptional and post-

transcriptional mechanisms, a large fraction of local eQTLs act by modulating the activity of 

regulatory elements (promoters and enhancers) and, subsequently, the rate of transcription of 

the gene. For example, an early study that measured chromatin accessibility and gene 

expression in the same population of lymphoblastoid cell lines (LCLs) estimated that as many 

as 55% of eQTLs were also chromatin accessibility QTLs (caQTLs) (Degner et al., 2012). 

Furthermore, caQTLs are strongly enriched in a relatively small accessible region, thus 

narrowing down the set of likely causal variants. However, no study thus far has mapped both 

eQTLs and caQTLs in multiple conditions to study how genetic effects on chromatin level 

propagate down to gene expression level in the context of stimulation.  

 

Since the original caQTL experiment (Degner et al., 2012), other studies have followed looking 

at the genetics of histone modifications and transcription factor binding (Ding et al., 2014; 

Grubert et al., 2015; Waszak et al., 2015). However, due to the large cell numbers required by 

chromatin assays, all of these studies have been conducted in LCLs. Therefore, although the 

cell type and condition specificity of eQTLs is well established (Fairfax et al., 2012, 2014), how 
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these effects manifest on the chromatin level and how they propagate down to gene expression 

is mostly unknown. The development of ATAC-seq (assay for transpose accessible chromatin) 

has made it possible to measure chromatin accessibility in much smaller number of cells, thus 

greatly increasing the number of cell types and conditions that can be profiled  

 

This chapter has two main aims. First, I wanted to estimate how well iPSC-derived 

macrophages (IPSDMs) recapitulate known aspects of macrophage immune response on the 

chromatin level. Secondly, I aimed to understand how condition-specific are genetic effects on 

the chromatin level and how these effects propagate to changes in gene expression. To study 

these two questions, we used ATAC-seq to measure chromatin accessibility of IPSDMs in the 

same four experimental conditions (naive, IFNɣ, Salmonella and IFNɣ + Salmonella) that were 

used for eQTL mapping Chapter 4 in 31-42 individuals.  

 

As highlighted in Chapter 4, the signalling pathways and transcription factors (TFs) activated by 

IFNɣ and Salmonella have been well characterised. Briefly, the activated TFs together with the 

DNA motifs that they recognise are illustrated on Figure 5.1. ChIP-seq experiments in both 

human and mouse macrophages have shown that thousands of regulatory elements change 

their activity in response to these and other stimuli (Kaikkonen et al., 2013; Ostuni et al., 2013; 

Qiao et al., 2013; Schmidt et al., 2016). Furthermore, while most of the enhancers that became 

active after stimulation are already primed in the naive state, a subset of them are created de 

novo after the simulation (Kaikkonen et al., 2013; Ostuni et al., 2013).  
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Figure 5.1: Main signalling pathways activated in macrophages after Salmonella infection 
and IFNɣ stimulation. Macrophages recognise LPS on the Salmonella cell wall via the TLR4 

receptor that leads to the downstream activation of the nuclear factor kappa B (NF-κB) and 

activator protein 1 (AP-1) (Takeuchi and Akira, 2010) as well as the interferon response factor 3 

(IRF3) (Doyle et al., 2002) TFs. IFNɣ, on the other hand, activates signal transducer and 

activator of transcription 1 (STAT1) and IRF1 TFs. Finally, IRF3 can also activate the IFNβ 

signalling pathway that culminates with the activation of STAT1-STAT2-IRF9 complex. While 

AP-1, NF-κB and STAT1 all recognise distinct DNA motifs (illustrated by the sequence logos 

under the TF names), IRF3, STAT1-STAT2-IRF9 and IRF1 recognise similar interferon-specific 

response element (ISRE) motif. 

 

By using motif enrichment analysis and comparing IPSDM ATAC-seq signal to published ChIP-

seq experiments, I was able to show that IPSDMs are able to recapitulate many known aspects 

of chromatin dynamics in macrophage immune response. Secondly, I identified caQTLs for 

4,000-10,000 ATAC-seq peaks depending on the condition and showed that approximately 25% 

of the caQTLs were condition specific. I also identify a small number of ‘multi-peak’ caQTLs 

where a single putative causal variant influenced chromatin accessibility of multiple independent 

peaks. I showed that some single-peak caQTLs can become multi-peak caQTLs after 

stimulation, thus highlighting hierarchical relationships between regulatory elements. Finally, I 

showed that for approximately 50% of stimulation-specific eQTLs the corresponding caQTL was 
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visible already in the naive state, suggesting that a proportion of caQTLs correspond to primed 

enhancers that are waiting for an appropriate environmental signal before regulating gene 

expression. 

5.2 Methods 

The experimental protocols for cell culture and stimulation experiments are described in Chapter 

3. This section focusses on methods that were specific to the chromatin accessibility part of the 

study. 

5.2.1 ATAC-seq 

Experimental procedures 

Approximately 150,000 cells were seeded into 1 well of a 6-well plate and treated identically to 

the RNA-seq samples. After stimulation, cells were washed once with ice-cold D-PBS and 

incubated for 12 minutes on ice in 500 µl sucrose buffer (10 mM Tris-Cl pH 7.5, 3 mM CaCl2, 

2mM MgCl2, 0.32 M sucrose). After 12 minutes, 25 µl of 10% Triton-X-100 (FC = 0.5%) was 

added and the cells were incubated for another 6 minutes to release the nuclei. Cells were 

centrifuged at 300 rpm for 8 minutes at 4°C and the supernatant was discarded. Tagmentation 

was performed with Illumina Nextera DNA Sample Preparation Kit as specified in the original 

ATAC-seq protocol (Buenrostro et al., 2013). Finally, size selection was performed using 

agarose gel and SPRI beads (Kumasaka et al., 2016). Five samples were pooled per lane and 

75 bp paired end reads were sequenced on Illumina HiSeq 2000 using the V4 chemistry.  

Read alignment 

Illumina Nextera sequencing adapters were trimmed using skewer v0.1.127 (Jiang et al., 2014) 

in paired end mode. Trimmed reads were aligned to GRCh38 human reference genome using 

bwa mem v0.7.12 (Li, 2013) (Li, 2013). Reads mapping to the mitochondrial genome and 

alternative contigs were excluded from all downstream analysis. Picard 1.134 MarkDuplicates 

was used to remove duplicate fragments. I used verifyBamID (Jun et al., 2012) 1.1.2 to detect 

and correct potential sample swaps between individuals. Fragment coverage BigWig files were 

constructed using bedtools v2.17.0 (Quinlan and Hall, 2010).  
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Peak calling  

I used MACS2 (Zhang et al., 2008b) v2.1.0 with ‘--nomodel --shift -25 --extsize 50 -q 0.01’ to 

identify open chromatin regions (peaks) that were enriched for transposase integration sites 

compared to the background at 1% FDR level. With these parameters I detected between 

31,658 and 208,330 peaks per sample. I constructed consensus peak sets in each condition 

separately by pooling all of the peak calls from all of the samples. For each peak, I counted the 

number samples in which that peak was identified and calculated the union of all peaks that 

were detected in at least 3 samples. Finally, I pooled the consensus peaks from all four 

conditions to obtain the final set of 296,220 unique peaks that were used for all downstream 

analyses. I used featureCounts (Liao et al., 2014) v.1.5.0 to count fragments overlapping 

consensus peak annotations and ASEReadCounter (Castel et al., 2015) from Genome Analysis 

Toolkit (GATK) to quantify allele-specific chromatin accessibility.  

Sample quality control 

I used the following criteria to assess the quality of ATAC-seq samples: 

● Assigned fragment count - the total number of paired end fragments assigned to peaks 

by featureCounts. 

● Mitochondrial fraction - fraction of total fragments aligned to the mitochondrial genome. 

● Assigned fraction - fraction of non-mitochondrial reads assigned to consensus peaks. A 

measure of signal-to-noise ratio. 

● Duplicated fraction - fraction of fragments that were marked as duplicates by Picard 

MarkDuplicates. 

● Peak count - number of peaks called by MACS2. 

● Length ratio - # of short fragments (< 150 nt) / # long fragments (>= 150 nt). This 

measures if the read length distribution has characteristic ATAC-seq profile with clearly 

visible mono-nucleosomal and di-nucleosomal peaks. 

I used these criteria to exclude 5 samples prior to performing caQTL mapping. One sample was 

excluded because of very low assigned fraction (~10%) and peak count, two more were 

excluded because of extremely large length ratio (>7) and an uncharacteristic ATAC-seq profile. 

The final two samples were excluded because they appeared to be outliers in the principal 

component analysis. 
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Differentially accessible regions 

I used limma voom v3.26.3 (Law et al., 2014) to identify 63,430 peaks that were more than 4-

fold differentially accessible (FDR < 0.01) between naive and any one of the stimulated 

conditions. I noticed that limma voom was sensitive to lower quality samples. Therefore, I only 

used high quality samples from 16 donors (64 samples) for the differential accessibility analysis. 

Subsequently, I quantile-normalised the peak accessibility data using cqn (Hansen et al., 2012), 

calculated the mean accessibility of each peak in each condition and used Mfuzz v.2.28 (Kumar 

and E Futschik, 2007) to cluster the peaks into seven distinct activity patterns. For principal 

component analysis (PCA) I normalised the peak fragment counts data using transcripts per 

million (TPM) (Wagner et al., 2012) approach. 

Motif enrichment 

I downloaded the CIS-BP (Weirauch et al., 2014) human TF motif database from the MEME 

website and used FIMO (Grant et al., 2011) to identify the occurrences of all TF motifs within the 

ATAC consensus peaks with FIMO threshold p-value < 1e-5. I also performed the same motif 

scan for 2 kb promoter sequences upstream of 21,350 human genes (downloaded from the 

PWMEnrich (Stojnic and Diez, 2015) R package) and used this as the background set. I used 

Fisher’s exact test to identify motifs that occurred significantly more often in macrophage open 

chromatin regions compared to the background promoter sequences. Because the CIS-BP 

database contains many redundant motifs, I manually selected 21 representative motifs for 

downstream analysis corresponding to the major TFs important in macrophage biology: AP-1, 

IRF-family, ETS-family (PU.1, ELF1, FLI1), NF-κB, CEBPα, CEBPβ, ATF4, CTCF, STAT1, 

MAFB, MEF2A and USF1. I also used Fisher’s exact test to identify motifs that were specifically 

enriched in each cluster of differentially accessible peaks compared to the background of all 

macrophage ATAC peaks. 

5.2.2 ChIP-seq data analysis 

The public ChIP-seq datasets used in this study are summarised in section ‘Summary of public 

ChIP-seq datasets used in the analyses’. Single-end datasets (Pham et al and Qiao et al) were 

aligned to the GRCh38 human reference genome using bwa aln v0.7.12 with default 

parameters. Paired-end datasets (Reschen et al, Schmidt et al and Wong et al) were aligned to 

the GRCh38 reference genome using bwa mem v0.7.12 with the -M flag set. Only properly 

paired reads were used for downstream analysis. Duplicate reads were removed with Picard 
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v1.134 MarkDuplicates with the ‘REMOVE_DUPLICATES=true’ parameter set. I used bedtools 

v2.17.0 (Quinlan and Hall, 2010) to construct genome wide read (single-end) or fragment 

(paired-end) coverage tracks in BigWig format. I called peaks using MACS2 v2.1.0 with ‘-q 0.01’ 

option. 

Summary of public ChIP-seq datasets used in the analyses 

[Pham et al] (Pham et al., 2012, 2013) 

Purification: Gradient centrifugation (85% pure monocytes) 

Culture conditions: Purified monocytes were differentiated into macrophages in RPMI 1640 

medium (Biochrom) supplemented with 2% human pooled AB-group serum on Teflon foils for 

up to 7 days. Macrophages usually > 95% pure. 

Stimulations: Naive only 

Accession: GSE31621, GSE43098 

PMID: 22550342, 23658224 

ChIP-seq antibodies: CTCF, PU.1, C/EBPβ, H3K4me1, H3K27ac, H2AZ. 

Sequencing: 36 bp single-end reads on Illumina GA I/II. 

Replicates: 1 

[Qiao et al] (Qiao et al., 2013) 

Purification: Gradient centrifugation followed by positive selection with anti-CD14 beads 

(Miltenyi Biotec) (>97% pure) 

Culture conditions:  Monocytes were cultured in RPMI 1640 (Invitrogen) supplemented with 

10% defined FBS (HyClone) and 10 ng/mL M-CSF (Peprotech) (days unknown). 

Stimulations: Cells were treated with or without IFN-g (100U/ml) for 24 hours, and then 

stimulated with LPS (50 ng/ml) for 3 hours (STAT1, H3K27Ac) or 6 hours (IRF1). (Naive, IFNɣ, 

LPS, IFNɣ + LPS) 

Accession: GSE43036 

PMID: 24012417 

ChIP-seq antibodies: STAT1, H3K27ac, IRF1 

Sequencing: 50 bp single-end reads on Illumina HiSeq 2000 

Replicates: Up to 2 per condition 

[Reschen et al] (Reschen et al., 2015) 

Purification: Gradient centrifugation followed by positive selection with anti-CD14 beads 

(Miltenyi Biotec) (>95% pure) 
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Culture conditions: Cells were maintained in RPMI 1640 medium with 10% FCF, 4 mM L-

glutamine, 50 units/ml penicillin and 50 μg/ml streptomycin (Sigma, St Louis, MO), 

supplemented with 50 ng/ml M-CSF (eBioscience, San Diego, CA) for 7 days. 

Stimulations: Naive and oxLDL (50 μg/ml, 48h) 

Accession: GSE54975 

PMID: 25835000 

ChIP-seq antibodies: C/EBPβ, H3K27ac, FAIRE-seq 

Sequencing: 50 bp paired-end reads on HiSeq 2000/2500. 

Replicates: 2-4 

[Schmidt et al] (Schmidt et al., 2016) 

Purification: Gradient centrifugation followed by positive selection with anti-CD14 beads 

(Miltenyi Biotec) 

Culture conditions: Monocytes were cultured for 72h with GM-CSF (500 U/ml) in RPMI 1640 

medium containing 10% FCS.  

Stimulations: Naive, IFNɣ (200 U/ml, 72h), TPP (TNF (800 U/ml), PGE2 (1µg/ml) and 

Pam3CSK4 (1µg/ml), 72h), IL-4 (500 U/ml, 72h). 

Accession: GSE66594 

PMID: 26729620 

ChIP-seq antibodies: PU.1, H3K27me3, H3K27ac, H3K4me1 

Sequencing: 75 bp single-end on Illumina HiSeq 1000 

[Wong et al] (Wong et al., 2014) 

Purification: Gradient centrifugation followed by positive selection with anti-CD14 beads 

(Miltenyi Biotec) 

Culture conditions: Experiments were done on monocytes. 

Stimulations: Naive and IFNɣ (10 ng/mL, 24 h) 

Accession: E-MTAB-2424 

PMID: 25366989 

ChIP-seq antibodies: CIITA, RFX5 

Sequencing: 51 bp paired-end reads on HiSeq 

Detecting regions with differential H3K27Ac signal 

I performed differential histone acetylation analysis on the Qiao et al (Qiao et al., 2013) dataset 

to compare it to our ATAC-seq data. As H3K27Ac peaks are generally broader than ATAC-seq 
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peaks, I used MACS2 to call both broad and narrow peaks. Within each condition I only kept 

broad and narrow peaks that were detected at the 1% FDR threshold in both biological 

replicates. By visualising the data in a genome browser, I observed that at the 1% FDR 

threshold MACS2 called an excess of broad peaks compared to the narrow peaks so I further 

removed broad peaks that did not overlap any narrow peaks in the same condition. I then 

defined the union of broad peaks identified in each condition as the consensus set of peaks. I 

used featureCounts (Liao et al., 2014) to count the number of reads overlapping the consensus 

peaks in each sample. Finally, I used limma voom (Law et al., 2014) to identify peaks that 

showed at least 2-fold differential histone acetylation between naive and one of the stimulated 

states at 10% FDR. I used less stringent fold change and FDR thresholds for the histone 

acetylation data compared to the ATAC-seq data, because the broad histone peaks were less 

dynamic than the narrow ATAC peaks and because the histone dataset had only two biological 

replicates. 

