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ABSTRACT

Hydrogen diffusion and trapping in ferrite is evaluated by quantum mechanically informed
kinetic Monte Carlo simulations in defective microstructures. We find that the lattice diffusivity is
attenuated by two to four orders of magnitude due to the presence of dislocations. We also find
that pipe diffusivity is vanishingly small along screw dislocations and demonstrate that disloca-
tions do not provide fast diffusion pathways for hydrogen as is sometimes supposed. We make
contact between our simulations and the predictions of Oriani’s theory of ‘effective diffusivity’,
and find that local equilibrium is maintained between lattice and trap sites. We also find that
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the predicted effective diffusivity is in agreement with our simulated results in cases where the
distribution of traps is spatially homogeneous; in the trapping of hydrogen by dislocations where
this condition is not met, the Oriani effective diffusivity is in agreement with the simulations to

within a factor of two.

1. Introduction

Hydrogen can be dissolved in most metals and
alloys [1], although it has remarkably low solubility
in body-centred cubic (bcc) iron. The interaction of
hydrogen with the microstructure is one reason for
embrittlement and premature failure in high-strength
steels and other engineering metals including nickel,
titanium and zirconium alloys [2]. The deleterious
effects of hydrogen are frequently connected to its rapid
diffusion through the crystal lattice, in particular in
bec and martensitic steels. The interactions of hydro-
gen with crystal defects and their consequences are
fundamentally less well understood than diffusion of
hydrogen in the perfect crystal lattice, despite generally
dominating the influence of hydrogen in metals.
Hydrogen atoms in the lattice are frequently divided
into two categories: diffusing hydrogen, which can
move freely through the normal interstitial sites, and
trapped or non-diffusing hydrogen, residing around
various crystal imperfections (vacancies, dislocations,
grain boundaries and so on) [3-5]. The driving force
for diftusion is the chemical potential gradient gener-
ated by hydrogen gradients combined with hydrostatic
stress gradients. If fast trapping and detrapping kinetics
are assumed, the freely diffusing and trapped hydrogen
concentrations need to be in equilibrium. Based on the
McLean isotherm, Oriani’s [6] fractional occupancy 6;

of a trap site is connected to the occupancy of normal
interstitial sites 61, by

0, o, Ep o
ex —_—
1—6, 1—0, P\ 7kt

where Ep is the corresponding trap binding energy, k
is the Boltzmann constant and T is the absolute tem-
perature. If N7 and Ny represent the number of normal
interstitial sites and number of traps per unit volume,
then the volume concentrations of hydrogen in nor-
mal interstitial sites are ¢; = N1, and in traps ¢; =
N:6;. Using Equation (1), Oriani [6] finds an effective
diftusivity of hydrogen given by

L

D% =D —F——
off cr + cr(1— )

)
in which Dy is the hydrogen diffusivity in the perfect
bec lattice.

In this work the validity of Equations (1) and (2)
is investigated by comparison to quantum mechani-
cally informed kinetic Monte Carlo (kMC) simulations.
Using the kMC, we may calculate the diffusivity of
hydrogen in the perfect lattice, DIEMC. We can then cre-
ate blocks of crystal containing defects which act as
trap sites, and from the evolution of the simulation
we can extract an effective diffusivity, Dl;\f/[c. From the
kMC simulations, the evolution of the occupancy of
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normal interstitial and trapping sites in pure bec Fe is
extracted and used as inputs to Equations (1) and (2)
to calculate corresponding trap barriers and effective
diffusivity, D?ﬂr', in steady state, which are in turn com-
pared for consistency with the input trap depths and
output effective diffusivity, Dle(?f/lc, to the kMC. Simu-
lations of a perfect lattice are used to benchmark the
resulting effective diffusivity in the lattice with defects
(vacancy, % (111) edge or %(1 11) screw dislocation).