Peak overlap analysis 

I used a permutation-based approach implemented in the Genomic Association Test (GAT) 

(Heger et al., 2013) software to test if the overlap between two sets of genomic annotations 

(such as ATAC-seq peaks and H3K27Ac peaks) was larger than expected by chance.  

5.2.3 Chromatin accessibility QTL mapping 

I used identical methodology to map eQTLs and caQTLs and assess their condition specificity. 

The full details of the pipeline are described in Chapter 4. Briefly, this involved mapping caQTLs 

using linear and allele-specific models, assessing replicability of caQTLs between conditions 

and using a linear model to identify peaks that show significant interactions between genotype 

and condition (condition-specific caQTLs). This section describes the areas where caQTL 

mapping differed from eQTL mapping. The size of the cis window for the caQTL mapping was 

+/- 50kb around the peak. 

Filtering condition-specific caQTLs by effect size 

I extracted the RASQUAL caQTL effect size estimates π for each peak-variant pair in each 

conditions and converted them into log2 fold changes between the two homozygotes using the 

formula log2FC = -log2(π/(1-π)). I then filtered the significant condition-specific caQTLs by 

requiring the maximal absolute log2FC across conditions |log2FCmax| to be > 0.59 (corresponding 

to 1.5-fold difference between the homozygotes), the minimal absolute log2FC across conditions 
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|log2FCmin| to be < 0.59 and the absolute difference between the two |log2FCmax - log2FCmin| to be 

>0.59. 

QTL replicability between conditions 

For the Storey’s π1 analysis (Nica et al., 2011), I identified caQTL peaks at 10% FDR in one 

condition, took their permutation-based lead variant p-values in the other condition and used the 

qvalue (Dabney et al., 2010) package to estimate the proportion of non-null p-values. For the 

lead variant concordance analysis, I identified caQTL peaks together with their lead variants at 

1% FDR in one condition, extracted their lead variants in the other condition and counted how 

often R2 between the two lead variants of the same caQTL peak was > 0.8. 

Motif disruption analysis 

I limited motif disruption analysis to caQTL peaks that did not contain associated indels and had 

<= 3 overlapping SNPs in them. For each SNP-peak pair I focussed on the sequence +/- 25 bp 

from the SNP. I constructed both reference and alternative versions of the sequence and used 

TFBSTools (Tan and Lenhard, 2016) to calculate the relative binding scores for both alleles 

(expressed as percentage from 0-100%). I considered the variant to be motif disrupting if the 

difference in relative binding score between the two alleles was > 3 percentage points. I also 

required the relative binding score for at least one of the alleles to be >= 85% of the theoretical 

maximum. This filter was necessary to exclude potential motif disruption events in very weak 

motif matches that are not likely to correspond to binding in vivo and is similar to the default 

recommended by TFBSTools. I used the hypergeometric test to identify motifs that were 

significantly more often disrupted in one of the six condition-specific caQTL clusters compared 

to all caQTLs.  

Identifying condition-specific dependent peaks 

To identify condition-specific dependent peaks, I tested if the effect size of the caQTL changed 

differently for master and dependent peaks between two pairs of conditions. This was 

equivalent to testing the significance of a three-way interactions between genotype, peak 

(master or dependent) and condition. I implemented this as the comparison of two standard 

linear models in R: 

 

H0: y ~ peak + condition + peak*condition + genotype*peak + genotype*condition + covariates 
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H1: y ~ peak + condition + peak*condition + genotype*peak + genotype*condition + 

genotype*condition*peak + covariates 

 

Similarly to condition-specific caQTL analysis, I used the first three principal components 

calculated separately for each condition as covariates in the model. I used the log2FC from 

RASQUAL as the measure of caQTL effect size. To identify true condition-specific dependent 

peaks, I further filtered the results by requiring the absolute log2FC of the master peak to be > 

0.59 (1.5-fold) in the naive condition and the change in the log2FC for the dependent peak 

between the naive and stimulated condition to be > 0.59.  

5.3 Quantifying chromatin accessibility 

First, I tested whether the chromatin accessibility profile in IPSDMs was similar to that of 

primary macrophages. After multiple pre-processing steps (see Methods for details), I identified 

a total of 296,220 consensus ATAC-seq peaks in IPSDMs across four experimental conditions 

and quantified their accessibility. Principal component analysis (PCA) of the data revealed four 

distinct clusters corresponding to the four experimental conditions (Figure 5.2A).  

 

To identify the transcription factors (TFs) that drive chromatin accessibility at these macrophage 

peaks I compared them to 21,350 human promoter sequences. I found that accessible 

chromatin regions in macrophages were enriched for binding motifs of multiple TFs that play 

important roles in macrophage function. The two most enriched motifs belonged to the AP-1 and 

PU.1 TFs (Figure 5.2B) whose collaborative interactions are well known to establish 

macrophage specific enhancers (Heinz et al., 2010). Other motifs enriched in the ATAC-seq 

peaks belonged to multiple TFs recognising the interferon-specific response element (ISRE) 

motif (IRF2, STAT2, IRF8, IRF1) as well as the CEBPα and CEBPβ TFs.  
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Figure 5.2: Summary of chromatin accessibility data. (A) PCA of macrophage chromatin 

accessibility data in four conditions. Axis labels indicate the percentage of variance explained by 

the first two principal components. (B) A selection of 21 representative TF motifs that are 

enriched in macrophage ATAC peaks relative to 21,350 human promoter sequences. 

5.3.1 Differential chromatin accessibility between conditions 

Many condition specific TFs are likely to regulate gene expression by altering chromatin 

accessibility. I next attempted to identify which TFs regulate chromatin accessibility in response 

to the three different stimuli in our study. I identified 63,430 peaks that were more than 4-fold 

differentially accessible (FDR < 0.01) between naive and any one of the stimulated conditions. I 

clustered the differential peaks into seven distinct activity patterns (Figure 5.3A) and to aid 

interpretation, I further grouped the seven clusters into four major groups. I used post hoc 

grouping of the clusters instead of clustering directly into four clusters because specifying a 

smaller number of clusters did not identify all of the four main patterns (See Figure 5.3A). I then 

used Fisher’s exact test to identify TF motifs from the CIS-BP database that were enriched in 

each group of differentially accessible peaks relative to all macrophage ATAC peaks (Figure 

5.3B).  
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Figure 5.3: Dynamics of chromatin accessibility between conditions. (A) The 63,350 

differentially accessible open chromatin regions were clustered into seven distinct patterns 

using c-means clustering implemented in the MFuzz packages. The clusters have been grouped 

into four groups according to whether their accessibility increased after Salmonella infection 

(clusters 1 and 2), IFNɣ stimulation (clusters 4 and 5), synergistically after both stimuli (cluster 

3) or decreases after stimulation (clusters 6 and 7). (B) Enrichment of transcription factor motifs 

in each of the four groups.  

 

Clusters 1 and 2, both of which became more accessible after Salmonella infection, were 

specifically enriched for NF-κB and AP-1 motifs, the two main TFs activated downstream of 

TLR4 signalling (Takeuchi and Akira, 2010). Cluster 3, which became accessible only after both 

of the stimuli were present, was enriched for the IRF (ISRE) and NF-κB motifs, suggesting 

possible collaborative interactions between IFNɣ-induced IRF1 and TLR4-activated NF-κB TFs 

that have been previously reported (Negishi et al., 2006). However, the motif analysis that I 

have performed does not distinguish between IRF1 and other IRF factors, because all IRF 
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factors have similar sequence preferences. In contrast, clusters 4 and 5 were activated by IFNɣ 

and were enriched for IRF and STAT1 motifs, consistent with the activation of STAT1 and IRF1 

downstream of IFNɣ signalling (Schroder et al., 2004).  

 

Finally, clusters 6-7, where accessibility decreased in response to all of the stimuli, were 

enriched for MEF2 and MAFB motifs. Interestingly, MafB binding has recently been shown to 

suppress self-renewal–associated macrophage enhancers in mouse and knocking out MafB 

together with c-Maf is sufficient to generate immortalised macrophages (Aziz et al., 2009; 

Soucie et al., 2016). This is further supported by our observation in Chapter 4 that genes 

downregulated by IFNɣ were strongly enriched for cell cycle and DNA replication pathways 

(Figure 4.5) and consistent with multiple reports that stimulation with IFNɣ induces cell cycle 

arrest in macrophages (Schroder et al., 2004; Xaus et al., 1999) 

5.3.2 Overlap with ChIP-seq signals 

Motif enrichment at differentially accessible peaks showed that iPSDMs activated the same set 

of TFs after stimulation that we would expect from primary monocyte-derived macrophages. 

However, it is not clear from motif enrichment alone if these TFs bind to the same genomic loci 

in both cell types. Unfortunately, there was no ATAC-seq data available from monocyte-derived 

macrophages (MDMs) from the same conditions to perform a direct comparison. Therefore, we 

resorted to comparing iPSDM ATAC peaks to multiple publicly available primary MDM ChIP-seq 

datasets.  

 

First, I focussed on the (Qiao et al., 2013) study that had measured histone 3 lysine 27 

acetylation (H3K27ac) with ChIP-seq in MDMs in very similar conditions to ours (naive, 3h LPS, 

24h IFNɣ and 24h IFNɣ + 3h LPS). I identify 11,735 differentially acetylated ChIP-seq peaks 

(FDR < 0.1, fold-change > 2) and clustered them into six clusters using MFuzz (See Methods for 

details) (Figure 5.4A). Since H3K27Ac peaks are generally much longer than ATAC-seq peaks 

(median lengths 3369 and 231 bp, respectively), I used permutation-based approach 

implemented in the Genomic Association Tester (GAT) (Heger et al., 2013) software to test if 

the overlap between different clusters of peaks was larger than expected. I found strong overlap 

between respective groups of peaks in IPSDM ATAC-seq and MDM H3K27Ac data, suggesting 

that overlapping regulatory elements become active in both cell types after similar experimental 

treatments (Figure 5.4B). 
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Figure 5.4: Concordance of chromatin changes between IPSDMs and MDMs. (A) 
Clustering of differential H3K27Ac peaks from (Qiao et al., 2013) study. The six clusters 

identified by MFuzz have been grouped into four groups based on whether the H3k27ac signal 

increases after LPS stimulation, IFNɣ stimulation, Both of the stimuli or decreases after 

stimulation. (B) Log2 fold enrichment of overlap between differential peak groups identified in 

our IPSDM ATAC-seq data and MDM H3K27ac data. The log2 fold enrichments of overlap were 

calculated using GAT (Heger et al., 2013). 

 

I noticed that the gene expression level of the master regulator of MHC class II complex CIITA 

together with its downstream targets (MHC class II genes) was specifically upregulated after 

IFNɣ stimulation (Figure 5.5A, Figure 4.5). I therefore hypothesised that some of the ATAC 

peaks that appear after IFNɣ stimulation should correspond to CIITA binding events. 

Fortunately, (Wong et al., 2014) had performed ChIP-seq for CIITA and RFX5 TFs (two 

members of the same complex) in primary human monocytes before and after IFNɣ stimulation. 

After reanalysing their data, I identified peaks that were detected in both biological replicates 

and used GAT to test which ATAC peak clusters were enriched in the ChIP-seq peaks. I found 

that only ATAC peaks activated by IFNɣ were enriched for the CIITA and RFX5 ChIP-seq peaks 
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(Figure 5.5B), suggesting that IPSDMs use the same set of regulatory elements to upregulate 

MHC class II expression in response to IFNɣ as do primary monocytes. 

 

 

 
Figure 5.5: Regulation of MHC class II expression in IPSDMs. (A) Expression level of CIITA 

gene in IPSDMs in the four conditions. (B) Enrichment of monocyte RFX5 and CIITA ChIP-seq 

peaks (Wong et al., 2014) in IPSDM ATAC-seq peak clusters from Figure 5.3A. 

5.4 Genetics of chromatin accessibility 

Table 5.1: Number of caQTL peaks identified by the linear (FastQTL) and allele-specific 
(RASQUAL) models in a 50kb cis-window around the 296,220 peaks. Identical multiple 

testing correction approach was used for both FastQTL and RASQUAL results, i.e. for each 

peak, eigenMT (Davis et al., 2016) was used to correct for the number of independent tests 

performed in the cis-window and Benjamini-Hochberg FDR was used to correct for multiple 

independent peaks being tested. 

condition Sample size FastQTL RASQUAL 

Naive 42 10735 10147 

IFNɣ 41 10810 10192 
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Salmonella 31 5267 5493 

Both 31 3782 4337 

 

I used the same approaches to find chromatin accessibility QTLs (caQTLs) and assess their 

condition specificity that I used in Chapter 4 for eQTLs. Briefly, I used a standard linear model 

implemented in FastQTL (Ongen et al., 2016) software and the allele-specific model 

implemented in RASQUAL (Kumasaka et al., 2016) package to find caQTLs in a +/- 50kb 

window around each peak. I used both methods, because even though RASQUAL increases 

power to detect QTLs and fine map causal variants (Kumasaka et al., 2016), the summary 

statistics from the linear model can be directly used in replication and colocalisation analyses. 

Throughout this chapter, I will use caQTL variants to refer to the variants that are associated 

with chromatin accessibility at one or more open chromatin regions and I will use caQTL peaks 

to refer to the ATAC peaks that have at one or more independent significantly associated 

variants. Although RASQUAL and FastQTL identified similar number of caQTLs peaks at the 

10% FDR level (Table 5.1), quantile-quantile (Q-Q) plots revealed that caQTLs from RASQUAL 

generally had much smaller p-values than caQTLs from the linear model (Figure 5.6), 

Consequently, using a stricter FDR threshold (such as 1%) resulted in more caQTLs detected 

with RASQUAL than with the linear model.  
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Figure 5.6: Q-Q plots of caQTLs identified by RASQUAL and FastQTL in each of the four 
conditions. On each plot, the solid line corresponds to the expected distribution of p-values 

under the null model of no association. The FastQTL and RASQUAL p-values have been 

corrected for the number of independent variants tested using eigenMT. 

5.4.1 Fine mapping putative causal variants 

Chromatin accessibility QTL variants have previously been observed to be strongly enriched 

either within the peak itself or within other nearby peaks (Degner et al., 2012; Kumasaka et al., 

2016). This suggests that, unlike expression QTLs, the causal variants that underlie caQTLs are 

often likely to be found in a relatively small genomic region. Furthermore, recent evidence 

indicates that local caQTLs can influence chromatin accessibility by at least two conceptually 

distinct mechanisms (Deplancke et al., 2016). Most commonly, the causal variant is located 

within the accessible region and directly disrupts the binding of a sequence-specific factor. We 

refer to these caQTLs as ‘master’ caQTLs (Figure 5.7). However, sometimes a single causal 

variant in master caQTL peak can be associated with the accessibility of additional regions often 

many kilobases away from the master region forming so called ‘dependent’ caQTLs (Kumasaka 

et al., 2016) (Figure 5.7). The mechanisms that lead to the formation of dependent peaks have 

not yet been elucidated, but similar hierarchical relationships between regulatory elements have 

recently also been observed in the regulation of the WAP gene in mouse mammary tissue (Shin 

et al., 2016). Thus, discovering these associations between peaks can provide important insight 

into how multiple regulatory elements interact to regulate the expression of their target genes.  
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Figure 5.7: Heuristic approach to identify master and dependent caQTLs and their 
putative causal variants. Peak 5 is a master caQTL peak, because all of the variants in its 

credible set (green squares) overlap only peak 5 and no other caQTL region. Peak 1 and 2 are 

uncertain caQTLs, because the credible sets of peak 1 and peak 2 contain variants that overlap 

both peak. Peaks 3 and 4 are dependent caQTLs, because none of the variants in their credible 

set overlap the target peak, but they overlap some other peak (peaks 1 and 2 for peak 3 and 

peak 5 for peak 4). 

 

I developed a heuristic approach to identify putative master and dependent caQTL peaks. 

Across the four conditions, I identified 13,872 caQTL peaks at 10% FDR. For each caQTL peak 

I first defined the credible set of causal variants as the set containing the lead SNP and all 

variants with R2 > 0.8 with this SNP. In 88% of the cases (12,179 peaks) at least one variant in 

the credible set overlapped at least one consensus ATAC peak. The remaining 12% could be 

either false positive caQTLs or overlap open chromatin regions that were not detected by our 

peak calling approach. Furthermore, for 10,339/12,179 (85%) caQTL regions at least one 

variant in the credible set overlapped the region itself, confirming previous observations that 

caQTLs are highly local (Degner et al., 2012) (see regions 1, 2 and 5 on Figure 5.7). 
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However, observing that a variant in the credible set overlaps the corresponding caQTL peak 

does not necessarily mean that we have identified the true causal variant. In addition to many 

technical limitations (discussed below), an important biological limitation is that, because of high 

LD between variants, the same credible set can often overlap multiple caQTL peaks (see 

regions 1 and 2 on Figure 5.7 for illustration). In such cases it can be difficult to distinguish if 

there are two linked causal variants in two independent peaks or if there is only one causal 

variant in one of the peaks that influences the accessibility of both peaks. Thus, to identify 

putative master caQTLs I further required that the credible set variants overlapped strictly only 

one caQTL peak. As a result, I was able to identify 7,903 putative master caQTL peaks 

containing 11,854 putative causal variants. Furthermore, 69% of peaks contained only one 

putative causal variant and 95% of the regions contained <= 3 putative causal variants (Figure 

5.8) highlighting the power of caQTLs in fine mapping causal variants. 

  
Figure 5.8. Histogram of the number of associated variants overlapping 7,903 putative 
master caQTL peaks.  
 

Next, to identify dependent peaks, I focussed on the 1,840 caQTL peaks whose credible sets 

did not overlap the region itself. I found that for 753/1,840 peaks the credible set overlapped one 

of the putative master caQTL peaks identified above. This suggests that ~10% of the putative 

master caQTLs regions also have a dependent caQTL. However, this is likely to be an 
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underestimate, because dependent caQTLs generally have smaller effects than master caQTLs 

and we are less powered to detect them with our small sample size. 

 

This approach has multiple limitations. First, it uses a fixed significance threshold (10% FDR) to 

identify open chromatin regions that do or do not have a caQTLs. This means that weaker 

dependent peaks will remain undetected. Secondly, some potential causal variants overlapping 

caQTL peaks might be missed, because region boundaries are defined by MACS2 peak calls 

that might themselves be inaccurate. 

5.4.2 Assessing condition-specificity of caQTLs 

I used two complementary approaches characterise the replicability of caQTLs between 

conditions. First, I used Storey’s π1 statistic (Nica et al., 2011) to estimate the fraction of caQTL 

peaks that were shared between each pair of conditions irrespective of their corresponding lead 

variants. I found that, similarly to eQTLs analysed in Chapter 3, the fraction of shared caQTL 

peaks varied between 0.75 and 0.90 with the lowest sharing observed between naive and IFNɣ 

+ Salmonella conditions (Figure 5.9A). Secondly, I tested how often the lead caQTL variants 

were concordant (R2 > 0.8) between two pairs of conditions (see Methods). I found that 75-80% 

of the lead caQTL variants were concordant between conditions which was considerably higher 

than 50-60% observed for eQTLs (Figure 5.9B). One possible reason for this discrepancy 

between the π1 and lead variant concordance analyses could be that genes might have more 

independent QTLs between conditions than ATAC peaks. 
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Figure 5.9: Replicability of eQTLs and caQTLs between conditions. (A) Feature-level 

replicability between conditions using the Storey’s π1 statistic. The π1 statistic was calculated 

based on the FastQTL permutation p-values. (B) Pairwise concordance of the lead eQTL and 

caQTL variants for each feature. Each point corresponds to one pairwise comparison between 

two conditions. Concordance was calculated for both RASQUAL and FastQTL lead variants. 
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To identify individual peaks that have condition-specific caQTLs, I compiled all independent (R2 

< 0.8) variant-peak pairs across conditions and used two-way ANOVA to test for interactions 

between genotype and condition. Using sex and first three principal components of the dataset 

as covariates, I found that 4,947/16,924 (28%) caQTLs had significant interactions. After filtering 

out interactions with small effects, I identified 1,990 highly condition-specific caQTLs of which 

1,113 appeared after stimulation (log2FCnaive < 1) and 887 disappeared after stimulation 

(log2FCnaive > 1).  

 

I then clustered the condition-specific caQTLs based on their relative log2FC across conditions. 

For the caQTLs that appeared after stimulation, I identified six distinct clusters of peaks (Figure 

5.10A). I then tested if the likely causal variants for the condition-specific caQTLs were enriched 

for disrupting specific TF binding motifs compared to all caQTLs (Figure 5.10B). For this 

analysis I focussed only on the unique master peaks identified in Section 5.1 that had 1 to 3 

likely causal variants overlapping the peak. I found that Salmonella-specific clusters 2 and 3 

were enriched for disrupting NF-κB and AP-1 motifs whereas IFNɣ-specific clusters 5 and 6 

were enriched for disrupting the ISRE motif. Furthermore, all condition-specific caQTLs were 

depleted for disrupting PU.1 binding motif (Figure 5.10B). This analysis suggests that condition-

specific caQTLs are at least partly driven by variants that disrupt the binding sites of condition-

specific TFs that are not active in the naive state. However, despite observing these motif 

enrichments, only ~15% condition specific caQTL could be explained by a motif disruption event 

at the thresholds that I used. Interestingly, I observed that almost all condition-specific caQTL 

peaks on Figure 5.10A were completely inaccessible in the naive condition and became most 

accessible in the condition with the largest caQTL effect size (Figure 5.11B). On the other hand, 

we observed no such relationship in the gene expression data where the genes with condition-

specific eQTLs were on average equally highly expressed in all four conditions (Figure 5.11A).  
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Figure 5.10: Identifying condition-specific caQTLs. (A) Condition-specific caQTLs clustered 

by their relative effect size. (B) Enrichment of TF motif disruptions in each cluster of caQTLs. 

The six cluster were grouped into four groups based on the caQTL activity pattern.  
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Figure 5.11: Relationship between QTL condition-specificity and mean gene expression 
or chromatin accessibility in each of the four conditions. (A) The distribution of mean gene 

expression values in each condition for the genes with conditions specific eQTLs from Figure 

4.11C in Chapter 4. The numbered panels correspond to the same eQTL clusters that are 

shown on Figure 4.11C. (B) Mean chromatin accessibility of the ATAC-seq peaks from Figure 

5.10A that had condition-specific caQTLs. The numbered panels correspond to the same 

caQTL clusters that are shown on Figure 5.10A. 

5.4.3 Condition-specific dependent peaks 

I noticed that some multi-peak caQTLs exhibited an interesting behaviour where the master 

caQTL peak was present in all conditions, but the dependent caQTL peak appeared or 
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disappeared in subset of the conditions (See Figure 5.12 for examples). To identify these cases 

systematically, I tested if the effect size of the caQTL changed differently for the master and 

dependent peak between conditions. This was equivalent to testing the significance of three-

way interactions between genotype, peak (master or dependent) and condition (see Methods for 

details). After filtering by effect size, I identified 58 significant condition-specific dependent 

peaks. On the read coverage level 25/58 dependent peaks looked convincing, suggesting that 

the simple interaction test might have inflated false positive rate. The number of condition-

specific dependent peaks that I identified is small, but with 31-42 samples we are clearly 

underpowered to detect most of these interactions. 

 

 
Figure 5.12: Two examples of condition-specific dependent peaks. (A) Dependent peak 

appears after Salmonella infection. (B) Dependent peak disappears after Salmonella infection. 

5.5 Linking chromatin accessibility to the transcriptome 

In addition to understanding the how sequence variation influences chromatin accessibility, 

combining caQTLs with eQTLs can also be used to link regulatory elements to their target 

genes.  
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5.5.1 Linking caQTLs to eQTLs 

Knowing that a variant is an eQTL should increase our prior belief that the same variant might 

also be a chromatin accessibility QTL. However, modelling this formally can be challenging. I 

therefore decided to use two heuristic approaches with different levels of stringency. In the more 

stringent approach, I took lists of genome-wide significant eQTL genes and caQTL peaks (at 

10% FDR) together with their lead variants and searched for instances where the two lead 

variants were in strong linkage disequilibrium (R2 > 0.8). I did this either condition-by-condition 

or across conditions. I was able to find a corresponding caQTL for ~20% of the eQTLs. 

However, this approach strongly underestimated the true extent of overlap between eQTLs and 

caQTLs, because both our eQTL and caQTL mapping studies were underpowered. As an 

alternative approach, I focussed only on eQTL lead variants and tested in 100kb window around 

the lead variant for any associated ATAC peaks. I then used Bonferroni correction to account for 

multiple peaks tested per gene and used Benjamini-Hochberg FDR correction to account for 

multiple tested genes. With this approach I was able to identify corresponding caQTL for ~50% 

of the eQTLs.  

 

Next, to understand how genetic effects propagate from chromatin to gene expression, I 

focussed on eQTLs that appeared after stimulation and that had a corresponding caQTL. One 

possible model is that chromatin accessibility largely mirrors gene expression and genetic 

effects become visible on both levels in the same condition. Alternatively, genetic effects on 

chromatin level might appear before they influence gene expression. To investigate these two 

hypotheses, I next examined the relative effect sizes of condition-specific eQTLs and 

corresponding caQTLs. I found that for approximately 50% of the eQTLs that appeared after 

IFNɣ stimulation or Salmonella infection the corresponding caQTL was already present before 

stimulation in naive cells (Figure 5.13). This is consistent with our previous observation that lead 

caQTL variants are more often concordant between conditions than lead eQTL variants (Figure 

5.9B). 
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Figure 5.13: Comparison of effect sizes between condition-specific eQTLs and their 
corresponding caQTLs. (A) IFNɣ-specific eQTLs and their corresponding caQTLs. (B) 
Salmonella-specific eQTLs and their corresponding caQTLs. 

 

A specific example is illustrated on Figure 5.14. The E1 peak is a master caQTL peak with a 

constitutive caQTL. The E1 peak has ten associated variants that are in almost perfect LD with 

each other (Figure 5.14A). However, only two of the ten variants overlap the E1 peak and only 

one of them (rs7594476) is located in the middle of a predicted PU.1 TF binding site 

(M6119_1.02 motif from in CIS-BP (Weirauch et al., 2014)). The alternative C allele has 9% 

lower relative binding affinity (87% vs 78%) that is consistent with reduced chromatin 

accessibility at the C allele. Furthermore, the same E1 peak has strong PU.1 ChIP-seq signal in 

a previously published macrophage dataset (Figure 5.14C) (Schmidt et al., 2016) suggesting 

that rs7594476 is the likely causal variant that alters chromatin accessibility at the E1 peak by 

disrupting a PU.1 binding site. The same variant is also associated with accessibility of 15 other 

ATAC peaks in the 200kb region, including the E2-E5 peaks shown Figure 5.14B. Interestingly, 

E2 is a condition specific dependent peak that appears after IFNɣ stimulation. 

 

Finally, rs7594476 is also associated with the expression level of SPOPL and NXPH2 genes 

whose promoters are 200kb upstream and 90kb downstream from the peak, respectively. 

Colocalisation analysis revealed that the two eQTLs and the E1 caQTL are strongly colocalised 

(posterior probability = 0.98), suggesting that they are driven by the same causal variant. 
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Intriguingly, similarly to the E2 dependent peak, the eQTLs for SPOPL and NXPH2 genes 

become visible only after IFNɣ stimulation. 

 

 
Figure 5.14: Example of a single QTL that influences chromatin accessibility at multiple 
peaks and the expression of two genes. (A) Manhattan plot of variants associated with the 

accessibility of the master caQTL peak E1. Only two of the associated variants overlap the E1 

peak, and only rs7594476 is predicted to disrupt a PU.1 TF binding motif (M6119_1.02 in CIS-

BP (Weirauch et al., 2014)). (B) Normalised ATAC-seq fragment coverage before and after 

IFNɣ stimulation stratified by the genotype at the rs7594476 SNP. Arrows correspond to links 

between the master peak E1 and dependent peaks E2-E5. (C) PU.1 ChIP-seq read coverage 

from (Schmidt et al., 2016). (D) Box plots of normalised SPOPL gene expression before and 

after IFNɣ stimulation. The boxplots are stratified by the genotype at rs7594476 SNP. (E) Box 
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plots of normalised SPOPL gene expression before and after IFNɣ stimulation. The boxplots are 

stratified by the genotype at rs7594476 SNP. 

5.5.2 Using caQTLs to fine map causal variants for GWAS hits 

In the previous section I showed that for ~70% of caQTLs at least one of the variants in the 

credible set overlapped the peak itself. This suggests that if there is an eQTL that is colocalised 

with a caQTL then the caQTL signal can be used to fine map causal variants for the eQTL.  

PTK2B eQTL colocalises with a GWAS hit for Alzheimer’s disease 

Preliminary analysis with the NHGRI-EBI GWAS catalogue highlighted that lead eQTL SNP 

rs2322599 for PTK2B gene in the naive condition was in high LD (R2 = 0.98) with rs28834970, a 

GWAS hit for Alzheimer’s disease (Lambert et al., 2013). To see if both of these associations 

could be driven by the same causal variant, I downloaded Alzheimer’s disease GWAS summary 

statistics from the International Genomics of Alzheimer's Project (IGAP) website (Lambert et 

al., 2013). I then used the coloc (Giambartolomei et al., 2014) software on a 250kb window 

around the GWAS lead SNP and found strong evidence of statistical colocalisation 

(posterior probability > 0.98). I also found that there was a caQTL in the same region that 

colocalised both with the GWAS hit as well as the eQTL (Figure 5.15A). Furthermore, the 

lead caQTL SNP rs28834970 was the only associated variant lying within the caQTL peak 

(Figure 5.15B), suggesting this is the most likely causal variant. The lead variant 

rs28834970 is T/C polymorphism and the alternative C allele is predicted to increase the 

relative binding score of the CEBPβ TF motif (M2268_1.02 in CIS-BP (Weirauch et al., 2014)) 

from 0.86 to 0.97 (Figure 5.15B). This is consistent with the increased chromatin accessibility at 

the C allele as well as increased expression of the PTK2B gene (Figure 5.15C). Furthermore, 

the variant also overlaps experimental CEBPβ ChIP-seq peak in primary human macrophages 

(Reschen et al., 2015) (Figure 5.15B). Together, this evidence suggests that rs28834970 is the 

likely causal variant for Alzheimer’s disease risk that influences PTK2B expression by disrupting 

CEBPβ motif in an enhancer in the first intron of the gene. While the possible link between the 

rs28834970 Alzheimer’s GWAS hit and PTK2B eQTL in monocytes has been highlighted before 

(Chan et al., 2015; Karch et al., 2016), we have been able to use statistical colocalisation 

together with caQTL data to pinpoint a single most likely causal variant and provide a plausible 

mechanism. 
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Figure 5.15: Dissecting the Alzheimer’s disease causal variant at the PTK2B locus. (A) 
Manhattan plots for the Alzheimer’s GWAS hit (top panel), colocalised caQTL (second panel) 

and colocalised eQTL for PTK2B gene (third panel). The bottom two tracks show all ATAC-seq 

peaks in the region as well was exons of the PTK2B gene. (B) ATAC-seq fragment coverage 

plot stratified by the rs28834970 genotype. (C) RNA-seq read coverage plot at the PTK2B gene 

stratified by the rs28834970 genotype. 

5.6 Discussion 

We have shown that, similarly to gene expression, (Chapters 2 and 4), the chromatin 

accessibility dynamics of IPSDMs also closely resemble that of primary macrophages. Evidence 
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for this comes from the motif enrichment analysis where constitutive and condition-specific 

macrophage ATAC peaks were enriched for expected macrophage-specific TF motifs such as 

PU.1, AP-1, NF-κB, STAT1 and ISRE motif representing multiple IRF factors. Secondly, overlap 

analysis with multiple public ChIP-seq datasets confirmed that overlapping regions changed 

their activity in IFNɣ and LPS response. Future studies where IPSDMs and MDMs are 

measured in the same experiment are needed to reliable detect any differential chromatin 

accessibility between the two cell types and identify TFs responsible for those differences. 