2. Diffusion model and parametrisation

Diftusion of hydrogen atoms through normal inter-
stitial sites is governed by a random walk between
occupied and empty sites. Under the framework of a
kinetic Monte Carlo (kMC) method (cf. [7]), the rate
probability for a jump from site A to B is given as

AEp )

3)

FAB = VAB exp <— kT

where vap is the attempt frequency and AEup is the
energy barrier between metastable position A through
the saddle point to the position B, dependent on the
local atomic configuration. For a given local configu-
ration, a process k is selected according to

k—1 n k
Y Tasi<p1 ) Tasi< Y Ta; (4)
i1 i=1 i=0

where p; is a uniform random number between 0 and 1,
and # is the number of all possible events, i, during one
transition. The kMC simulates Poisson processes and
the simulation time Aty of each event is evaluated
as [8-10]

—1In(pz)
" Cagi

(5)

Atvc =

where p; is a second random variable in (0, 1], and
directly corresponds to physical time ¢ when only
interstitial diffusion is considered. The time-dependent
diffusion coeflicient is given by the Einstein expres-
sion, [11, 12] as

DEYC = lim e — (01 ©
where d is the system dimensionality (d=1,2,3) and
|e(f) — r(0)|? is the average squared displacement of
particles in time ¢, [13]. In this study, all simulations
were done at a constant temperature of 300 K, using a
box with 203 bec Fe unit cells, unless stated otherwise.
Simulations were performed with full periodic bound-
ary conditions in all directions. Fe atoms were not
moved throughout the simulations and the permitted
events were jumps between tetrahedral (T) sites, from
T sites to trapping sites, vice versa and between trapping
sites. The parameters used in the kMC model were for
a vacancy obtained by using the quantum mechanical

Table 1. Concentrations of interstitial hydrogen used in
simulations.

Number of Concentration Concentration
hydrogen atoms (appm) (wppm)

5 3124 56

10 624.6 11.2

15 936.6 16.8

20 1248.4 224

25 1560.1 27.9

30 1871.5 33.5

tight-binding approximation and molecular dynamics
methods based around the Feynman path integral for-
mulation of the quantum partition function [14, 15]; or
taken from the literature for the hydrogen interaction
with %(111) edge and screw [16] dislocations on {110}
slip planes, also determined within the framework of
path integral molecular dynamics at 300 K. The use of
20° bee Fe unit cells results in very large defect con-
centrations in the simulation box; therefore, hydrogen
concentrations were increased to obtain a realistic ratio
between defect and interstitial concentrations. Simula-
tions were performed with 5-30 hydrogen atoms and a
vacancy, edge or screw dislocation, and a combination
of edge and screw dislocations in the simulation box.
The corresponding concentrations of interstitial hydro-
gen in atomic and weight parts per million are given
in Table 1. To demonstrate the effect of simulation box
size, test runs were also performed using 25°, 30> and
502 bec Fe unit cells and compared with results obtained
with 203 bee Fe unit cells.

2.1. Parameters for diffusion around vacancy

For simulations on the movement of interstitial hydro-
gen, the energy landscape around a defect is needed.
Energies are then used as inputs in Equation (3) to
calculate the rate of all possible events. In Table 2, ener-
gies and calculated rate constants needed for interstitial
movement around a vacancy at 300K are given. Sev-
eral events are considered: TT is a jump between adja-
cent tetrahedral sites, TTV1 is a jump from tetrahedral
site to an unoccupied vacancy trap, TTV2 is a jump
from a tetrahedral site to the vacancy trap if there is

Table 2. Energies and rate coefficients used to construct the
kMC model for trapping around a vacancy at 300 K and result-
ing rate coefficients.

Parameter Energy (eV) Rate coefficient (Hz)
T —0.045 1.31 x 10'2
TTV1 —0.033 2.09 x 102
TTV2 —0.013 452 x 10"
TW —0.23 1.02 x 10°

VT —0.65 63

Notes: TTis a jump between adjacent tetrahedral sites, TTV1 is a jump from
tetrahedral site to an unoccupied vacancy binding point or a vacancy
trap, TTV2 is a jump from tetrahedral site to a vacancy trap if there
is already a hydrogen atom occupying one trapping site around the
vacancy, TVV is a jump between adjacent traps around a vacancy and
TVT is used for detrapping from a vacancy.



Figure 1. Schematic representation of the events considered in
our kMC model shown in the bcc lattice, where the vacancy (V)
is presented as a dotted cube with six possible binding points
around its centre, T is a tetrahedral interstitial site and Fe is an
iron position.

already a hydrogen atom occupying one trapping site
around the vacancy, TVV is a jump between adjacent
trap positions around the vacancy and TVT is used for
detrapping from the vacancy. According to quantum
calculations up to six hydrogen atoms can be trapped
around a vacancy; however, only two have high prob-
ability of being found there [14, 15, 17]. Therefore, in
the model only up to two hydrogen atoms are allowed
to be trapped around the vacancy to increase the com-
putational efficiency of the model without sacrificing
significant reality. Figure 1 shows a schematic represen-
tation of the events we consider in the kMC simulations
of the vacancy microstructures.