 

Despite our modest sample size of 31-42 individuals, we identified thousands of caQTLs in each 

of the four conditions. We found that caQTL lead variants were 20% more likely to be shared 

between conditions than eQTL lead variants. This observation was further supported by the fact 

that for approximately 50% of the eQTLs that appeared after stimulation, the corresponding 

caQTL was already present in the naive state. Altogether, these observations suggest that a 

large fraction of genetic variation influences “primed” regulatory elements that wait for an 

appropriate environmental signal before regulating gene expression. Importantly, observing that 

a caQTL appears before eQTL allows us to infer that the caQTL is likely to be causal for the 

eQTL and not vice versa. 

 

Multiple studies have shown that GWAS hits are enriched in gene regulatory regions that are 

often cell type specific (Maurano et al., 2012). Despite this observation, attempts to colocalise 

GWAS hits with specific eQTLs have had only limited success (Chun et al., 2016; Guo et al., 

2015; Zhu et al., 2016). Chun et al (Chun et al., 2016) propose that regulatory regions might be 

accessible in multiple cell types and conditions (because they are bound by lineage determining 

pioneer TFs), but they might regulate gene expression in a few specific conditions. Importantly, 

this is consistent with our observation that caQTLs are less condition specific than eQTLs and 

for ~50% of condition-specific eQTLs their effect can be seen on chromatin level already before 

stimulation. Some evidence for the importance of cell-type specific pioneer TFs in disease 

comes from type 2 diabetes (T2D), where liver-specific pioneer TF FoxA2 (Iwafuchi-Doi et al., 

2016) binding sites are enriched among fine-mapped T2D GWAS loci (Gaulton et al., 2015).  

 

Similarly to previous studies (Grubert et al., 2015; Kumasaka et al., 2016; Waszak et al., 2015), 

we also found widespread evidence of single caQTL variants regulating the accessibility of 

multiple dependent caQTL peaks, often multiple kb away from the master peak. In total, we 

were able to detect at least one dependent caQTL peak for ~10% of the master caQTL peaks, 
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although this number is likely to increase with larger sample sizes. Importantly, measuring 

chromatin accessibility in multiple conditions allowed us to also identified a small number of 

dependent peaks that appeared or disappeared with stimulation. A number of those occurred in 

the SPOPL-NXPH2 locus (Figure 5.14), where the appearance of dependent caQTL peaks 

correlated with lead variant also becoming an eQTL for the two genes. This is consistent with a 

recently established model of hierarchical enhancer activation where signal-dependent 

transcription factors bind at or near primed enhancers to activate gene expression (Heinz et al., 

2013; Romanoski et al., 2015).  

 

Finally, the fact the caQTL variants are enriched within the peak whose accessibility they 

regulate allowed us to identify a small set of likely causal variants for thousands of caQTL 

peaks. By combining caQTLs with colocalised eQTLs and GWAS hits this can also facilitate fine 

mapping causal variants for those associations as illustrated by the SPOPL-NXPH2 (Figure 

5.14) and PTK2B Alzheimer’s GWAS hit (Figure 5.15) examples.  

 

In summary, we have shown that mapping caQTLs in multiple conditions can provide insights 

into the principles of gene regulation and identify causal variants for eQTLs and GWAS hits. 

Larger sample sizes in multiple tissues and conditions together with methodological 

developments can undercover the true extent of dynamics between master and dependent 

peaks within multi-peak caQTLs. 

  



 158 

 

  



 159 

6 Conclusions 
I have spent the past four years trying to understand how genetic differences between 

individuals lead to condition-specific differences in human macrophage gene expression. I have 

done this by first developing and validating a scalable cell culture model based on differentiating 

human induced pluripotent stem cells (iPSCs) into macrophages. I have subsequently used the 

model to study the genetics of gene expression and chromatin accessibility in macrophage 

response to IFNɣ stimulation and Salmonella infection. 

6.1 Using iPSC-derived cells to map QTLs for molecular traits 

Large iPSC generation initiatives such as the HipSci project (Kilpinen et al., 2016) provide both 

genetically and phenotypically well characterised cell lines from healthy individuals as well as 

from individuals with rare diseases. With the development of automated iPSC derivation and 

characterisation pipelines, the availability of these cell lines is likely to increase even further 

(Paull et al., 2015). Throughout the thesis, we have shown that it is feasible to use iPSC-derived 

macrophages to map QTLs for molecular traits such as gene expression and chromatin 

accessibility. Importantly, in Chapter 3 we have identified experimental factors (such as cell 

purity) that are responsible for a large amount of variability in the gene expression levels of 

iPSC-derived macrophages. These results can guide future QTL mapping experiments in iPSC-

derived macrophages, but it is currently not clear how generalisable these observations are to 

other cell types and differentiation protocols. 

 

Multiple studies have shown that a large fraction of eQTLs become visible only after specific 

environmental stimuli (Barreiro et al., 2012; Lee et al., 2014; Maranville et al., 2011) and even 

the duration of the stimulus can have a large effect (Fairfax et al., 2014). Furthermore, there can 

be a scores of relevant stimuli for any given cell type (Xue et al., 2014). Moreover, as we have 

shown in Chapters 4 and 5, applying two stimuli one after the other (e.g. IFNɣ + Salmonella) 

can reveal QTLs that are not visible with either of the stimuli alone. As a result, the logistics and 

the number of cells required for all relevant conditions can become prohibitively large for 

primary cells, especially if the cell type of interest is not easily accessible. IPSC-derived cells 

are free of these limitations because, in principle, large numbers of cells can be scalably 

produced from the same set of individuals over a long period of time. 
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A major limitation in expanding this approach to different cell types is the lack of reliable 

differentiation protocols for many of them. Secondly, even if the protocols exist, differentiated 

cells will always show some differences from their primary counterparts and the consequences 

of these differences are largely unknown. Furthermore, many differentiation protocols are highly 

complicated, contain multiple manual steps and require many different signalling molecules to 

be added at specific time points. Progress has been made towards automating iPSC 

differentiation, but only a small number of protocols have been successfully converted (Paull et 

al., 2015). 

 

Even though there is no theoretical limit to the number of cells that can be produced from iPSC 

differentiations, working with large numbers of cell considerably increases the cost and 

complexity of the experiments. Therefore, to make it feasible to study tens of different stimuli at 

multiple time points, the experimental assays need to scaled down to small cell numbers. 

Fortunately, progress has been made over the years in reducing the numbers of cells required 

by RNA-seq (Picelli et al., 2014), ATAC-seq (Corces et al., 2016) and ChIP-seq experiments 

(Lara-Astiaso et al., 2014). 

6.2 Alternative transcription QTLs 

It is clear that since the DNA does not leave the nucleus, the effect of GWAS variants on cellular 

and organismal phenotypes must be somehow mediated by RNA. The fact that only a small 

fraction of GWAS associations overlap coding sequence (Maurano et al., 2012) has led to a 

surge in gene expression QTL (eQTL) mapping studies. Although current eQTL mapping 

studies have found thousands of independent genetic variants associated with mRNA levels of 

different genes, the number of GWAS hits that can readily be explained by eQTLs has remained 

relatively modest. One possible reason might be that the disease-causing eQTLs are active only 

in very specific cell types and conditions that have not yet been profiled by current eQTL 

studies.  

 

Alternatively, GWAS variants might influence RNA level phenotypes other than the total gene 

expression level such as alternative transcript usage. We and others (Li et al., 2016a) have 

shown that eQTLs and transcript ratio QTLs (trQTLs) are predominantly independent from each 

other. A trQTL study in lymphoblastoid cell lines (LCLs) found that trQTL enrichment in GWAS 
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hits was comparable to eQTLs (Li et al., 2016a). Similarly, rare variants causing aberrant mRNA 

splicing have been linked to Mendelian disorders (Cummings et al., 2016).  

 

Alternative transcription can manifest in many different forms: alternative promoter usage, 

alternative splicing, alternative intron retention and alternative polyadenylation. In principle, if all 

possible alternative transcripts were annotated then all types of alternative transcription could 

be detected by quantifying transcript expression. There have been significant computational 

advances in recent years that have increased both the speed and accuracy of transcript 

expression quantification (Bray et al., 2016; Patro et al., 2016). However, as we have shown in 

Chapters 2 and 4, transcript annotations are still to a large degree incomplete. An alternative is 

to use approaches that rely less on reference transcript annotations and focus on reads 

mapping to exon-exon junctions instead. One such method is LeafCutter (Li et al., 2016b), but 

exactly because of its focus on junction reads it not able to detect changes to 5′ and 3′ 

untranslated regions or retained introns as we have shown in Chapter 4. On the other hand, 

using the reviseAnnotations tool developed in this thesis to split reference annotations into 

alternative 5′ and 3′ ends can be used to detect these events and approaches also exist to 

detect long 3′ UTRs de novo from RNA-seq data (Xia et al., 2014). An important area of future 

research will be to systematically analyse different types of alternative transcription events and 

characterise their genomic properties. Finally, combining better alternative transcription event 

annotations with RNA-seq data from hundreds of individuals will allow us to find trans-acting 

QTLs that regulate alternative transcription (Battle et al., 2014), thus providing new insights into 

the mechanisms of its regulation.  

 

RNA transcripts consist of single long molecules. However, an important open question is how 

often different aspects of alternative transcription (i.e. alternative promoters, alternative exons, 

alternative 3′ UTRs) are regulated by shared mechanisms versus how often they are regulated 

by independent mechanisms. Preliminary results from Chapters 2 and 4 suggest that 

independent regulation might be the default mode of action. Future alternative transcription QTL 

mapping studies can answer this question by looking how often single QTLs are associated to 

single alternative transcription events as opposed to influencing multiple parts of the gene. 

Finally, direct long-read RNA sequencing has the potential to greatly improve reference 

transcript annotations (Garalde et al., 2016). However, if most alternative transcription events 

are regulated independently of the rest of the transcript then quantifying full transcript 
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expression for QTL mapping might actually reduce power, especially if the gene has multiple 

linked alternative transcription QTLs such as the IRF5 example highlighted in Chapter 4.  

6.3 Information flow from DNA to protein 

We and others have shown that there is considerable overlap between chromatin accessibility 

and gene expression QTLs. An early study in LCLs estimated that as many as 55% per cent of 

the eQTLs were also chromatin accessibility QTLs (caQTLs) but only 16% of the caQTLs were 

also estimated to regulate gene expression (Degner et al., 2012). In Chapter 5 we showed that 

in ~50% cases the caQTL underlying a condition-specific eQTL was already present in the 

naive state. Thus, a fraction of the discrepancy highlighted by (Degner et al., 2012) could be 

explained by ‘primed’ caQTLs that are waiting for the right environmental signal to start 

regulating gene expression. This observation illustrates an important concept where the 

propagation of regulatory effects from one level to the next (chromatin to RNA) can be regulated 

by changes in the environment that presumably influence the activity of trans-acting factors.  

 

The situation is less clear for splicing and transcript ratio QTLs where we know less about what 

proportion are regulated at the chromatin level. While most variants disrupting canonical splice 

acceptor and donor sites and polyadenylation sites are unlikely to have any effect on the 

chromatin level, QTLs that influence alternative promoter usage could behave more like 

traditional eQTLs. Furthermore, there is evidence that DNA binding proteins such as CTCF can 

regulate splicing by influencing the pausing of RNA polymerase II (Shukla et al., 2011). Thus, 

this could be an interesting area of future research. 

 

However, the functional unit for protein coding genes is the protein and not the mRNA molecule. 

Thus, it is important to know how genetic effects propagate from mRNA to protein level. Two of 

the largest joint protein QTL (pQTL) and eQTL mapping studies to date have been performed in 

human LCLs (Battle et al., 2015) and mouse liver (Chick et al., 2016). However, neither of these 

studies have looked at relationship between alternative transcription and protein expression 

level independent of the gene expression level. Since the role of 3′ and 5′ UTR sequences in 

regulating translation is well established (Wilkie et al., 2003), this could be an interesting area of 

future research. For example, re-analysing RNA-seq and proteomics data from (Chick et al., 

2016) with splicing in mind might be a feasible starting point. 
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Another aspect that is completely unknown is if there is additional condition specificity on pQTL 

level beyond that observed at the mRNA level. For example, similarly to the constitutive caQTLs 

becoming eQTLs that we described in Chapter 4, it would be interesting to find constitutive 

eQTLs that become pQTLs after stimulation. If these eQTL-pQTL pairs do exist, a potential 

mechanism for them might come from the (Chick et al., 2016) study that identified an 

abundance of trans-acting pQTLs that were not present on the RNA level. They found that a 

large proportion of these QTLs could be explained by stoichiometric buffering whereby the 

expression level of a single protein in a larger complex influences the levels of other members 

of the same complex, probably because proteins bound in a complex are more stable than the 

unbound molecules. Thus a constitutive eQTL might become a pQTL in another condition when 

other members of the same complex are more highly expressed. 

6.4 What are we going to do with all of the QTLs? 
A major motivation for performing molecular QTL mapping studies is their potential to aid the 

interpretation of GWAS associations in order to identify causal genes and variants. However, 

even if a molecular QTL has been identified in the same region with a GWAS hit, it still remains 

challenging to distinguish a single shared causal variant driving both traits from two independent 

causal variants that are in high linkage disequilibrium. Although multiple statistical approaches 

have been developed to test colocalisation between associations (Giambartolomei et al., 2014; 

Zhu et al., 2016), they have limited power in regions with large number of variants, where it can 

be impossible to decide on the sharing of causal variants. The second challenge is pleiotropy, 

where the same causal variant influences too traits, but the traits themselves are not causally 

linked. For example, eQTLs can simultaneously regulate the expression of multiple gene at the 

same time. If the same causal variant is then associated with a complex trait then it might not 

possible to tell which gene mediates the GWAS associations based on statistical evidence 

alone. 

 

Although deciding if a given molecular trait (such as gene expression) is causally linked to a 

complex disease is challenging based on a single association alone, we can be more confident 

if we see multiple associations pointing in the same direction. For example, multiple 

independent genetic associations with lower levels of low density lipoprotein (LDL) in blood are 

all linked to reducing cardiovascular disease risk (Ference et al., 2016). This association has 

also been confirmed in clinical trials, where the administration LDL-lowering drugs (such as 



 164 

statins and PCSK9 inhibitors) has been shown to reduce cardiovascular disease risk. Thus, one 

paradoxical conclusion is that we need to discover even more QTLs to be able to take the full 

advantage of all the QTLs that we have found thus far. 

 

However, even with larger studies we are unlikely to be able to characterise the function of all 

regulatory variants using QTL mapping approaches. This is especially true for rare variants and 

rare cell types that we do not know how to differentiate in vitro. Moreover, it is deeply 

unsatisfying if the only way we can predict the function of a non-coding genetic variant is to 

directly measure its activity experimentally. To achieve true understanding of the underlying 

biology, we need to be able to generalise from thousands of measured QTLs to new variants 

that have not been observed. Hence, in the long term, large QTL maps could provide us the 

necessary training data to build computational models that can predict the function of non-

coding variants. In that respect, progress has recently been made to predict the effect of genetic 

variation on chromatin accessibility and transcription factor binding (Alipanahi et al., 2015; 

Kelley et al., 2016; Zhou and Troyanskaya, 2015). Progress has also been made building 

models to link enhancers to their target genes (Marbach et al., 2016; Whalen et al., 2016) and 

this is an area where large condition-specific eQTL maps can provide valuable training data.  