In all the calculations performed at 300K, we use
an activation barrier for lattice diffusion of 0.045¢V,
calculated using zero-point energy-corrected density
functional theory [18]; and an Arhenius prefactor of
5.12 x 10'? Hz.
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2.2. Parameters for diffusion around edge and
screw dislocation

The energetic landscape of an interstitial hydrogen
around edge or screw dislocations has many more local
minima in comparison to the vacancy. As a remote
hydrogen atom approaches the core, it encounters sev-
eral metastable binding sites distributed between two
parallel adjacent crystal planes which are perpendicular
to the dislocation line sense [16]. In particular, the cores
of edge and screw dislocations are reached through
seven and six deep metastable binding sites, respec-
tively. Movements from one metastable binding site to
another and energy barriers for that transition were
determined in [16] at 300 K using path integral molec-
ular dynamics. However, these authors did not address
transitions from bulk tetrahedral to metastable bind-
ing sites. The saddle point energy between a tetrahe-
dral interstitial (T)) site and a metastable binding site is
assumed here to be similar to values obtained for tran-
sitions from a tetrahedral interstitial site to metastable
binding site next to a vacancy [19]. In the case of edge
dislocations, the present kMC model does not account
for the change of binding energies and energy barriers
between the metastable sites in compressive and ten-
sile areas on both sides of the planar core. Instead, we
assume that each metastable binding site is surrounded
by four tetrahedral sites with energies for transition
between T site to metastable binding points given in
Tables 3 and 4 for %(111) edge and %(111) screw dis-
location, respectively. TB and TZ represent transitions
from four nearest T sites to metastable binding sites
close to the dislocation, while BT and ZT represent
the reverse. Transitions are grouped into TB/BT and
TZ/ZT based on the distance between the T sites and
metastable binding sites close to the dislocation (cf.
Figure 2). A larger number labelling of a binding site
corresponds to a position closer to the dislocation core,

Table 3. Energies for transitions to and from the metastable binding site used in constructed kMC model for edge dislocation at

300 K.

Energy (eV)
Binding site TB1 TB2 BT1 BT2 TZ1 TZ2 VAN 712
1 —041 —0.02 —0.52 -0.17 —041 —0.02 —0.52 —0.17
2 —0.41 —0.01 —043 —0.2 —0.41 —0.01 —043 -0.2
3 —0.22 —0.015 —0.25 —0.125 —0.22 —0.15 —0.26 —0.125
4 —0.12 —0.02 —0.19 —0.09 —0.12 —0.02 —0.19 —0.09
5 —0.085 —0.025 —0.14 —0.07 —0.085 —0.025 —0.14 —0.07
6 —0.07 —0.045 —0.08 —0.045 —0.07 —0.045 —0.08 —0.045
7 —0.02 —0.02 —0.35 —0.065 —0.02 —0.02 —0.35 —0.065

Table 4. Energies for transitions to and from a metastable binding site used in constructed kMC model for screw dislocation at 300 K.

Energy (eV)
Binding site TB1 TB2 BT1 BT2 TZ1 TZ2 ZT1 712
1 —0.02 —0.025 —0.27 —0.36 —0.02 —0.13 —0.43 —0.32
2 —0.035 —0.01 —0.18 —0.14 —0.03 —0.01 —0.32 —0.14
3 —0.06 —0.015 —0.13 —0.075 —0.06 —0.15 —0.22 —0.075
4 —0.05 —0.02 —0.1 —0.065 —0.05 —0.02 —0.18 —0.065
5 —0.045 —0.045 —0.08 —0.07 —0.045 —0.045 —0.1 —0.07
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Figure 3. Schematic representation of an energetic landscape
around (a) edge dislocation and (b) screw dislocation.

where, for an edge dislocation, metastable point 7 is the
closest to the dislocation line and, in the case of a screw
dislocation, metastable point 6 is the closest to the core.
As in the case of vacancy, at 300 K we use an activation
barrier for lattice diffusion of 0.045 eV and an Arhenius
prefactor of 5.12 x 1012 Hz.

Schematic representations of edge and screw dislo-
cation energetic landscapes are shown in Figure 3. In
the case of an edge dislocation, the core is depicted
as an inverted T, while numbers represent metastable
binding points for a hydrogen atom diffusing along the
(110) slip plane of the edge dislocation (Figure 3(a)).
Figure 3(b) shows schematically energetic landscape
and metastable points around a screw dislocation. The
dotted lines serve as a guide to view threefold symmetry
of the (110) slip planes, and solid squares indicate the
three deepest traps closest to the dislocation core. The
arrows indicate those transitions of hydrogen atoms
along the slip plane in the direction of the core that are
included in our kMC simulations.

The activation energies for a proton to jump from
a metastable binding site close to the core to another
metastable binding site close to the core in the direction
of the dislocation line are given in Table 5.

Table 5. Activation energies for pipe diffusion along disloca-
tion core lines for edge and screw dislocations.

Dislocation Site Energy/eV

Edge Eq —0.32
E —0.13

Screw S —043
S -0.03

Note: Referring to Figure 3, £1 and E; are barriers for the two-hop jump
along the [112] direction at the centre of the core indicated by the inverted
T; S and S; are barriers for the two-hop jump along the [111] direction
between sites labelled by the filled square. For details, see [16].

3. Results and discussion
3.1. Diffusivity in ideal lattice

To begin with, we show in Figure 4 the calculated
lattice diftusivity, DIEMC, in a perfect lattice at 300 K
as a function of simulation time. (In this and sub-
sequent figures we use diffusivity’ loosely to mean
the simulated diffusivity as a function of simulation
time. But our calculated diffusivities are of course the
steady-state limit of this quantity.) It is vital to note
that simulation times of at least one microsecond are
required before a convergent result is reached. This
is an important observation since it emphasises the
need to go beyond timescales accessible to molecu-
lar dynamics. We have used an activation barrier for
lattice diffusion of 0.045eV and an Arhenius prefac-
tor of 5.12 x 10'2 Hz at 300 K, which reproduces the
diffusivity measured by Nagano et al. [20], namely
8.98 x 1072m? s~!. As shown, there is negligible effect
of hydrogen concentration on the interactions between
interstitial atoms despite the small simulation box, as
our results are in the range from 8.978 x 10~ m?s~!
t08.981 x 10" m*s ™!,

3.2. Diffusivity around point defect

In order to determine appropriate simulation box size
in the presence of a trap, we performed simulations
with different box sizes of 20°, 25°, 30°, 35°, 40° and
50° unit cells and a single point defect (vacancy) with

8.984
-~ 8.982 1
|l.l)
o~
€ 8.980 ;
m\ Mﬁ \' A
|o ’,4{1/) 7 r'M\.'-J"—"—"—
A ! f 1
S 8.978 \\{j‘ M iy
2 N1
= 8976 \/ ‘\’/ Number of H atoms
=} R J—
2 ‘ 5 20
0 8.974 — 10 251
15 30
8.972
1078 107’ 107° 107° 107* 1073
Time /s

Figure 4. Influence of hydrogen concentration (cf. Table 1) on
kMC determined lattice diffusivity in an ideal lattice.
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Figure 5. Results of simulations with single vacancy and five
hydrogen atoms, (a) effect of simulations box size and (b) details
showing final results of (a).

5 hydrogen atoms in the simulation box. Our results
depicted in Figure 5(a) show that box size only has an
effect on diffusivity at the outset of the simulation. Since
very similar final results for diffusivity was obtained
for all tested box sizes (cf. Figure 5(b)), the decision
was made to use 20° bce Fe unit cells (5.74 nm with
16000 Fe atoms and 100800 tetrahedral sites) to keep
the simulation runtime achievable and reasonable.

The effects of different initial hydrogen positions
were evaluated. It was found that different initial posi-
tions of interstitial hydrogen have negligible effects
on the diffusivity and time when the steady state is
reached. Figure 6 shows evolution of effective diffu-
sivity from kMC simulations for a single vacancy and
different hydrogen concentrations. As shown, the time
needed to reach steady state for a vacancy is about
1 x 10~%s, indicating that hydrogen diffusivity around
point defects achieves steady state almost instantly. For
point defects this is expected since the activation bar-
rier for trapping is lower than that for lattice diffusion,
while the barrier for escape from the trap is so large
that escape is a very rare event on the timescale of our
simulations.