6.5 From natural to engineered variation 

In my thesis, I have used iPSC-derived cells to study the consequences of common natural 

genetic variation. However, another promising avenue of future research is studying the 

consequences of engineered genetic variation, especially because iPSCs can be readily 

genetically modified using the CRISPR technology. The first opportunity here is to use IPSCs to 

study the consequences of specific engineered mutations at several phenotypic levels and in 

many different cell types. The main advantage of iPSCs over primary cells is that iPSCs are 

self-renewing, meaning that it will be possible to construct clonal cell lines with specific 

engineered mutations in many different genetic backgrounds. These lines can then be shared 

and compared between different laboratories. 

 

Another area where engineered genetic variation has a large potential are phenotypic screens. 

In this framework, a large library of mutant cells is first generated where each cell has a loss-of-

function mutation in a single gene (or a regulatory element). The cells then go through either 

positive or negative selection, after which it is possible to determine which mutations had either 
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advantageous or deleterious effect on the phenotype. CRISPR screens have successfully 

identified genes required for cancer survival (Munoz et al., 2016) as well as genes important in 

innate immune response (Parnas et al., 2015). An advantage of iPSCs is that a wide range of 

phenotypes and cell types can be used for screening that are currently not available. This 

includes developmental processes; otherwise inaccessible cell types as well was artificial 

reporter constructs that can be introduced into the cells. Consequently, studying both natural 

and engineered genetic variation in iPSCs has a great potential to uncover the genetic 

architecture of a large variety of human traits. 

  



 166 

  



 167 

7 References 
Adati, N., Huang, M.-C., Suzuki, T., Suzuki, H., and Kojima, T. (2009). High-resolution analysis 

of aberrant regions in autosomal chromosomes in human leukemia THP-1 cell line. BMC Res. 

Notes 2, 153. 

Alasoo, K., Martinez, F.O., Hale, C., Gordon, S., Powrie, F., Dougan, G., Mukhopadhyay, S., 

and Gaffney, D.J. (2015). Transcriptional profiling of macrophages derived from monocytes and 

iPS cells identifies a conserved response to LPS and novel alternative transcription. Sci. Rep. 5, 

12524. 

Alipanahi, B., Delong, A., Weirauch, M.T., and Frey, B.J. (2015). Predicting the sequence 

specificities of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol. 33, 831–838. 

Anders, S., Reyes, A., and Huber, W. (2012). Detecting differential usage of exons from RNA-

seq data. Genome Res. 22, 2008–2017. 

Anders, S., Pyl, P.T., and Huber, W. (2015). HTSeq--a Python framework to work with high-

throughput sequencing data. Bioinformatics 31, 166–169. 

Aziz, A., Soucie, E., Sarrazin, S., and Sieweke, M.H. (2009). MafB/c-Maf deficiency enables 

self-renewal of differentiated functional macrophages. Science 326, 867–871. 

Barash, Y., Calarco, J.A., Gao, W., Pan, Q., Wang, X., Shai, O., Blencowe, B.J., and Frey, B.J. 

(2010). Deciphering the splicing code. Nature 465, 53–59. 

Barreiro, L.B., Tailleux, L., Pai, A.A., Gicquel, B., Marioni, J.C., and Gilad, Y. (2012). 

Deciphering the genetic architecture of variation in the immune response to Mycobacterium 

tuberculosis infection. Proc. Natl. Acad. Sci. U. S. A. 109, 1204–1209. 

Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). Fitting Linear Mixed-Effects Models 

Using lme4. J. Stat. Softw. 67, 1–48. 

Battle, A., Mostafavi, S., Zhu, X., Potash, J.B., Weissman, M.M., McCormick, C., Haudenschild, 

C.D., Beckman, K.B., Shi, J., Mei, R., et al. (2014). Characterizing the genetic basis of 

transcriptome diversity through RNA-sequencing of 922 individuals. Genome Res. 24, 14–24. 



 168 

Battle, A., Khan, Z., Wang, S.H., Mitrano, A., Ford, M.J., Pritchard, J.K., and Gilad, Y. (2015). 

Impact of regulatory variation from RNA to protein. Science 347, 664–667. 

Bell, O., Tiwari, V.K., Thomä, N.H., and Schübeler, D. (2011). Determinants and dynamics of 

genome accessibility. Nat. Rev. Genet. 12, 554–564. 

Benjamini, Y., and Speed, T.P. (2012). Summarizing and correcting the GC content bias in high-

throughput sequencing. Nucleic Acids Res. 40, e72. 

Bock, C., Kiskinis, E., Verstappen, G., Gu, H., Boulting, G., Smith, Z.D., Ziller, M., Croft, G.F., 

Amoroso, M.W., Oakley, D.H., et al. (2011). Reference Maps of human ES and iPS cell 

variation enable high-throughput characterization of pluripotent cell lines. Cell 144, 439–452. 

Bray, N.L., Pimentel, H., Melsted, P., and Pachter, L. (2016). Near-optimal probabilistic RNA-

seq quantification. Nat. Biotechnol. 34, 525–527. 

Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y., and Greenleaf, W.J. (2013). 

Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, 

DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218. 

Buenrostro, J.D., Wu, B., Litzenburger, U.M., Ruff, D., Gonzales, M.L., Snyder, M.P., Chang, 

H.Y., and Greenleaf, W.J. (2015). Single-cell chromatin accessibility reveals principles of 

regulatory variation. Nature 523, 486–490.  

Cailhier, J.F., Partolina, M., Vuthoori, S., Wu, S., Ko, K., Watson, S., Savill, J., Hughes, J., and 

Lang, R.A. (2005). Conditional macrophage ablation demonstrates that resident macrophages 

initiate acute peritoneal inflammation. The Journal of Immunology 174, 2336–2342. 

Çalışkan, M., Baker, S.W., Gilad, Y., and Ober, C. (2015). Host genetic variation influences 

gene expression response to rhinovirus infection. PLoS Genet. 11, e1005111. 

Carpenter, S., Ricci, E.P., Mercier, B.C., Moore, M.J., and Fitzgerald, K.A. (2014). Post-

transcriptional regulation of gene expression in innate immunity. Nat. Rev. Immunol. 14, 361–

376. 

Castel, S., Levy-Moonshine, A., Mohammadi, P., Banks, E., and Lappalainen, T. (2015). Tools 

and best practices for data processing in allelic expression analysis. Genome Biol. 16, 195. 

Chan, G., White, C.C., Winn, P.A., Cimpean, M., Replogle, J.M., Glick, L.R., Cuerdon, N.E., 



 169 

Ryan, K.J., Johnson, K.A., Schneider, J.A., et al. (2015). CD33 modulates TREM2: 

convergence of Alzheimer loci. Nat. Neurosci. 18, 1556–1558. 

Chick, J.M., Munger, S.C., Simecek, P., Huttlin, E.L., Choi, K., Gatti, D.M., Raghupathy, N., 

Svenson, K.L., Churchill, G.A., and Gygi, S.P. (2016). Defining the consequences of genetic 

variation on a proteome-wide scale. Nature 534, 500–505.  

Chun, S., Casparino, A., Patsopoulos, N., Croteau-Chonka, D., Raby, B., De Jager, P., 

Sunyaev, S., and Cotsapas, C. (2016). Shared effect modeling reveals that a fraction of 

autoimmune disease associations are consistent with eQTLs in three immune cell types. 

bioRxiv 053165. 

Claussnitzer, M., Dankel, S.N., Kim, K.-H., Quon, G., Meuleman, W., Haugen, C., Glunk, V., 

Sousa, I.S., Beaudry, J.L., Puviindran, V., et al. (2015). FTO Obesity Variant Circuitry and 

Adipocyte Browning in Humans. N. Engl. J. Med. 373, 895–907.  

Corces, M.R., Buenrostro, J.D., Wu, B., Greenside, P.G., Chan, S.M., Koenig, J.L., Snyder, 

M.P., Pritchard, J.K., Kundaje, A., Greenleaf, W.J., et al. (2016). Lineage-specific and single-cell 

chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat. Genet. 48, 

1193–1203. 

Cummings, B.B., Marshall, J.L., Tukiainen, T., Lek, M., Donkervoort, S., Foley, A.R., Bolduc, V., 

Waddell, L.B., Sandaradura, S.A., O’Grady, G.L., et al. (2016). Improving genetic diagnosis in 

Mendelian disease with transcriptome sequencing. bioRxiv 074153. 

Cunninghame Graham, D.S., Manku, H., Wagner, S., Reid, J., Timms, K., Gutin, A., Lanchbury, 

J.S., and Vyse, T.J. (2007). Association of IRF5 in UK SLE families identifies a variant involved 

in polyadenylation. Hum. Mol. Genet. 16, 579–591. 

Dabney, A., Storey, J.D., and Warnes, G.R. (2010). qvalue: Q-value estimation for false 

discovery rate control. R package version 2.6.0, http://github.com/jdstorey/qvalue. 

Davis, J.R., Fresard, L., Knowles, D.A., Pala, M., Bustamante, C.D., Battle, A., and 

Montgomery, S.B. (2016). An Efficient Multiple-Testing Adjustment for eQTL Studies that 

Accounts for Linkage Disequilibrium between Variants. Am. J. Hum. Genet. 98, 216–224. 

Degner, J.F., Pai, A.A., Pique-Regi, R., Veyrieras, J.-B., Gaffney, D.J., Pickrell, J.K., De Leon, 

S., Michelini, K., Lewellen, N., Crawford, G.E., et al. (2012). DNase I sensitivity QTLs are a 



 170 

major determinant of human expression variation. Nature 482, 390–394. 

Deplancke, B., Alpern, D., and Gardeux, V. (2016). The Genetics of Transcription Factor DNA 

Binding Variation. Cell 166, 538–554. 

Ding, Z., Ni, Y., Timmer, S.W., Lee, B.-K., Battenhouse, A., Louzada, S., Yang, F., Dunham, I., 

Crawford, G.E., Lieb, J.D., et al. (2014). Quantitative Genetics of CTCF Binding Reveal Local 

Sequence Effects and Different Modes of X-Chromosome Association. PLoS Genet. 10, 

e1004798. 

Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, 

M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 

15–21. 

Doyle, S., Vaidya, S., O’Connell, R., Dadgostar, H., Dempsey, P., Wu, T., Rao, G., Sun, R., 

Haberland, M., Modlin, R., et al. (2002). IRF3 mediates a TLR3/TLR4-specific antiviral gene 

program. Immunity 17, 251–263. 

Durinck, S., Moreau, Y., Kasprzyk, A., Davis, S., De Moor, B., Brazma, A., and Huber, W. 

(2005). BioMart and Bioconductor: a powerful link between biological databases and microarray 

data analysis. Bioinformatics 21, 3439–3440. 

Ellis, S.E., Gupta, S., Ashar, F.N., Bader, J.S., West, A.B., and Arking, D.E. (2013). RNA-Seq 

optimization with eQTL gold standards. BMC Genomics 14, 892. 

Fairfax, B.P., Makino, S., Radhakrishnan, J., Plant, K., Leslie, S., Dilthey, A., Ellis, P., Langford, 

C., Vannberg, F.O., and Knight, J.C. (2012). Genetics of gene expression in primary immune 

cells identifies cell type-specific master regulators and roles of HLA alleles. Nat. Genet. 44, 

502–510. 

Fairfax, B.P., Humburg, P., Makino, S., Naranbhai, V., Wong, D., Lau, E., Jostins, L., Plant, K., 

Andrews, R., McGee, C., et al. (2014). Innate immune activity conditions the effect of regulatory 

variants upon monocyte gene expression. Science 343, 1246949. 

Farh, K.K.-H., Marson, A., Zhu, J., Kleinewietfeld, M., Housley, W.J., Beik, S., Shoresh, N., 

Whitton, H., Ryan, R.J.H., Shishkin, A.A., et al. (2015). Genetic and epigenetic fine mapping of 

causal autoimmune disease variants. Nature 518, 337–343.  



 171 

Ference, B.A., Robinson, J.G., Brook, R.D., Catapano, A.L., Chapman, M.J., Neff, D.R., Voros, 

S., Giugliano, R.P., Davey Smith, G., Fazio, S., et al. (2016). Variation in PCSK9 and HMGCR 

and Risk of Cardiovascular Disease and Diabetes. N. Engl. J. Med. 375, 2144–2153. 

 
Finak, G., Frelinger, J., Jiang, W., Newell, E.W., Ramey, J., Davis, M.M., Kalams, S.A., De 

Rosa, S.C., and Gottardo, R. (2014). OpenCyto: an open source infrastructure for scalable, 

robust, reproducible, and automated, end-to-end flow cytometry data analysis. PLoS Comput. 

Biol. 10, e1003806. 

Fraley, C., and Raftery, A.E. (1999). MCLUST: Software for model-based cluster analysis. J. 

Classification 16, 297–306. 

Friedman, A.D. (2007). Transcriptional control of granulocyte and monocyte development. 

Oncogene 26, 6816–6828. 

Fu, J., Keurentjes, J.J.B., Bouwmeester, H., America, T., Verstappen, F.W.A., Ward, J.L., 

Beale, M.H., de Vos, R.C.H., Dijkstra, M., Scheltema, R.A., et al. (2009). System-wide 

molecular evidence for phenotypic buffering in Arabidopsis. Nat. Genet. 41, 166–167. 

Furey, T.S. (2012). ChIP-seq and beyond: new and improved methodologies to detect and 

characterize protein-DNA interactions. Nat. Rev. Genet. 13, 840–852. 

Garalde, D.R., Snell, E.A., Jachimowicz, D., Heron, A.J., Bruce, M., Lloyd, J., Warland, A., 

Pantic, N., Admassu, T., Ciccone, J., et al. (2016). Highly parallel direct RNA sequencing on an 

array of nanopores. bioRxiv 068809. 

Gaulton, K.J., Ferreira, T., Lee, Y., Raimondo, A., Mägi, R., Reschen, M.E., Mahajan, A., Locke, 

A., William Rayner, N., Robertson, N., et al. (2015). Genetic fine mapping and genomic 

annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nat. Genet. 47, 

1415–1425. 

Gautier, E.L., Shay, T., Miller, J., Greter, M., Jakubzick, C., Ivanov, S., Helft, J., Chow, A., 

Elpek, K.G., Gordonov, S., et al. (2012). Gene-expression profiles and transcriptional regulatory 

pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 

13, 1118–1128. 

van de Geijn, B., McVicker, G., Gilad, Y., and Pritchard, J.K. (2015). WASP: allele-specific 

software for robust molecular quantitative trait locus discovery. Nat. Methods 12, 1061–1063.  



 172 

Ghazalpour, A., Bennett, B., Petyuk, V.A., Orozco, L., Hagopian, R., Mungrue, I.N., Farber, 

C.R., Sinsheimer, J., Kang, H.M., Furlotte, N., et al. (2011). Comparative analysis of proteome 

and transcriptome variation in mouse. PLoS Genet. 7, e1001393. 

Giambartolomei, C., Vukcevic, D., Schadt, E.E., Franke, L., Hingorani, A.D., Wallace, C., and 

Plagnol, V. (2014). Bayesian Test for Colocalisation between Pairs of Genetic Association 

Studies Using Summary Statistics. PLoS Genet. 10, e1004383. 

Ginhoux, F., Greter, M., Leboeuf, M., Nandi, S., See, P., Gokhan, S., Mehler, M.F., Conway, 

S.J., Ng, L.G., Stanley, E.R., et al. (2010). Fate mapping analysis reveals that adult microglia 

derive from primitive macrophages. Science 330, 841–845. 

Glaus, P., Honkela, A., and Rattray, M. (2012). Identifying differentially expressed transcripts 

from RNA-seq data with biological variation. Bioinformatics 28, 1721–1728. 

Gonzàlez-Porta, M., Frankish, A., Rung, J., Harrow, J., and Brazma, A. (2013). Transcriptome 

analysis of human tissues and cell lines reveals one dominant transcript per gene. Genome 

Biol. 14, R70. 

Gosselin, D., Link, V.M., Romanoski, C.E., Fonseca, G.J., Eichenfield, D.Z., Spann, N.J., 

Stender, J.D., Chun, H.B., Garner, H., Geissmann, F., et al. (2014). Environment drives 

selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159, 

1327–1340. 

Grant, C.E., Bailey, T.L., and Noble, W.S. (2011). FIMO: scanning for occurrences of a given 

motif. Bioinformatics 27, 1017–1018. 