A comparison between calculated diffusivity in the
perfect lattice and calculated effective diffusivity with
different vacancy or hydrogen concentrations deter-
mined from kMC simulations is shown in Figure 7.
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Figure 6. Influence of hydrogen concentration on effective dif-
fusivity in lattice with a single point defect.
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Figure 7. Influence of number of point defects or hydrogen
concentrations on effective diffusivity and comparison to ideal
lattice diffusivity.

It can be seen that similar ratios between defect and
hydrogen concentrations lead to comparable effective
diffusivities.

3.3. Diffusivity around dislocations

Simulations with dislocations were performed mainly
using a box size of 20% Fe bcc unit cells and different
hydrogen concentrations. Results of effective diffusiv-
ity for a single screw, a single edge and a combination
of screw and edge dislocations are shown in Figure 8.
Depending on the defect type and hydrogen concen-
tration, the time needed to reach steady state is for both
dislocation types, around 1 x 10~* s. Results shown
in Figure 8 indicate that hydrogen diffusivity around
traps, simulated with kMC achieves steady state almost
instantly. This discovery is important for mesoscopic
and continuum simulations of crack propagation where
the redistribution of hydrogen during crack growth
plays an important role.

During the simulations, we also followed diffusion
along dislocation cores (pipe diffusion) and results
show that pipe diffusivity is several orders of magnitude
lower compared to the effective lattice diffusivity. The
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Table 6. Results of kMC simulations for single edge and screw
dislocation.
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Figure 8. Influence of hydrogen concentration on kMC deter-
mined effective diffusivity in lattice with (a) single %(1 11) edge

dislocation; (b) single %(111) screw dislocation; (c) one edge
and one screw dislocation.

resulting diffusivity in the case when hydrogen atoms
are trapped inside the most stable points close to the
dislocation core and move along the [111] direction of
the dislocation line, clearly indicate that the diffusivity
resulting from hydrogen transport along the dislocation
line is several orders of magnitude lower compared to
the effective lattice diffusivity. It follows that dislocation
lines do not act as fast pathways for hydrogen pipe diffu-
sion in bec iron. In Table 6 are given results obtained for
various hydrogen concentrations in a simulation box
with a single edge or screw dislocations, where DE&AC
is the effective diffusivity and Dl;{\gec is the diffusivity
along the [111] direction within the dislocation core.
Figure 9 shows the evolution of the diffusivity along

Defect ¢ (wppm) Dzz‘c x10° (m?s~1) Dmg x1012 (m2s~1)

1 Edge 5.6 0.86 10.7
11.2 0.90 11.3
16.8 0.94 10.4
22.4 0.98 18.3
279 1.02 29.1
335 1.05 20.9

1 Screw 5.6 0.030 0.0445
11.2 0.031 0.0415
16.8 0.031 0.0441
224 0.032 0.0509
27.9 0.032 0.05
335 0.034 0.0531

Note: Comparison of effective diffusivity,

various hydrogen concentrations, cy.

kMC
Deff

o e kMC
+ pipe diffusion, Dgin.., for

10,
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— 5  — 20
8 — 10 25/
15 30
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Figure 9. Pipe diffusivity along screw dislocation core (Dmg)
determined from kMC simulations.
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Figure 10. Influence of defect and hydrogen concentration on
effective diffusivity for dislocations.

a screw dislocation core, showing that the diffusivity
along the screw dislocation line is more than order of
magnitude smaller than the effective diffusivity of the
dislocated lattice. Pipe diffusion along the screw dis-
location [111] direction is several orders of magnitude
smaller than the lattice diffusivity.

From this we can conclude that the screw disloca-
tion core is not a pathway for fast diffusion of hydrogen.



The origin of this is twofold: first the activation bar-
rier is large, Table 5, and second the trap occupancy is
relatively large leading to blocking of the diffusion path.

In Figure 10 a comparison between calculated effec-
tive diffusivity for several cases with different disloca-
tion or hydrogen concentrations is shown. It can be
seen that similar ratios between defects and hydrogen
concentration lead to comparable effective diffusivities.

3.4. Comparison between kMC and Oriani’s
trapping theory

To test the validity of Oriani’s assumption (cf. Equation
(1), [6]) of equilibrium between freely diffusing and
trapped hydrogen concentrations, the kMC model was
developed in a way that trap and lattice occupancies
could be followed. The total time hydrogen atoms spent
at each site can be calculated at any given time during
the simulation as the time spent in the trap or the lattice.
Fractional occupancy of sites is obtained by dividing
the time hydrogen atoms spent in a site by the total
time. Since a kMC simulation aims to reach thermody-
namic steady state, values at the end of simulations were
used to determine trap binding energies of defects from
resulting data for occupancies between lattice hydrogen
and trapped hydrogen using equation (1) and to test the
validity of Oriani’s theory of local equilibrium by com-
paring these binding energies with those used as input.
After suitable averaging of the trap occupancies, the dif-
fusivity obtained from kMC is compared to the effective
diffusivity calculated with Equation (2) using occu-
pancies from kMC simulations. Detailed results and
calculated trap binding energies for different defect and
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hydrogen concentrations are presented in Tables 7-9.
Results for the vacancy in Table 7 show a minimal
effect of concentration in the cases where the num-
ber of hydrogen atoms is smaller than the number of
trapping sites. The average value for vacancy trap bind-
ing energy calculated using equation (1) is determined
to be 0.22 +0.03eV. In the case of a single type of
dislocation (cf. Table 8), the number of possible trap-
ping sites far exceeds the number of hydrogen atoms
in the box. The trap binding energy determined for
an edge dislocation is 0.21 & 0.01 eV and is indepen-
dent of the number of dislocations in the box. The
trap binding energy of the screw dislocation is slightly
dependent on the number of dislocations in the box
and is 0.28 £ 0.002 eV for a single screw dislocation
in the box and 0.34 £ 0.01 eV in the case of simula-
tions with two screw dislocations. This increase occurs
due to overlap between both dislocations. Oriani’s effec-
tive diffusivity, DSﬂE', calculated using equation (2) for
vacancies using occupancies from kMC simulations is
presented in Table 7. Comparison between DS&’ and
Dﬁ}dc shown in Figure 11 reveals that the diffusivity
obtained from kMC simulations is slightly lower than
that obtained using equation (2). The largest differ-
ences are in the case of lowest hydrogen concentrations,
and the least differences when the hydrogen concen-
tration is highest. This can be explained by the small
difference between the number of hydrogen atoms that
can freely move compared to possible trap sites. In the
cases where the number of traps exceeds the number
of hydrogen atoms, we get very similar results when
comparing both approaches. From our results, we may
show that Oriani’s effective diffusivity is a very good

Table 7. Results of kMC simulations for various vacancy and hydrogen concentrations.

Vac. /num. cH (wppm) DKMCx10% (m?2 s~T) 6,x10° (-) or (=) Ep (eV) Avg Eg (eV) D95 x10° (m2s™")
1 56 5.26 2.98 0333 0.252 0.210.02 6.07
1.2 7.01 7.94 0.333 0.226 7.51
16.8 7.60 12.90 0.333 0214 7.95
24 7.89 17.86 0.333 0.205 8.16
279 8.06 22.82 0333 0.199 8.28
335 8.18 27.78 0.333 0.194 8.37
2 56 175 0.99 0.333 0.280 0.22::0.03 239
1.2 5.26 5.95 0.333 0.234 6.07
168 6.43 1091 0.333 0218 7.05
24 7.01 15.87 0333 0.208 7.51
279 7.36 20.83 0333 0.201 7.78
335 7.59 25.79 0333 0.196 7.95
3 56 0.00 0.99 0.278 0.273 0.23::0.03 0.00006
1.2 3.50 3.97 0333 0.244 438
168 5.26 8.93 0333 0223 6.07
24 6.13 13.89 0333 0212 6.82
279 6.66 18.85 0.333 0.204 7.24
335 7.01 23.81 0333 0.198 7.51
5 56 0.00045 0.99 0.167 0.256 0.23::0.02 0.00
12 0.00002 198 0.300 0.258 12
168 2.92 4.96 0333 0.238 3.76
24 438 9.92 0333 0.220 5.26
27.9 5.26 14.88 0333 0.210 6.07
335 5.84 19.84 0.333 0.202 6.57

Note: Vac. is the number of vacancies, cy is hydrogen concentration, D';;‘f"c is the effective diffusivity, ; is the lattice occupancy, 6r is the trap occupancy
and Eg is the trap binding energy determined from assumption of local equilibrium using Equation (1) and Dgf'f' is the effective diffusivity calculated from

Equation (2).
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Table 8. Results of kMC simulations for dislocations and hydrogen concentrations.