Grubert, F., Zaugg, J.B., Kasowski, M., Ursu, O., Spacek, D.V., Martin, A.R., Greenside, P., 

Srivas, R., Phanstiel, D.H., Pekowska, A., et al. (2015). Genetic Control of Chromatin States in 

Humans Involves Local and Distal Chromosomal Interactions. Cell 162, 1051–1065. 

Gundra, U.M., Girgis, N.M., Ruckerl, D., Jenkins, S., Ward, L.N., Kurtz, Z.D., Wiens, K.E., Tang, 

M.S., Basu-Roy, U., Mansukhani, A., et al. (2014). Alternatively activated macrophages derived 

from monocytes and tissue macrophages are phenotypically and functionally distinct. Blood 

123, e110–e122. 

Guo, H., Fortune, M.D., Burren, O.S., Schofield, E., Todd, J.A., and Wallace, C. (2015). 

Integration of disease association and eQTL data using a Bayesian colocalisation approach 



 173 

highlights six candidate causal genes in immune-mediated diseases. Hum. Mol. Genet. 24, 

3305–3313. 

Gupta, I., Clauder-Münster, S., Klaus, B., Järvelin, A.I., Aiyar, R.S., Benes, V., Wilkening, S., 

Huber, W., Pelechano, V., and Steinmetz, L.M. (2014). Alternative polyadenylation diversifies 

post-transcriptional regulation by selective RNA–protein interactions. Mol. Syst. Biol. 10. 

Hansen, K.D., Irizarry, R.A., and Wu, Z. (2012). Removing technical variability in RNA-seq data 

using conditional quantile normalization. Biostatistics 13, 204–216. 

Haraga, A., Ohlson, M.B., and Miller, S.I. (2008). Salmonellae interplay with host cells. Nat. 

Rev. Microbiol. 6, 53–66. 

Harrow, J., Frankish, A., Gonzalez, J.M., Tapanari, E., Diekhans, M., Kokocinski, F., Aken, B.L., 

Barrell, D., Zadissa, A., Searle, S., et al. (2012). GENCODE: the reference human genome 

annotation for The ENCODE Project. Genome Res. 22, 1760–1774. 

Heger, A., Webber, C., Goodson, M., Ponting, C.P., and Lunter, G. (2013). GAT: a simulation 

framework for testing the association of genomic intervals. Bioinformatics 29, 2046–2048. 

Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y.C., Laslo, P., Cheng, J.X., Murre, C., 

Singh, H., and Glass, C.K. (2010). Simple combinations of lineage-determining transcription 

factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 

38, 576–589. 

Heinz, S., Romanoski, C.E., Benner, C., Allison, K.A., Kaikkonen, M.U., Orozco, L.D., and 

Glass, C.K. (2013). Effect of natural genetic variation on enhancer selection and function. 

Nature 503, 487–492. 

Henikoff, S., and Shilatifard, A. (2011). Histone modification: cause or cog? Trends Genet. 27, 

389–396. 

Herzenberg, L.A., Tung, J., Moore, W.A., Herzenberg, L.A., and Parks, D.R. (2006). Interpreting 

flow cytometry data: a guide for the perplexed. Nat. Immunol. 7, 681–685. 

’t Hoen, P.A.C., Friedländer, M.R., Almlöf, J., Sammeth, M., Pulyakhina, I., Anvar, S.Y., Laros, 

J.F.J., Buermans, H.P.J., Karlberg, O., Brännvall, M., et al. (2013). Reproducibility of high-

throughput mRNA and small RNA sequencing across laboratories. Nat. Biotechnol. 31, 1015–



 174 

1022.  

Hormozdiari, F., Segre, A.V., van de Bunt, M., Li, X., Joo, J.W.J., Bilow, M., Sul, J.H., 

Sankararaman, S., Pasaniuc, B., and Eskin, E. (2016). Joint Fine Mapping of GWAS and eQTL 

Detects Target Gene and Relevant Tissue. bioRxiv 065037. 

Hu, B.-Y., Weick, J.P., Yu, J., Ma, L.-X., Zhang, X.-Q., Thomson, J.A., and Zhang, S.-C. (2010). 

Neural differentiation of human induced pluripotent stem cells follows developmental principles 

but with variable potency. Proc. Natl. Acad. Sci. U. S. A. 107, 4335–4340. 

Hu, X., and Ivashkiv, L.B. (2009). Cross-regulation of signaling pathways by interferon-gamma: 

implications for immune responses and autoimmune diseases. Immunity 31, 539–550. 

Ivashkiv, L.B., and Donlin, L.T. (2014). Regulation of type I interferon responses. Nat. Rev. 

Immunol. 14, 36–49. 

Iwafuchi-Doi, M., Donahue, G., Kakumanu, A., Watts, J.A., Mahony, S., Pugh, B.F., Lee, D., 

Kaestner, K.H., and Zaret, K.S. (2016). The Pioneer Transcription Factor FoxA Maintains an 

Accessible Nucleosome Configuration at Enhancers for Tissue-Specific Gene Activation. Mol. 

Cell 62, 79–91. 

Jacob, F., and Monod, J. (1961). Genetic regulatory mechanisms in the synthesis of proteins. J. 

Mol. Biol. 3, 318–356. 

Jakubzick, C., Gautier, E.L., Gibbings, S.L., Sojka, D.K., Schlitzer, A., Johnson, T.E., Ivanov, S., 

Duan, Q., Bala, S., Condon, T., et al. (2013). Minimal differentiation of classical monocytes as 

they survey steady-state tissues and transport antigen to lymph nodes. Immunity 39, 599–610. 

Jiang, H., Lei, R., Ding, S.-W., and Zhu, S. (2014). Skewer: a fast and accurate adapter trimmer 

for next-generation sequencing paired-end reads. BMC Bioinformatics 15, 182. 

Jiang, Y., Cowley, S.A., Siler, U., Melguizo, D., Tilgner, K., Browne, C., Dewilton, A., Przyborski, 

S., Saretzki, G., James, W.S., et al. (2012). Derivation and functional analysis of patient-specific 

induced pluripotent stem cells as an in vitro model of chronic granulomatous disease. Stem 

Cells 30, 599–611. 

Johansson, M., Bocher, V., Lehto, M., Chinetti, G., Kuismanen, E., Ehnholm, C., Staels, B., and 

Olkkonen, V.M. (2003). The two variants of oxysterol binding protein-related protein-1 display 



 175 

different tissue expression patterns, have different intracellular localization, and are functionally 

distinct. Mol. Biol. Cell 14, 903–915. 

de Jong, H.K., Parry, C.M., van der Poll, T., and Wiersinga, W.J. (2012). Host-pathogen 

interaction in invasive Salmonellosis. PLoS Pathog. 8, e1002933. 

Jun, G., Flickinger, M., Hetrick, K.N., Romm, J.M., Doheny, K.F., Abecasis, G.R., Boehnke, M., 

and Kang, H.M. (2012). Detecting and estimating contamination of human DNA samples in 

sequencing and array-based genotype data. Am. J. Hum. Genet. 91, 839–848. 

Kaikkonen, M.U., Spann, N.J., Heinz, S., Romanoski, C.E., Allison, K.A., Stender, J.D., Chun, 

H.B., Tough, D.F., Prinjha, R.K., Benner, C., et al. (2013). Remodeling of the Enhancer 

Landscape during Macrophage Activation Is Coupled to Enhancer Transcription. Mol. Cell 51, 

310–325. 

Kajiwara, M., Aoi, T., Okita, K., Takahashi, R., Inoue, H., Takayama, N., Endo, H., Eto, K., 

Toguchida, J., Uemoto, S., et al. (2012). Donor-dependent variations in hepatic differentiation 

from human-induced pluripotent stem cells. Proc. Natl. Acad. Sci. U. S. A. 109, 12538–12543. 

Kanitz, A., Gypas, F., Gruber, A.J., Gruber, A.R., Martin, G., and Zavolan, M. (2015). 

Comparative assessment of methods for the computational inference of transcript isoform 

abundance from RNA-seq data. Genome Biol. 16, 150. 

Karch, C.M., Ezerskiy, L.A., Bertelsen, S., Alzheimer’s Disease Genetics Consortium (ADGC), 

and Goate, A.M. (2016). Alzheimer’s Disease Risk Polymorphisms Regulate Gene Expression 

in the ZCWPW1 and the CELF1 Loci. PLoS One 11, e0148717. 

Karlsson, K.R., Cowley, S., Martinez, F.O., Shaw, M., Minger, S.L., and James, W. (2008). 

Homogeneous monocytes and macrophages from human embryonic stem cells following 

coculture-free differentiation in M-CSF and IL-3. Exp. Hematol. 36, 1167–1175. 

Kasowski, M., Grubert, F., Heffelfinger, C., Hariharan, M., Asabere, A., Waszak, S.M., 

Habegger, L., Rozowsky, J., Shi, M., Urban, A.E., et al. (2010). Variation in transcription factor 

binding among humans. Science 328, 232–235. 

Kasowski, M., Kyriazopoulou-Panagiotopoulou, S., Grubert, F., Zaugg, J.B., Kundaje, A., Liu, 

Y., Boyle, A.P., Zhang, Q.C., Zakharia, F., Spacek, D.V., et al. (2013). Extensive variation in 

chromatin states across humans. Science 342, 750–752. 



 176 

Katz, Y., Wang, E.T., Airoldi, E.M., and Burge, C.B. (2010). Analysis and design of RNA 

sequencing experiments for identifying isoform regulation. Nat. Methods 7, 1009–1015. 

Kelley, D.R., Snoek, J., and Rinn, J.L. (2016). Basset: learning the regulatory code of the 

accessible genome with deep convolutional neural networks. Genome Res. 26, 990–999. 

Kempf, H., Kropp, C., Olmer, R., Martin, U., and Zweigerdt, R. (2015). Cardiac differentiation of 

human pluripotent stem cells in scalable suspension culture. Nat. Protoc. 10, 1345–1361. 

Keren, L., Hausser, J., Lotan-Pompan, M., Vainberg Slutskin, I., Alisar, H., Kaminski, S., 

Weinberger, A., Alon, U., Milo, R., and Segal, E. (2016). Massively Parallel Interrogation of the 

Effects of Gene Expression Levels on Fitness. Cell 166, 1282–1294.e18.  

Kilpinen, H., Waszak, S.M., Gschwind, A.R., Raghav, S.K., Witwicki, R.M., Orioli, A., 

Migliavacca, E., Wiederkehr, M., Gutierrez-Arcelus, M., Panousis, N.I., et al. (2013). 

Coordinated effects of sequence variation on DNA binding, chromatin structure, and 

transcription. Science 342, 744–747. 

Kilpinen, H., Goncalves, A., Leha, A., Afzal, V., Ashford, S., Bala, S., Bensaddek, D., Casale, 

F.P., Culley, O., Danacek, P., et al. (2016). Common genetic variation drives molecular 

heterogeneity in human iPSCs. bioRxiv 055160.  

Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., and Salzberg, S.L. (2013). TopHat2: 

accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. 

Genome Biol. 14, R36. 

Kim, D., Langmead, B., and Salzberg, S.L. (2015). HISAT: a fast spliced aligner with low 

memory requirements. Nat. Methods 12, 357–360.  

Kim, S., Becker, J., Bechheim, M., Kaiser, V., Noursadeghi, M., Fricker, N., Beier, E., Klaschik, 

S., Boor, P., Hess, T., et al. (2014). Characterizing the genetic basis of innate immune response 

in TLR4-activated human monocytes. Nat. Commun. 5, 5236. 

Klimchenko, O., Di Stefano, A., Geoerger, B., Hamidi, S., Opolon, P., Robert, T., Routhier, M., 

El-Benna, J., Delezoide, A.-L., Boukour, S., et al. (2011). Monocytic cells derived from human 

embryonic stem cells and fetal liver share common differentiation pathways and homeostatic 

functions. Blood 117, 3065–3075. 



 177 

Kottyan, L.C., Zoller, E.E., Bene, J., Lu, X., Kelly, J.A., Rupert, A.M., Lessard, C.J., Vaughn, 

S.E., Marion, M., Weirauch, M.T., et al. (2015). The IRF5-TNPO3 association with systemic 

lupus erythematosus has two components that other autoimmune disorders variably share. 

Hum. Mol. Genet. 24, 582–596. 

Koyanagi-Aoi, M., Ohnuki, M., Takahashi, K., Okita, K., Noma, H., Sawamura, Y., Teramoto, I., 

Narita, M., Sato, Y., Ichisaka, T., et al. (2013). Differentiation-defective phenotypes revealed by 

large-scale analyses of human pluripotent stem cells. Proc. Natl. Acad. Sci. U. S. A. 110, 

20569–20574. 

Krause, P., Morris, V., Greenbaum, J.A., Park, Y., Bjoerheden, U., Mikulski, Z., Muffley, T., 

Shui, J.-W., Kim, G., Cheroutre, H., et al. (2015). IL-10-producing intestinal macrophages 

prevent excessive antibacterial innate immunity by limiting IL-23 synthesis. Nat. Commun. 6, 

7055. 

Kumar, L., and E Futschik, M. (2007). Mfuzz: a software package for soft clustering of 

microarray data. Bioinformation 2, 5–7. 

Kumasaka, N., Knights, A.J., and Gaffney, D.J. (2016). Fine-mapping cellular QTLs with 

RASQUAL and ATAC-seq. Nat. Genet. 48, 206–213.  

Lachmann, N., Ackermann, M., Frenzel, E., Liebhaber, S., Brennig, S., Happle, C., Hoffmann, 

D., Klimenkova, O., Lüttge, D., Buchegger, T., et al. (2015). Large-Scale Hematopoietic 

Differentiation of Human Induced Pluripotent Stem Cells Provides Granulocytes or 

Macrophages for Cell Replacement Therapies. Nat. Rep. Stem Cells 4, 282–296. 

Lahens, N.F., Kavakli, I.H., Zhang, R., Hayer, K., Black, M.B., Dueck, H., Pizarro, A., Kim, J., 

Irizarry, R., Thomas, R.S., et al. (2014). IVT-seq reveals extreme bias in RNA sequencing. 

Genome Biol. 15, R86. 

Lambert, J.C., Ibrahim-Verbaas, C.A., Harold, D., Naj, A.C., Sims, R., Bellenguez, C., 

DeStafano, A.L., Bis, J.C., Beecham, G.W., Grenier-Boley, B., et al. (2013). Meta-analysis of 

74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 45, 

1452–1458. 

Lambert, N., Robertson, A., Jangi, M., McGeary, S., Sharp, P.A., and Burge, C.B. (2014). RNA 

Bind-n-Seq: quantitative assessment of the sequence and structural binding specificity of RNA 



 178 

binding proteins. Mol. Cell 54, 887–900. 

Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009). Ultrafast and memory-efficient 

alignment of short DNA sequences to the human genome. Genome Biol. 10, R25. 

Lappalainen, T., Sammeth, M., Friedländer, M.R., ’t Hoen, P.A.C., Monlong, J., Rivas, M.A., 

Gonzàlez-Porta, M., Kurbatova, N., Griebel, T., Ferreira, P.G., et al. (2013). Transcriptome and 

genome sequencing uncovers functional variation in humans. Nature 501, 506–511. 

Lara-Astiaso, D., Weiner, A., Lorenzo-Vivas, E., Zaretsky, I., Jaitin, D.A., David, E., Keren-

Shaul, H., Mildner, A., Winter, D., Jung, S., et al. (2014). Immunogenetics. Chromatin state 

dynamics during blood formation. Science 345, 943–949. 

Lavin, Y., Winter, D., Blecher-Gonen, R., David, E., Keren-Shaul, H., Merad, M., Jung, S., and 

Amit, I. (2014). Tissue-resident macrophage enhancer landscapes are shaped by the local 

microenvironment. Cell 159, 1312–1326. 

Law, C.W., Chen, Y., Shi, W., and Smyth, G.K. (2014). voom: Precision weights unlock linear 

model analysis tools for RNA-seq read counts. Genome Biol. 15, R29. 