Defect cr (wppm) DKM x 107 (m?s™") 0L x 10° (=) Or x 10% (=) Eg (eV) Avg Eg (eV) DG <107 (m?s™")
1Edge 5.6 0.86 6.89 29.75 0.200 0.2140.01 0.61
1.2 0.90 4.44 15.05 0.207 053
16.8 0.94 3.13 8.27 0.213 042
224 0.98 2.17 74 0.206 0.53
27.9 1.02 165 3.82 0.216 037
335 1.05 111 282 0.214 042
1Screw 5.6 0.030 4.1 17.7 0.278 0.28+0.002 0.01
1.2 0.031 463 274 0.282 0.086
16.8 0.031 47 335 0.281 0.088
224 0.032 4.78 40.9 0.282 0.085
27.9 0.032 4.58 402 0.279 0.097
335 0.034 492 435 0.279 0.098
2 Edge 5.6 0.96 673.5 290.62 0.202 0.210.007 037
1.2 0.98 an3 14734 0.207 0.29
16.8 10 306 7836 0.215 0.21
224 1.02 197.8 66.68 0.207 0.28
27.9 1.04 160.3 37.21 0217 0.19
335 107 1053 269 0.214 0.21
2 Screw 5.6 0.0038 3699 2413 0.321 0.3440.01 0.0038
1.2 0.0035 6467 43,50 0.335 0.007
16.8 0.0037 7676 50.70 0.346 0.01
224 0.0039 8231 53.21 0.354 0.013
27.9 0.0042 8012 55.63 0.349 0013
335 0.0046 7500 56.63 0.341 0.011

Note: ¢y is the hydrogen concentration, D‘é#c is the effective diffusivity, 6, is lattice occupancy, 07 is the trap occupancy and Eg is the trap binding energy

determined from assumption of local equilibrium using Equation (1).
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Figure 11. Results of obtained diffusivities for point defect
from kMC simulations,D'Ljf"élc (closed symbols) and calculated

using Oriani’s equation, Dgf;‘ (open symbols).

approximation for the description of effective diffusiv-
ity of hydrogen in the case of microstructures with a
single type of trap uniformly distributed, for example,
the case of vacancies.

Results from kMC simulations with edge and screw
dislocations in the box are presented in Table 9. The
trap binding energy for combination of both types of
dislocations in kMC simulation is 0.22 =+ 0.003 ¢V and

is close to the simulations where only an edge dislo-
cation is present. Comparison of effective diffusivity
shows that though vacancies can bind hydrogen to their
nearest tetrahedral sites, the number of these sites is
too small to have any large effect unless the number of
possible trapping sites exceeds the number of hydrogen
atoms. In the case of dislocations effective diffusivity is
significantly lower than that in the ideal lattice or even
in a lattice with only vacancies. Moreover, results show
that the effective diffusivity in the presence of screw dis-
locations is a couple of decades smaller compared to
simulations with edge dislocations or combinations of
defects. This is due to deeper trap sites around screw
dislocations and interactions between them if several
screw dislocations are present in the box. Resulting val-
ues for the binding energies for vacancy and edge or
screw dislocations are in good agreement with pub-
lished results from the literature [21, 22]. Figure 12
shows comparison between calculated diffusivity from
kMC simulations and determined effective diffusivity
using Oriani’s theory for dislocations. In the case of
a screw dislocation, Oriani’s effective diffusivity calcu-
lated with inputs for occupancies at the end of kMC
simulations is slightly higher compared to diffusivity

Table 9. Results of kMC simulations for dislocations and hydrogen concentrations.

Defect cy (wppm) DKMC 5 10° (m?s7) 6, x10° (—) 67 x 10° (=) Eg (eV) Avg Eg (eV)
1Edge + 1 Screw 56 0.31 1746 3.34 0.221 0.22 4+ 0.003
112 0.31 815 1.83 0.217
16.8 0.31 598 147 0.215
224 0.31 548 117 0.218
27.9 0.32 449 0.81 0.223
335 0.32 365 0.76 0.219

Note: cy is the hydrogen concentration, D';f'\fc is the effective diffusivity, 6, is the lattice occupancy, 07 is the trap occupancy and Eg is the trap binding energy

determined from assumption of local equilibrium using Equation (1).



0.12

T 010 ¢

o
o
®

® 1 screw
m 2 screw

=4
=3
o

Effective diffusivity x 10/ m?s~
g
f

o
o
N]

& [u} o
o
[ [ ] L] [ ]
0.00
5 10 15 20 25 30

—
=
Ny

Hydrogen concentration / number

o
o

A
.