Lawrence, M., Gentleman, R., and Carey, V. (2009). rtracklayer: an R package for interfacing 

with genome browsers. Bioinformatics 25, 1841–1842. 

Lee, M.N., Ye, C., Villani, A.-C., Raj, T., Li, W., Eisenhaure, T.M., Imboywa, S.H., Chipendo, 

P.I., Ran, F.A., Slowikowski, K., et al. (2014). Common genetic variants modulate pathogen-

sensing responses in human dendritic cells. Science 343, 1246980. 

Leek, J.T., and Storey, J.D. (2007). Capturing heterogeneity in gene expression studies by 

surrogate variable analysis. PLoS Genet. 3, 1724–1735. 

Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 

arXiv [q-bio.GN]. 

Li, Y., Oosting, M., Deelen, P., Ricaño-Ponce, I., Smeekens, S., Jaeger, M., Matzaraki, V., 

Swertz, M.A., Xavier, R.J., Franke, L., et al. (2016a). Inter-individual variability and genetic 

influences on cytokine responses to bacteria and fungi. Nat. Med. 22, 952–960.  

Li, Y.I., Knowles, D.A., and Pritchard, J.K. (2016b). LeafCutter: Annotation-free quantification of 

RNA splicing. bioRxiv 044107.  



 179 

Li, Y.I., van de Geijn, B., Raj, A., Knowles, D.A., Petti, A.A., Golan, D., Gilad, Y., and Pritchard, 

J.K. (2016c). RNA splicing is a primary link between genetic variation and disease. Science 352, 

600–604. 

Liao, Y., Smyth, G.K., and Shi, W. (2014). featureCounts: an efficient general purpose program 

for assigning sequence reads to genomic features. Bioinformatics 30, 923–930. 

Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and 

dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. 

MacArthur, S., Li, X.-Y., Li, J., Brown, J.B., Chu, H.C., Zeng, L., Grondona, B.P., Hechmer, A., 

Simirenko, L., Keränen, S.V.E., et al. (2009). Developmental roles of 21 Drosophila transcription 

factors are determined by quantitative differences in binding to an overlapping set of thousands 

of genomic regions. Genome Biol. 10, R80. 

Mantovani, A., Biswas, S.K., Galdiero, M.R., Sica, A., and Locati, M. (2013). Macrophage 

plasticity and polarization in tissue repair and remodelling. J. Pathol. 229, 176–185. 

Maranville, J.C., Luca, F., Richards, A.L., Wen, X., Witonsky, D.B., Baxter, S., Stephens, M., 

and Di Rienzo, A. (2011). Interactions between glucocorticoid treatment and cis-regulatory 

polymorphisms contribute to cellular response phenotypes. PLoS Genet. 7, e1002162. 

Marbach, D., Lamparter, D., Quon, G., Kellis, M., Kutalik, Z., and Bergmann, S. (2016). Tissue-

specific regulatory circuits reveal variable modular perturbations across complex diseases. Nat. 

Methods 13, 366–370. 

Marioni, J.C., Mason, C.E., Mane, S.M., Stephens, M., and Gilad, Y. (2008). RNA-seq: an 

assessment of technical reproducibility and comparison with gene expression arrays. Genome 

Res. 18, 1509–1517. 

Martinez, F.O. (2012). Analysis of gene expression and gene silencing in human macrophages. 

Curr. Protoc. Immunol. Chapter 14, Unit 14.28.1–23. 

Martinez, F.O., Gordon, S., Locati, M., and Mantovani, A. (2006). Transcriptional profiling of the 

human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of 

gene expression. The Journal of Immunology 177, 7303–7311. 

Maurano, M.T., Humbert, R., Rynes, E., Thurman, R.E., Haugen, E., Wang, H., Reynolds, A.P., 



 180 

Sandstrom, R., Qu, H., Brody, J., et al. (2012). Systematic localization of common disease-

associated variation in regulatory DNA. Science 337, 1190–1195. 

Mayr, C., and Bartel, D.P. (2009). Widespread shortening of 3’UTRs by alternative cleavage 

and polyadenylation activates oncogenes in cancer cells. Cell 138, 673–684. 

McVicker, G., van de Geijn, B., Degner, J.F., Cain, C.E., Banovich, N.E., Raj, A., Lewellen, N., 

Myrthil, M., Gilad, Y., and Pritchard, J.K. (2013). Identification of Genetic Variants That Affect 

Histone Modifications in Human Cells. Science 342, 747–749. 

Medina, K.L., and Singh, H. (2005). Gene Regulatory Networks Orchestrating B Cell Fate 

Specification, Commitment, and Differentiation. In Molecular Analysis of B Lymphocyte 

Development and Activation, P.D.H. Singh, and P.D.R. Grosschedl, eds. (Springer Berlin 

Heidelberg), pp. 1–14. 

Medzhitov, R., and Horng, T. (2009). Transcriptional control of the inflammatory response. Nat. 

Rev. Immunol. 9, 692–703. 

Miura, P., Shenker, S., Andreu-Agullo, C., Westholm, J.O., and Lai, E.C. (2013). Widespread 

and extensive lengthening of 3’ UTRs in the mammalian brain. Genome Res. 23, 812–825. 

Mogensen, T.H. (2009). Pathogen recognition and inflammatory signaling in innate immune 

defenses. Clin. Microbiol. Rev. 22, 240–273 

Montgomery, S.B., Sammeth, M., Gutierrez-Arcelus, M., Lach, R.P., Ingle, C., Nisbett, J., Guigo, 

R., and Dermitzakis, E.T. (2010). Transcriptome genetics using second generation sequencing 

in a Caucasian population. Nature 464, 773–777. 

Mullen, A.C., Orlando, D.A., Newman, J.J., Lovén, J., Kumar, R.M., Bilodeau, S., Reddy, J., 

Guenther, M.G., DeKoter, R.P., and Young, R.A. (2011). Master transcription factors determine 

cell-type-specific responses to TGF-β signaling. Cell 147, 565–576. 

Munoz, D.M., Cassiani, P.J., Li, L., Billy, E., Korn, J.M., Jones, M.D., Golji, J., Ruddy, D.A., Yu, 

K., McAllister, G., et al. (2016). CRISPR Screens Provide a Comprehensive Assessment of 

Cancer Vulnerabilities but Generate False-Positive Hits for Highly Amplified Genomic Regions. 

Cancer Discov. 6, 900–913. 

Murray, P.J., and Wynn, T.A. (2011). Protective and pathogenic functions of macrophage 



 181 

subsets. Nat. Rev. Immunol. 11, 723–737. 

Muruve, D.A., Pétrilli, V., Zaiss, A.K., White, L.R., Clark, S.A., Ross, P.J., Parks, R.J., and 

Tschopp, J. (2008). The inflammasome recognizes cytosolic microbial and host DNA and 

triggers an innate immune response. Nature 452, 103–107. 

Naranbhai, V., Fairfax, B.P., Makino, S., Humburg, P., Wong, D., Ng, E., Hill, A.V.S., and 

Knight, J.C. (2015). Genomic modulators of gene expression in human neutrophils. Nat. 

Commun. 6, 7545. 

Nau, G.J., Richmond, J.F.L., Schlesinger, A., Jennings, E.G., Lander, E.S., and Young, R.A. 

(2002). Human macrophage activation programs induced by bacterial pathogens. Proc. Natl. 

Acad. Sci. U. S. A. 99, 1503–1508. 

Negishi, H., Fujita, Y., Yanai, H., Sakaguchi, S., Ouyang, X., Shinohara, M., Takayanagi, H., 

Ohba, Y., Taniguchi, T., and Honda, K. (2006). Evidence for licensing of IFN-gamma-induced 

IFN regulatory factor 1 transcription factor by MyD88 in Toll-like receptor-dependent gene 

induction program. Proc. Natl. Acad. Sci. U. S. A. 103, 15136–15141. 

Neph, S., Vierstra, J., Stergachis, A.B., Reynolds, A.P., Haugen, E., Vernot, B., Thurman, R.E., 

John, S., Sandstrom, R., Johnson, A.K., et al. (2012). An expansive human regulatory lexicon 

encoded in transcription factor footprints. Nature 489, 83–90. 

Ngo, M., and Ridgway, N.D. (2009). Oxysterol binding protein–related protein 9 (ORP9) is a 

cholesterol transfer protein that regulates Golgi structure and function. Mol. Biol. Cell 20, 1388–

1399. 

Nica, A.C., Parts, L., Glass, D., Nisbet, J., Barrett, A., Sekowska, M., Travers, M., Potter, S., 

Grundberg, E., Small, K., et al. (2011). The architecture of gene regulatory variation across 

multiple human tissues: the MuTHER study. PLoS Genet. 7, e1002003. 

Odom, D.T., Zizlsperger, N., Benjamin Gordon, D., Bell, 1. George W., Rinaldi, N.J., Murray, 

H.L., Volkert, 1. Tom L., Schreiber, J., Alexander Rolfe, P., Gifford, D.K., et al. (2004). Control of 

Pancreas and Liver Gene Expression by HNF Transcription Factors. Science 303. 

O’Neill, L.A., Sheedy, F.J., and McCoy, C.E. (2011). MicroRNAs: the fine-tuners of Toll-like 

receptor signalling. Nat. Rev. Immunol. 11, 163–175. 



 182 

Ongen, H., Buil, A., Brown, A.A., Dermitzakis, E.T., and Delaneau, O. (2016). Fast and efficient 

QTL mapper for thousands of molecular phenotypes. Bioinformatics 32, 1479–1485.  

Orozco, L.D., Bennett, B.J., Farber, C.R., Ghazalpour, A., Pan, C., Che, N., Wen, P., Qi, H.X., 

Mutukulu, A., Siemers, N., et al. (2012). Unraveling inflammatory responses using systems 

genetics and gene-environment interactions in macrophages. Cell 151, 658–670. 

Ostuni, R., Piccolo, V., Barozzi, I., Polletti, S., Termanini, A., Bonifacio, S., Curina, A., 

Prosperini, E., Ghisletti, S., and Natoli, G. (2013). Latent enhancers activated by stimulation in 

differentiated cells. Cell 152, 157–171. 

Parnas, O., Jovanovic, M., Eisenhaure, T.M., Herbst, R.H., Dixit, A., Ye, C.J., Przybylski, D., 

Platt, R.J., Tirosh, I., Sanjana, N.E., et al. (2015). A Genome-wide CRISPR Screen in Primary 

Immune Cells to Dissect Regulatory Networks. Cell 162, 675–686. 

Parts, L., Stegle, O., Winn, J., and Durbin, R. (2011). Joint genetic analysis of gene expression 

data with inferred cellular phenotypes. PLoS Genet. 7, e1001276. 

Patro, R., Mount, S.M., and Kingsford, C. (2014). Sailfish enables alignment-free isoform 

quantification from RNA-seq reads using lightweight algorithms. Nat. Biotechnol. 32, 462–464. 

Patro, R., Duggal, G., Love, M.I., Irizarry, R.A., and Kingsford, C. (2016). Salmon provides 

accurate, fast, and bias-aware transcript expression estimates using dual-phase inference. 

bioRxiv 021592.  

Paull, D., Sevilla, A., Zhou, H., Hahn, A.K., Kim, H., Napolitano, C., Tsankov, A., Shang, L., 

Krumholz, K., Jagadeesan, P., et al. (2015). Automated, high-throughput derivation, 

characterization and differentiation of induced pluripotent stem cells. Nat. Methods 12, 885–892. 

Pham, T.-H., Benner, C., Lichtinger, M., Schwarzfischer, L., Hu, Y., Andreesen, R., Chen, W., 

and Rehli, M. (2012). Dynamic epigenetic enhancer signatures reveal key transcription factors 

associated with monocytic differentiation states. Blood 119, e161–e171. 

Pham, T.-H., Minderjahn, J., Schmidl, C., Hoffmeister, H., Schmidhofer, S., Chen, W., Längst, 

G., Benner, C., and Rehli, M. (2013). Mechanisms of in vivo binding site selection of the 

hematopoietic master transcription factor PU.1. Nucleic Acids Res. 41, 6391–6402. 

Pickrell, J.K., Marioni, J.C., Pai, A.A., Degner, J.F., Engelhardt, B.E., Nkadori, E., Veyrieras, J.-



 183 

B., Stephens, M., Gilad, Y., and Pritchard, J.K. (2010). Understanding mechanisms underlying 

human gene expression variation with RNA sequencing. Nature 464, 768–772. 

Picelli, S., Faridani, O.R., Björklund, A.K., Winberg, G., Sagasser, S., and Sandberg, R. (2014). 

Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181. 

Platanias, L.C. (2005). Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat. 

Rev. Immunol. 5, 375–386. 

Polach, K.J., and Widom, J. (1996). A model for the cooperative binding of eukaryotic regulatory 

proteins to nucleosomal target sites. J. Mol. Biol. 258, 800–812. 

Polo, J.M., Liu, S., Figueroa, M.E., Kulalert, W., Eminli, S., Tan, K.Y., Apostolou, E., Stadtfeld, 

M., Li, Y., Shioda, T., et al. (2010). Cell type of origin influences the molecular and functional 

properties of mouse induced pluripotent stem cells. Nat. Biotechnol. 28, 848–855. 

Qiao, Y., Giannopoulou, E.G., Chan, C.H., Park, S.-H., Gong, S., Chen, J., Hu, X., Elemento, 

O., and Ivashkiv, L.B. (2013). Synergistic activation of inflammatory cytokine genes by 

interferon-γ-induced chromatin remodeling and toll-like receptor signaling. Immunity 39, 454–

469. 

Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities for comparing genomic 

features. Bioinformatics 26, 841–842. 

Ramsauer, K., Farlik, M., Zupkovitz, G., Seiser, C., Kröger, A., Hauser, H., and Decker, T. 

(2007). Distinct modes of action applied by transcription factors STAT1 and IRF1 to initiate 

transcription of the IFN-gamma-inducible gbp2 gene. Proc. Natl. Acad. Sci. U. S. A. 104, 2849–

2854. 

Reimand, J., Arak, T., and Vilo, J. (2011). g:Profiler--a web server for functional interpretation of 

gene lists (2011 update). Nucleic Acids Res. 39, W307–W315. 

Reimand, J., Arak, T., Adler, P., Kolberg, L., Reisberg, S., Peterson, H., and Vilo, J. (2016). 

g:Profiler—a web server for functional interpretation of gene lists (2016 update). Nucleic Acids 

Res. 44, W83–W89. 

Reith, W., LeibundGut-Landmann, S., and Waldburger, J.-M. (2005). Regulation of MHC class II 

gene expression by the class II transactivator. Nat. Rev. Immunol. 5, 793–806. 



 184 

Reschen, M.E., Gaulton, K.J., Lin, D., Soilleux, E.J., Morris, A.J., Smyth, S.S., and O’Callaghan, 

C.A. (2015). Lipid-induced epigenomic changes in human macrophages identify a coronary 

artery disease-associated variant that regulates PPAP2B Expression through Altered C/EBP-

beta binding. PLoS Genet. 11, e1005061. 

Rigamonti, A., Repetti, G.G., Sun, C., Price, F.D., Reny, D.C., Rapino, F., Weisinger, K., 

Benkler, C., Peterson, Q.P., Davidow, L.S., et al. (2016). Large-Scale Production of Mature 

Neurons from Human Pluripotent Stem Cells in a Three-Dimensional Suspension Culture 

System. Stem Cell Reports 6, 993–1008. 

Roadmap Epigenomics Consortium, Kundaje, A., Meuleman, W., Ernst, J., Bilenky, M., Yen, A., 

Heravi-Moussavi, A., Kheradpour, P., Zhang, Z., Wang, J., et al. (2015). Integrative analysis of 

111 reference human epigenomes. Nature 518, 317–330. 

Roberts, A., Trapnell, C., Donaghey, J., Rinn, J.L., and Pachter, L. (2011a). Improving RNA-Seq 

expression estimates by correcting for fragment bias. Genome Biol. 12, R22. 

Roberts, A., Pimentel, H., Trapnell, C., and Pachter, L. (2011b). Identification of novel 

transcripts in annotated genomes using RNA-Seq. Bioinformatics 27, 2325–2329. 

Romanoski, C.E., Link, V.M., Heinz, S., and Glass, C.K. (2015). Exploiting genomics and 

natural genetic variation to decode macrophage enhancers. Trends Immunol. 36, 507–518. 

Rosenberger, C.M., Scott, M.G., Gold, M.R., Hancock, R.E., and Finlay, B.B. (2000). 

Salmonella typhimurium infection and lipopolysaccharide stimulation induce similar changes in 

macrophage gene expression. J. Immunol. 164, 5894–5904. 

Rouhani, F., Kumasaka, N., de Brito, M.C., Bradley, A., Vallier, L., and Gaffney, D. (2014). 

Genetic background drives transcriptional variation in human induced pluripotent stem cells. 

PLoS Genet. 10, e1004432. 

Rozowsky, J., Abyzov, A., Wang, J., Alves, P., Raha, D., Harmanci, A., Leng, J., Bjornson, R., 

Kong, Y., Kitabayashi, N., et al. (2011). AlleleSeq: analysis of allele-specific expression and 

binding in a network framework. Mol. Syst. Biol. 7, 522. 

Sandberg, R., Neilson, J.R., Sarma, A., Sharp, P.A., and Burge, C.B. (2008). Proliferating cells 

express mRNAs with shortened 3’ untranslated regions and fewer microRNA target sites. 

Science 320, 1643–1647. 



 185 

Schildberger, A., Rossmanith, E., Eichhorn, T., Strassl, K., and Weber, V. (2013). Monocytes, 

peripheral blood mononuclear cells, and THP-1 cells exhibit different cytokine expression 

patterns following stimulation with lipopolysaccharide. Mediators Inflamm. 2013, 697972. 

Schmidt, S.V., Krebs, W., Ulas, T., Xue, J., Baßler, K., Günther, P., Hardt, A.-L., Schultze, H., 

Sander, J., Klee, K., et al. (2016). The transcriptional regulator network of human inflammatory 

macrophages is defined by open chromatin. Cell Res. 26, 151–170. 

Schmieder, A., Michel, J., Schönhaar, K., Goerdt, S., and Schledzewski, K. (2012). 

Differentiation and gene expression profile of tumor-associated macrophages. Semin. Cancer 

Biol. 22, 289–297. 

Schroder, K., Hertzog, P.J., Ravasi, T., and Hume, D.A. (2004). Interferon-gamma: an overview 

of signals, mechanisms and functions. J. Leukoc. Biol. 75, 163–189. 

Schroder, K., Irvine, K.M., Taylor, M.S., Bokil, N.J., Le Cao, K.-A., Masterman, K.-A., Labzin, 

L.I., Semple, C.A., Kapetanovic, R., Fairbairn, L., et al. (2012). Conservation and divergence in 

Toll-like receptor 4-regulated gene expression in primary human versus mouse macrophages. 

Proc. Natl. Acad. Sci. U. S. A. 109, E944–E953. 

Shao, W., Halachmi, S., and Brown, M. (2002). ERAP140, a conserved tissue-specific nuclear 

receptor coactivator. Mol. Cell. Biol. 22, 3358–3372. 

Shin, H.Y., Willi, M., Yoo, K.H., Zeng, X., Wang, C., Metser, G., and Hennighausen, L. (2016). 

Hierarchy within the mammary STAT5-driven Wap super-enhancer. Nat. Genet. 48, 904–911.  

Shukla, S., Kavak, E., Gregory, M., Imashimizu, M., Shutinoski, B., Kashlev, M., Oberdoerffer, 

P., Sandberg, R., and Oberdoerffer, S. (2011). CTCF-promoted RNA polymerase II pausing 

links DNA methylation to splicing. Nature 479, 74–79. 

Smith, E.N., and Kruglyak, L. (2008). Gene-environment interaction in yeast gene expression. 

PLoS Biol. 6, e83. 

Soehnlein, O., and Lindbom, L. (2010). Phagocyte partnership during the onset and resolution 

of inflammation. Nat. Rev. Immunol. 10, 427–439. 

Soucie, E.L., Weng, Z., Geirsdóttir, L., Molawi, K., Maurizio, J., Fenouil, R., Mossadegh-Keller, 

N., Gimenez, G., VanHille, L., Beniazza, M., et al. (2016). Lineage-specific enhancers activate 



 186 

self-renewal genes in macrophages and embryonic stem cells. Science 351, aad5510.  

Stegle, O., Parts, L., Durbin, R., and Winn, J. (2010). A Bayesian framework to account for 

complex non-genetic factors in gene expression levels greatly increases power in eQTL studies. 

PLoS Comput. Biol. 6, e1000770. 

Stegle, O., Parts, L., Piipari, M., Winn, J., and Durbin, R. (2012). Using probabilistic estimation 

of expression residuals (PEER) to obtain increased power and interpretability of gene 

expression analyses. Nat. Protoc. 7, 500–507. 

Stojnic, R., and Diez, D. (2015). PWMEnrich: PWM enrichment analysis. R package version 

4.8.2. 

Su, X., Yu, Y., Zhong, Y., Giannopoulou, E.G., Hu, X., Liu, H., Cross, J.R., Rätsch, G., Rice, 

C.M., and Ivashkiv, L.B. (2015). Interferon-γ regulates cellular metabolism and mRNA 

translation to potentiate macrophage activation. Nat. Immunol. 16, 838–849. 

Takeuchi, O., and Akira, S. (2010). Pattern recognition receptors and inflammation. Cell 140, 

805–820. 

Tan, G., and Lenhard, B. (2016). TFBSTools: an R/bioconductor package for transcription factor 

binding site analysis. Bioinformatics 32, 1555–1556.  

The ENCODE Project Consortium (2012). An integrated encyclopedia of DNA elements in the 

human genome. Nature 489, 57–74. 

The GTEx Consortium (2015). The Genotype-Tissue Expression (GTEx) pilot analysis: 

Multitissue gene regulation in humans. Science 348, 648–660. 

Trapnell, C., Pachter, L., and Salzberg, S.L. (2009). TopHat: discovering splice junctions with 

RNA-Seq. Bioinformatics 25, 1105–1111. 

Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg, 

S.L., Wold, B.J., and Pachter, L. (2010). Transcript assembly and quantification by RNA-Seq 

reveals unannotated transcripts and isoform switching during cell differentiation. Nat. 

Biotechnol. 28, 511–515. 

Trapnell, C., Hendrickson, D.G., Sauvageau, M., Goff, L., Rinn, J.L., and Pachter, L. (2013). 

Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol. 



 187 

31, 46–53. 

Trompouki, E., Bowman, T.V., Lawton, L.N., Fan, Z.P., Wu, D.-C., DiBiase, A., Martin, C.S., 

Cech, J.N., Sessa, A.K., Leblanc, J.L., et al. (2011). Lineage regulators direct BMP and Wnt 

pathways to cell-specific programs during differentiation and regeneration. Cell 147, 577–589. 

Trynka, G., Sandor, C., Han, B., Xu, H., Stranger, B.E., Liu, X.S., and Raychaudhuri, S. (2013). 

Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat. Genet. 

45, 124–130. 

Tsuchiya, S., Kobayashi, Y., Goto, Y., Okumura, H., Nakae, S., Konno, T., and Tada, K. (1982). 

Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. 

Cancer Res. 42, 1530–1536. 

Turro, E., Su, S.-Y., Gonçalves, Â., Coin, L.J.M., Richardson, S., and Lewin, A. (2011). 

Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads. 

Genome Biol. 12, R13. 

Turro, E., Astle, W.J., and Tavaré, S. (2014). Flexible analysis of RNA-seq data using mixed 

effects models. Bioinformatics 30, 180–188. 

Vallier, L., Touboul, T., Brown, S., Cho, C., Bilican, B., Alexander, M., Cedervall, J., Chandran, 

S., Ahrlund-Richter, L., Weber, A., et al. (2009). Signaling pathways controlling pluripotency and 

early cell fate decisions of human induced pluripotent stem cells. Stem Cells 27, 2655–2666. 

Venables, J.P., Lapasset, L., Gadea, G., Fort, P., Klinck, R., Irimia, M., Vignal, E., Thibault, P., 

Prinos, P., Chabot, B., et al. (2013). MBNL1 and RBFOX2 cooperate to establish a splicing 

programme involved in pluripotent stem cell differentiation. Nat. Commun. 4, 2480. 

Verma, I.M., Stevenson, J.K., Schwarz, E.M., Van Antwerp, D., and Miyamoto, S. (1995). 

Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation. Genes Dev. 9, 

2723–2735. 

Visscher, P.M., Hill, W.G., and Wray, N.R. (2008). Heritability in the genomics era--concepts 

and misconceptions. Nat. Rev. Genet. 9, 255–266. 

Wagner, G.P., Kin, K., and Lynch, V.J. (2012). Measurement of mRNA abundance using RNA-

seq data: RPKM measure is inconsistent among samples. Theory Biosci. 131, 281–285. 



 188 

Wallace, C., Rotival, M., Cooper, J.D., Rice, C.M., Yang, J.H.M., McNeill, M., Smyth, D.J., 

Niblett, D., Cambien, F., Cardiogenics Consortium, et al. (2012). Statistical colocalization of 

monocyte gene expression and genetic risk variants for type 1 diabetes. Hum. Mol. Genet. 21, 

2815–2824. 

Wang, E.T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C., Kingsmore, S.F., 

Schroth, G.P., and Burge, C.B. (2008). Alternative isoform regulation in human tissue 

transcriptomes. Nature 456, 470–476. 

Waszak, S.M., Delaneau, O., Gschwind, A.R., Kilpinen, H., Raghav, S.K., Witwicki, R.M., Orioli, 

A., Wiederkehr, M., Panousis, N.I., Yurovsky, A., et al. (2015). Population Variation and Genetic 

Control of Modular Chromatin Architecture in Humans. Cell 162, 1039–1050.  

Wehrspaun, C.C., Ponting, C.P., and Marques, A.C. (2014). Brain-expressed 3′UTR extensions 

strengthen miRNA cross-talk between ion channel/transporter encoding mRNAs. Front. Genet. 

5. 

Weirauch, M.T., Yang, A., Albu, M., Cote, A.G., Montenegro-Montero, A., Drewe, P., 

Najafabadi, H.S., Lambert, S.A., Mann, I., Cook, K., et al. (2014). Determination and Inference 

of Eukaryotic Transcription Factor Sequence Specificity. Cell 158, 1431–1443. 

Welter, D., MacArthur, J., Morales, J., Burdett, T., Hall, P., Junkins, H., Klemm, A., Flicek, P., 

Manolio, T., Hindorff, L., et al. (2014). The NHGRI GWAS Catalog, a curated resource of SNP-

trait associations. Nucleic Acids Res. 42, D1001–D1006. 

Whalen, S., Truty, R.M., and Pollard, K.S. (2016). Enhancer-promoter interactions are encoded 

by complex genomic signatures on looping chromatin. Nat. Genet. 48, 488–496. 

van Wilgenburg, B., Browne, C., Vowles, J., and Cowley, S.A. (2013). Efficient, long term 

production of monocyte-derived macrophages from human pluripotent stem cells under partly-

defined and fully-defined conditions. PLoS One 8, e71098. 

Wilkie, G.S., Dickson, K.S., and Gray, N.K. (2003). Regulation of mRNA translation by 5’- and 

3'-UTR-binding factors. Trends Biochem. Sci. 28, 182–188. 

Wong, D., Lee, W., Humburg, P., Makino, S., Lau, E., Naranbhai, V., Fairfax, B.P., Chan, K., 

Plant, K., and Knight, J.C. (2014). Genomic mapping of the MHC transactivator CIITA using an 

integrated ChIP-seq and genetical genomics approach. Genome Biol. 15, 494. 



 189 

Wynn, T.A., Chawla, A., and Pollard, J.W. (2013). Macrophage biology in development, 

homeostasis and disease. Nature 496, 445–455. 

Xaus, J., Cardó, M., Valledor, A.F., Soler, C., Lloberas, J., and Celada, A. (1999). Interferon 

gamma induces the expression of p21waf-1 and arrests macrophage cell cycle, preventing 

induction of apoptosis. Immunity 11, 103–113. 

Xia, Z., Donehower, L.A., Cooper, T.A., Neilson, J.R., Wheeler, D.A., Wagner, E.J., and Li, W. 

(2014). Dynamic analyses of alternative polyadenylation from RNA-seq reveal a 3’-UTR 

landscape across seven tumour types. Nat. Commun. 5, 5274. 

Xue, J., Schmidt, S.V., Sander, J., Draffehn, A., Krebs, W., Quester, I., De Nardo, D., Gohel, 

T.D., Emde, M., Schmidleithner, L., et al. (2014). Transcriptome-based network analysis reveals 

a spectrum model of human macrophage activation. Immunity 40, 274–288. 

Yanagimachi, M.D., Niwa, A., Tanaka, T., Honda-Ozaki, F., Nishimoto, S., Murata, Y., Yasumi, 

T., Ito, J., Tomida, S., Oshima, K., et al. (2013). Robust and Highly-Efficient Differentiation of 

Functional Monocytic Cells from Human Pluripotent Stem Cells under Serum- and Feeder Cell-

Free Conditions. PLoS One 8, e59243. 

Yates, A., Akanni, W., Amode, M.R., Barrell, D., Billis, K., Carvalho-Silva, D., Cummins, C., 

Clapham, P., Fitzgerald, S., Gil, L., et al. (2016). Ensembl 2016. Nucleic Acids Res. 44, D710–

D716.  

Yoon, O.K., Hsu, T.Y., Im, J.H., and Brem, R.B. (2012). Genetics and regulatory impact of 

alternative polyadenylation in human B-lymphoblastoid cells. PLoS Genet. 8, e1002882. 

Yu, L., Croze, E., Yamaguchi, K.D., Tran, T., Reder, A.T., Litvak, V., and Volkert, M.R. (2014). 

Induction of a unique isoform of the NCOA7 oxidation resistance gene by interferon β-1b. J. 

Interferon Cytokine Res. 35, 186–199.  

Zhang, H., Xue, C., Shah, R., Bermingham, K., Hinkle, C.C., Li, W., Rodrigues, A., Tabita-

Martinez, J., Millar, J.S., Cuchel, M., et al. (2015). Functional analysis and transcriptomic 

profiling of iPSC-derived macrophages and their application in modeling Mendelian disease. 

Circ. Res. 117, 17–28.  

Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nusbaum, C., 

Myers, R.M., Brown, M., Li, W., et al. (2008b). Model-based analysis of ChIP-Seq (MACS). 



 190 

Genome Biol. 9, R137. 

Zhao, H., Sun, Z., Wang, J., Huang, H., Kocher, J.-P., and Wang, L. (2014). CrossMap: a 

versatile tool for coordinate conversion between genome assemblies. Bioinformatics 30, 1006–

1007. 

Zheng, X., Levine, D., Shen, J., Gogarten, S.M., Laurie, C., and Weir, B.S. (2012). A high-

performance computing toolset for relatedness and principal component analysis of SNP data. 

Bioinformatics 28, 3326–3328. 

Zhernakova, D.V., de Klerk, E., Westra, H.-J., Mastrokolias, A., Amini, S., Ariyurek, Y., Jansen, 

R., Penninx, B.W., Hottenga, J.J., Willemsen, G., et al. (2013). DeepSAGE reveals genetic 

variants associated with alternative polyadenylation and expression of coding and non-coding 

transcripts. PLoS Genet. 9, e1003594. 

Zhou, J., and Troyanskaya, O.G. (2015). Predicting effects of noncoding variants with deep 

learning-based sequence model. Nat. Methods 12, 931–934. 

Zhu, Z., Zhang, F., Hu, H., Bakshi, A., Robinson, M.R., Powell, J.E., Montgomery, G.W., 

Goddard, M.E., Wray, N.R., Visscher, P.M., et al. (2016). Integration of summary data from 

GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481–487.  

Zlotnik, A., and Yoshie, O. (2012). The chemokine superfamily revisited. Immunity 36, 705–716. 

 