A
™ 1.00 i : +
£ *
E + 1edge
2 080 A2edge
X m 1 edge + 1 screw
2
S 060
3 4 4
£
© °
.02) 0.40 s
g E - : L
& 020 2 IS
o o o o
0.00
5 10 15 20 25 30
(b) Hydrogen concentration / number of atoms

Figure 12. Results of obtained diffusivities from kMC simu-
lations, D‘éf"ﬁc, (closed symbols) and calculated using Oriani’s

equation, Dgf'f', (open symbols) for (a) single %(1 11) screw dis-
location and (b) single %(1 11) edge dislocation and one edge
and one screw dislocation.

from kMC simulation (cf. Figure 12(a)). In the case
of an edge dislocation and combination of edge and
screw dislocations depicted in Figure 12(b), diffusivity
obtained from kMC simulations is higher than calcu-
lated using equation (2). Larger discrepancies between
diffusivities obtained from kMC simulations and cal-
culated Oriani effective diffusivity, Deoﬂﬁ', using data for
occupancies from kMC simulations can be explained by
the spatial inhomogeneity of the energy landscape due
to trap sites.

4. Conclusions

A kMC model for diffusion of hydrogen has been devel-
oped. This is able to simulate diffusion in ideal lattices
and with vacancies and edge or screw dislocations with
%(111) Burgers vector. The following conclusions can
be reached from the present work.

e Diffusivity in the ideal lattice is comparable to exper-
imental results.

e Direct comparison can be made of explicit simula-
tions and the theory of Oriani which assumes local
equilibrium and one type of trap.

e The kMC confirms the establishment of local equi-
librium in all the cases we have looked at.
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e The Oriani effective diffusivity, D?ﬂr', forms a good
approximation to that calculated by kMC, Dl;g{c.
The best agreement is in the case of a homogeneous
distribution of vacancies. For the case of disloca-
tions, because these are spatially inhomogeneously
distributed and there is a range of trap types with
different binding energies, the Oriani effective dif-
fusivity may differ by a factor of two from the kMC
value.

As a result of kMC simulations of hydrogen trans-
port in the proximity of a screw dislocation, we can
conclude as follows:

e Hydrogen atoms are confined to the region around
the dislocation line, where they jump between the
adjacent binding and low-energy metastable sites.

e Hydrogen atoms occupy predominantly the deepest
trap sites close to the dislocation line.

e Hydrogen diffusivity significantly decreases with
increasing dislocation density.

e Dislocation pipe diffusion of hydrogen results in sig-
nificantly lower diffusivity compared to lattice dif-
fusion. We calculated the jump diffusion coefficient
for hydrogen diffusion in the cases when hydro-
gen atoms are trapped inside the core and move in
the [111] direction along the dislocation line. Our
kMC simulations clearly indicate that the diffusivity
resulting from hydrogen transport along the dis-
location line is several orders of magnitude lower
than that resulting from the lattice diffusion. Thus,
the dislocation lines do not act as fast pathways for
hydrogen diffusion in bcc Fe. The two reasons for
this are the large activation barrier and the near sat-
uration of trap sites leading to a blocking of the
diffusion path.

Similar simulations of the hydrogen diffusivity in
proximity of %(111) edge dislocations show the follow-
ing.

o The diffusivity near edge dislocations is higher com-
pared to that in the vicinity of screw dislocations.
Apart from the higher number of trap sites, diffu-
sivity near a screw dislocation is also affected by its
non-planar core structure. The planar core of the
edge dislocation allows hydrogen atoms to move in
directions parallel to the lines of trap sites, which
increases their pipe diffusivity. We repeat that, in
these preliminary simulations, we have neglected
possible attraction and repulsion of hydrogen by the
tensile and compressive strain fields above and below
the slip plane of an edge dislocation.

e There are no dominant trap sites. Hydrogen atoms

are confined more or less evenly in all binding sites
and jump between trap sites and the adjacent low-
energy metastable sites.
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e There is no low-energy pathway for hydrogen dif-
fusion in the [112] direction along the dislocation
line. We used our kMC model for screw and edge
dislocations to simulate diffusion of ten hydrogen
atoms. Hydrogen diffusivity in this case is higher
than the diffusivity around the same number of
screw dislocations and lower than the diffusivity
around edge dislocations. The reason for this is the
higher hydrogen diffusivity in the proximity of edge
dislocations.
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